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Four classes of second order sliding mode controllers (2-SMC) have been successfully applied to regulate the liquid level in the
second tank of a coupled tanks system.The robustness of these classes of 2-SMC is investigated and their performances are compared
with a first order controller to show themerits of these controllers.The effectiveness of these controllers is verified through computer
simulations. Comparison between the controllers is based on the time domain performance measures such as rise time, settling
time, and the integral absolute error. Results showed that controllers are able to regulate the liquid level with small differences in
their performance.

1. Introduction

The control of liquid level in multiple connected tanks by
controlling the liquid flow is a typical nonlinear control prob-
lem in the field of process control. It is present in many
industrial processes.Many researchers around theworld have
attempted the design and implementation of controllers for
the liquid level of a coupled tanks system. Some of the
controllers used to control coupled tanks systems include
Proportional-Integral-Derivative (PID) type controllers [1],
a parallel structure of fuzzy PID control systems [2], a non-
linear constrained predictive algorithms based on feedback
linearization control [3], and fractional PID controller [4].

Sliding mode control is an efficient method for robust
control of uncertain systems [5–7]. The basic idea of the
first order sliding mode control (1-SMC) is to let the system
converge towards a selected surface and then to stay there in
spite of uncertainties and disturbances. The 1-SMC method
can be designed by performing two steps. The first step is
to select an appropriate sliding surface to constrain the state
trajectory on it. The second step includes designing of a
discontinuous control law to force the system state to reach
the designed surface preferably in finite time. 1-SMC requires

sliding variable relative degree (the relative degree is defined
as the order of the derivative of the controlled variable, in
which the control input appears explicitly) to be equal to one
with respect to the control inputwhich limits the choice of the
sliding variable. The 1-SMC is also used to regulate the liquid
level. An input-dependent sliding surface has been used in
[8] to regulate the liquid level in a coupled tanks system.
A sliding mode controller, which has a state varying sliding
surface parameter, has been designed in [9]. A neuro-fuzzy-
sliding mode controller using nonlinear sliding surface has
been proposed in [10].

In addition to the restriction regarding the relative degree,
1-SMC also has the drawback of chattering due to high
switching frequency of the control. The drawbacks of 1-
SMC can be successfully eliminated by the use of higher
order sliding mode controllers (HOSMC). HOSMC force the
sliding variable and its successive derivatives to zero.There is
no restriction on the relative degrees. As the high frequency
control switching is pushed in the higher derivative of the
sliding variable, chattering is significantly reduced. Another
feature of HOSMC is that the detailedmathematical model of
the plant is not required. The most widely used HOSMC are
second order sliding mode controllers (2-SMC). Examples of
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2-SMC are widely used twisting controllers and its modified
variant the super twisting controllers, the quasi-continuous
controllers, the suboptimal control algorithm, and the control
algorithm with prescribed convergence law.

Khan and Spurgeon [11] applied a second order sliding
mode control idea to control a coupled tank system.

The super twisting and adaptive super twisting control
algorithms are developed for the two-spacecraft formation
flying system in [12]. A 2-SMC is proposed for second
order uncertain plants using equivalent control approach
to improve the performance of control systems in [13]. A
discrete integral sliding mode controller based on composite
nonlinear feedback method to improve the transient perfor-
mance of uncertain systems is proposed in [14]. A second
order sliding mode controller using nonlinear sliding surface
to guarantee stability as well as to enhance the transient
performance of uncertain linear systems with parametric
uncertainty has been proposed in [15]. An adaptive second
order slidingmode controller with a nonlinear sliding surface
that consists of a gain matrix having a variable damping ratio
has been presented in [16]. A higher order sliding mode
control algorithm is described for a class of uncertain multi-
input multioutput nonlinear systems and the developed
algorithm was applied on a hovercraft vessel control [17].

Despite the many existing publications related to the 2-
SMC, there is a lack of articles that compare performance of
different types of 2-SMC in water level of the second tank in
the coupled tanks system from one side and between them
and the first order controller from the other side. Moreover,
to the best of authors’ knowledge, there is no published
work concerning the 2-SMC especially, which contains the
detailed analysis of the time domain controlmeasures and the
tracking performance of the well-known controller.

In this paper, robustness of four classes of 2-SMC,
namely, twisting (TA), the super twisting (STC), prescribed
convergence law controller (PCL), and the quasi-continuous
controller (QCC), to regulate the water level of the second
tank in the coupled tanks system is introduced and their
performances are compared. Moreover, the performances of
the four controllers mentioned above are compared with a
first order controller to show the merits of these controllers.

The remaining structure of this paper is as follows. In the
next section, the dynamic model of the coupled tank system
will be explained. Section 3 briefly provides the basics of the
1-SMC controller and the 2-SMC. In Section 4, 2-SMCwill be
described briefly. In Section 5, the simulation results from the
application of the controller will be presented and discussed.
Finally, Section 6 includes the concluding remarks based on
the results obtained.

2. Mathematical Modeling of
the Coupled Tanks System

Figure 1 shows a schematic diagram of the two-coupled tanks
system. The tanks system consists of two connected tanks. A
pump supplies the water into the first tank. The second tank
is filled from the first tank via a connecting pipe. An outlet is
located at the bottom of the second tank to change the output
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Figure 1: A schematic diagram of the two-coupled tanks system.
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is nonlinear and can be derived as follows.
Applying the flow balance equation for Tanks 1 and 2,
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where ℎ
1
and ℎ

2
are the water level in Tank 1 and Tank 2,

respectively. 𝑞 is the inlet flow rate; 𝑞
1
is the flow rate from

Tank 1 to Tank 2.𝐴 is the cross section area for both tanks, 𝑎
1

is the area of pipe connecting the two tanks, 𝑎
2
is the area of

the outlet, and 𝑔 is the constant of gravity. If the inlet flow 𝑞 is
selected as input and the liquid level ℎ

2
in the second tank as

output, the system can be considered as a single input single
output system (SISO). The two tanks system can be modeled
by the following two differential equations:
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Note that 𝑞 is always positive, whichmeans that the pump
can pump water into the tank (𝑞 ≥ 0). At equilibrium, for
constant water level set point, the derivatives of the water
levels with respect to time in the two tanks must be zero so
that the following condition can be written:
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Therefore, using (6) in (3) and (4), the following algebraic
relationships hold:

−𝑘
1
sign (ℎ

1
− ℎ
2
)√
󵄨󵄨󵄨󵄨ℎ1 − ℎ2

󵄨󵄨󵄨󵄨 +
𝑞

𝐴
,

𝑘
1
sign (ℎ

1
− ℎ
2
)√
󵄨󵄨󵄨󵄨ℎ1 − ℎ2

󵄨󵄨󵄨󵄨 − 𝑘2
√ℎ
2
.

(7)

The equilibrium flow rate 𝑞 can be calculated as

𝑞 = −𝐴𝑘
1
sign (ℎ

1
− ℎ
2
)√
󵄨󵄨󵄨󵄨ℎ1 − ℎ2

󵄨󵄨󵄨󵄨.
(8)

To satisfy the constraint on the input flow rate, the term
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dynamics model can be written as
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Using the following transformation,
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(9) can be written as
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It can be easily checked that𝑓(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) in (11) have
the following form:
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3. Sliding Mode Control

3.1. 1-SMC. Thedynamics of a second order nonlinear system
can be written as

𝑥̈ = 𝑓 (𝑥) + 𝑏 (𝑥) 𝑢, (14)

where 𝑥(𝑡) is the state and 𝑢(𝑡) is the control input vectors,
respectively. 𝑓(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) are unknown nonlinear func-
tions of time and states. The functions 𝑓(𝑥) and 𝑏(𝑥) are
not exactly known with upper bounded uncertainties. The
control problem let the state 𝑥 track a specified time-varying
state 𝑥

𝑑
. The required sliding surface to control this system

can be defined as

𝑆 = ̇𝑒 + 𝜆𝑒. (15)

𝑒 = 𝑥 − 𝑥
𝑟
is an error vector and 𝜆 is a constant parameter,

which dictated the slope of the sliding surface. Differentiating
(16), and inserting (15), and then putting ̇𝑆 = 0 and solving for
𝑢 result in the following control law:

𝑢̂ = −𝑓 (𝑥̇, 𝑥) + 𝑥̈
𝑑
+ 𝜆 ̇̂𝑥 (16)

and define the control law

𝑢 = 𝑢̂ − 𝑘 sign (𝑠) , (17)

where 𝜆 and 𝑘 are strictly positive constant. 𝑘 can be selected
high to cope with uncertainty. A sufficient condition for the
convergence to a sliding mode is

1
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𝜂 is a positive constant. Equation (18) is called reaching or
sliding condition. The signum function in (17) is defined as
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Commonly in 1-SMC, to avoid chattering, the signum
function is replaced by a smooth function to create a bound-
ary layer around the sliding surface. For example, a saturation
function can be used and is given by
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{
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In (22) 𝜑 is a positive constant which defines the thickness of
the boundary layer.

3.2. 2-SMC. 2-SMC control is a subset of HOSMC. It differs
from the 1-SMC by including the first order derivative of the
sliding variable while maintaining the same robustness and
performance as that of the 1-SMC. 𝜎 ∈ R in an output of
(15) to be exactly stabilized in finite time at 𝜎 = 0, 𝑢 ∈ R

is the control input, and 𝑥 ∈ R𝑛 is the state. If the output 𝜎
has a fixed and known relative degree 𝑟 ∈ R𝑛, then, for the
positive constants 𝐾
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2-SMCmay be considered as controllers for the following
differential inclusion [18]:

𝜎̈ ∈ [−𝐶, 𝐶] + [𝐾
𝑚
, 𝐾
𝑀
] 𝑢. (22)

2-SM controllers allow solving the problem of finite-time
stabilization of a black box system as shown in Figure 2. The
only information needed from the system is the output.
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Figure 2: Block diagram of a black box controller.

The required derivative can be obtained by usingHOSMC
arbitrary order differentiator [19].The real time differentiator
has the general form as in the following set of equations. In
(24) 𝑓(𝑡) represents signal to be differentiated, 𝑘 − 1 times.
Consider
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A first order differentiator can be obtained by setting 𝑘 = 1
and has the following form:
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where 𝑧
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are the estimation of 𝑓(𝑡) and ̇𝑓(𝑡),

respectively. The parameters 𝜆
1
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1/2, 𝜆
0
= 1.1𝐿, and

𝐿 are a positive constant to be selected via simulation as
recommended in [19].

4. Controllers Design

4.1. 1-SM. The procedure described in Section 3.1 will be
applied to regulate the output ℎ

2
to a desired value𝐻 for the

coupled tanks system. The sliding surface 𝜎 is selected as
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By taking the time derivative of (25), (26) is obtained as
follows:
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Substituting (10) and (11) in (26) yields

𝜎̇ = 𝑓 (𝑥) + 𝑏 (𝑥) 𝑢̂ + 𝜆 (−𝑘
1
√ℎ
1
+ 𝑘
2
√ℎ
1
− ℎ
2
) . (27)

On putting 𝜎̇ = 0 and solving for 𝑢̂,
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Finally using (18) the control law for ℎ
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4.2. Twisting Controller. Historically, the first proposed 2-SM
controller was the twisting controller. It is defined by the
following formula
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This controller guarantees the appearance of a 2-sliding
mode 𝜎 = 𝜎̇ = 0 attracting the trajectories of the sliding
variable dynamics in finite time if 𝑟
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4.3. Super Twisting Controller. The STC has the advantage
over another algorithm in that it does not require the time
derivatives of the sliding variables. The algorithm has been
developed for the case of a system with relative degree one, in
order to avoid chattering and its trajectories on the sliding
plane are characterized by twisting around the origin. The
merits of the STC are rejection of smooth disturbances of
arbitrary shape, tracking of smooth references of arbitrary
shape, and the finite-time convergence to the set point. A STC
for system, which has relative degree of two, was proposed
in [20]. The control law 𝑢(𝑡) consists of two terms. The first
term is its discontinuous time derivative and the second is a
continuous function of the available sliding variable as given
below
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As stated in [19] for 𝐾
𝑚
> 𝐶 and a sufficiently large 𝛼 the

controller guarantees the appearance of a 2-SMC in system
given in (23), which attracts the trajectories in finite time to
zero. A sufficient condition for finite time convergence is as
follows [19]:
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Figure 3: Level tracking test for the different controllers.

4.4. Quasi-Continuous Controller (QCC). The homogeneous
quasi-continuous (QCC) controller [21] requires the first
order derivative of the sliding surface 𝜎. With the use of
differentiator in (25), the second order quasi-continuous
sliding mode controller can be written as

𝑢 (𝑡) = −𝛼
𝑧
1
+ 𝛽 |𝜎|

1/2 sign (𝜎)
󵄨󵄨󵄨󵄨𝑧1
󵄨󵄨󵄨󵄨 + 𝛽 |𝜎|

1/2
. (34)

The parameters 𝛼 and 𝛽 in (35) are positive constant to be
selected via computer simulation.

4.5. Prescribed Convergence Law Controller. The controller
with prescribed convergence law [19] is defined as

𝑢 (𝑡) = −𝛼 sign (𝜎̇ + 𝜉 (𝜎)) , (35)

where 𝜉(𝜎) is a continuous function smooth everywhere
except at 𝜎 = 0. It is assumed that the solution of the
differential equation 𝜎̇+𝜉(𝜎) = 0 converges to 0 in finite time.
Choosing 𝜉(𝜎) = 𝛽|𝜎|1/2 sign(𝜎) yields the controller

𝑢 (𝑡) = −𝛼 sign (𝜎̇ + 𝛽 |𝜎|1/2 sign (𝜎)) . (36)
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A sufficient condition for convergence is given as

𝛼𝐾
𝑚
− 𝐶 >

𝛽
2

2
. (37)

5. Simulation Results and Discussion

The characteristics of dynamic model of the coupled tanks
system are presented in Table 1 [8]. The control input is
restricted to be between 𝑢min = 0 and 𝑢max = 50 [cm

3/s]. The
computer simulations are performed using a time interval

of [0 :150] s. The parameters of the controller are optimized
using a step input with a final value of 6 cm for the water
level. For the other tested water levels no more adjustment of
the controllers parameters is performed. Through extensive
simulation runs, the optimum controllers’ parameters for
the different controllers tested in this study are reported in
Table 2.

Figure 3 shows the regulation performance for the tested
controllers for a desired level of 6 cm. Based on the figure,
it can be concluded that the controllers regulate the water
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Figure 5: The control signals of the designed controllers.

Table 1: Characteristic of the coupled tanks system.

Gravitational rate 𝑔 981 cm/s2

Cross-sectional area of both tanks 208.2 cm2

Area of the connecting pipe 𝑎
1

0.58 cm2

Area of the outlet 𝑎
2

0.24 cm2

level successfully with approximately the same performance.
Note that the controllers are able to regulate any desiredwater
levels without adjustments of any parameter.

The behaviors of sliding surfaces/error are represented in
Figure 4 for the desired level of 6 cm. Based on the figure
it can be seen that, in all cases, the controllers show typical
sliding mode behavior; that is, the error reaches 0 in finite

Table 2: Controllers parameters.

Controller SMC TC STC QCC PCL
Parameters 𝜆 𝑘 𝑟

1
𝑟
2

𝛼 𝜆 𝛼 𝛽 𝛼 𝛽

Value 0.67 90 500 100 220 14 65 2 100 1

time and stays 0 afterwards. The derivative of error with
respect to time is also shown for the TA, QCC, and PLC
controllers. The error derivative also converges to zero. Note
that in the case of the 1-SMC and STC the error derivatives are
not shown because the error derivatives do not play a major
role in the design of the controller.

Figure 5 shows the control signal of the five controllers.
The controllers have the same control signal until they reach
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Table 3: Time domain performancemeasures for different𝐻 values.

𝐻 (cm) Controller 𝑇
𝑟
(s) 𝑇

𝑠
(s) Os (%) IAE

3.00

SMC 29.975 36.626 1.776 52.459
TA 30.010 51.783 7.506 54.823
STC 30.017 52.124 7.769 56.214
QCC 30.010 51.250 7.085 54.580
PCL 30.010 51.576 7.344 54.704

6.00

SMC 69.308 84.162 0.097 234.125
TA 69.335 95.179 2.522 236.066
STC 69.330 95.560 2.621 236.735
QCC 69.335 94.630 2.393 235.909
PCL 69.335 94.975 2.473 235.973

8.00

SMC 101.366 123.310 0.033 445.981
TA 101.384 123.330 1.392 447.400
STC 101.378 123.315 1.457 447.537
QCC 101.384 123.330 1.327 447.329
PCL 101.384 123.330 1.367 447.357

the sliding surface. The difference between the signals of the
2-SM controllers is the increase of the on-off control in the
order STC and TA, for the QCC and PCL, respectively.

To compare the performance of the controllers, the time
domain performance measures such as the settling time, the
rise time, the percentage overshoot, and the integral absolute
error (IAE) are used. The settling time is defined as the time
required for the response to settle within 1%of the steady state
value. The rise time is defined as the time required for the
output to change from 10% to 90% of its final value. The IAE
is given by the following equation:

IAE = ∫
𝑡

0

|𝜎| 𝑑𝑡. (38)

The performancemeasures have been computed for three
different specified levels of 3, 6, and 8 cm as listed in Table 3.
It can be seen from the table that all the used controllers have
approximately the same rise time in all the cases. The QCC
controller has a slightly less settling, overshoot, and IAE.

The results of the tracking test of the five controllers
using a square signal reference input are shown in Figure 6.
Based on the figure, it can be observed that the tracking
performance for the all the controller is good. In terms of the
IAE, the values obtained are listed in Table 4. From the values
given in the Table 4, it can be seen that the smallest IAE is
for the 1-SM controller; the 2-SMC have approximately the
same IAE. From the comparison, it can be reported that the
1-SM controller slightly outperforms the 2-SM controller in
all aspects but the controller requires more information than
the 2-SM controllers as can be observed from Section 4.

6. Conclusions

In this paper, four second order sliding mode controllers,
namely, the twisting, the super twisting, the quasi-con-
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Figure 6: Level tracking test for the different controllers.
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Table 4: IAE for the different controllers from the tracking test.

Controller SMC TA STC QCC PCL
IAE 242.32 248.00 247.51 246.89 248.42

tinuous, and the prescribed convergence law controller, have
been successfully designed to regulate the water level in the
second tank of a coupled tanks system. The efficacy and
usability of the proposed controllers are verified through
computer simulation tests. Comparison between the con-
trollers is based on the time domain performance measures.
Results showed that all the controllers are able to regulate the
water level without major differences in their performance.
Comparison of the 2-SM controllers against 1-SM controller
showed that less information is required in the case of the 2-
SM controller than the 1-SMC.
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