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Energetic particle precipitation (EPP) has significant impacts on ozone depletion in the polar middle atmosphere during
geomagnetic activity. It is well known that solar ultraviolet (UV) radiation plays an important role in ozone generation.Therefore, it
is interesting to compare the contributions of EPP and solar UV to ozone changes in the polar upper atmosphere. In this article, we
use the annual average𝐴𝑝 index to denote the annual-meanmagnitude of the geomagnetic activity, which is closely correlated with
the EPP flux, and the annual average 𝐹10.7 index to denote the annual-mean magnitude of the solar radiation, which is somewhat
related to the solarUV.We adopt the 5∘ zonal annual-mean ozone profile dataset to study the statistical characters between the ozone
dataset and the𝐴𝑝,𝐹10.7 indices. Multiple regression analysis shows that the contributions of geomagnetic activity are not negligible
and are of a similar order of magnitude as the solar UV radiation in the polar upper atmosphere (above 10 hPa). The results also
show that high-speed solar-wind-stream-induced and coronal-mass-ejection-driven geomagnetic activity is of the same order of
magnitude. There are interhemispheric differences according to our multiple regression analysis. We discuss the possible causes of
these differences.

1. Introduction

It is well known that energetic particle precipitation (EPP)
during geomagnetic activity has the potential to play an
important role in the catalytic process of polar ozone deple-
tion (OD). Particle deposition into the upper atmosphere
generates odd nitrogen (NO𝑥) and hydrogen (HO𝑥) fami-
lies, which cause ozone loss [1–7]. Many investigations of
EPP–OD effects for different levels of geomagnetic activity
have been carried out, and the impact of EPP on polar ozone
has been modeled and observed [8–27]. Solar ultraviolet
(UV) radiation has a significant direct and indirect impact
on high-latitude ozone through ion chemistry processes and
atmospheric transport mechanisms [28, 29]. Geomagnetic
activity is also modulated by the 11-year solar cycle, just
like solar UV radiation. The main difference is that the

frequency peak of the geomagnetic activity driven by coronal
mass ejection (CME) occurs around the maximum of the
solar cycle like solar UV radiation whereas the geomagnetic
activity induced by high-speed solar wind streams (HSSWS)
occurs mostly during the declining phase of the solar cycle
[30]. High-latitude ozone is important for the polar climate
because ozone affects the radiative balance, temperature, and
dynamics of themiddle atmosphere [31, 32].Thus, it would be
interesting to examine how EPP effects that influence annual
polar ozone changes compare with the impact of solar UV
variations.

To this end, we conducted a preliminary statistical study
using high-latitude ozone observations based on a number
of space-weather indices. Since the EPP levels are modulated
by geomagnetic activity [33–35], we use the 𝐴𝑝 index (which
is calculated based on measurements of the magnetic-field
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Figure 1: The annual-mean ozone thickness anomalies relative to
40DU (Dobson Unit) above 10 hPa over latitude range from 60∘ to
90∘ from 1979 to 2012. We averaged ozone data in this latitude range
with considering the latitude weight.The blue squares and red spots
connected with dash lines denote the data points of the NH and the
SH, respectively.

components at 13 high-latitude geomagnetic observatories
[36]) of the geomagnetic activity as a proxy for EPP, because
we do not have enough long-term EPP observations. This
method is mentioned and applied by Seppälä et al. [34, 35].
We apply the 𝐹10.7 index of the solar radio flux as a proxy
for solar UV flux because of the good correlation between
these quantities. In this paper, we introduce the ozone
observations and the multiple regression analysis method
used in Section 2, we present the statistical analysis results
for both hemispheres in Section 3, andwe discuss the possible
causes of interhemispheric differences in Section 4.

2. Data and Methods

2.1. SBUVDataset. TheSolar Backscatter Ultra Violet (SBUV
and SBUV/2) instruments onboard the National Oceanic and
Atmospheric Administration’s (NOAA) satellites apply the
solar UV backscatter technique, which has been developed
for 40 years since the 1970s [37–39], to derive the ozone profile
from ground level (at an altitude of ∼1 km) to the top of
the atmosphere (∼100 km). We use the 5∘ zonal annual-mean
ozone profile SBUV dataset from 1979 to 2012. This dataset
was calculated based on the V8.6 SBUV MOD Profile Layer
Data Products [40], and the accuracy of the profile ozone
data is approximately 2%–5%, depending on the instrument
[41, 42]. The regions of interest are at high latitudes (60∘–90∘;
geodetic latitude) and the upper atmosphere (above 10 hPa).
Figure 1 presents the annual-mean ozone thickness relative
anomalies above 10 hPa at high latitudes in both hemispheres.
The ozone thickness above 10 hPa ranges from 38DU to
46DU (with an average value of ∼40DU). We use 40DU as
the threshold and derive the anomaly changes relative to this
value.

2.2. 𝐴𝑝 and 𝐹10.7 Indices. The 𝐴𝑝 and 𝐹10.7 indices were
derived by the World Data Center for Geomagnetism, Kyoto
(http://wdc.kugi.kyoto-u.ac.jp/index.html) and NASA’s God-
dard Space Flight Center (https://omniweb.gsfc.nasa.gov/
form/dx1.html). We divided the 𝐴𝑝 index into two groups
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Figure 2: The annual-mean EI (Energy Index, see it in Section 2.3)
anomalies of 𝐴𝑝 (histograms) and 𝐹10.7 (blue line) indices relative
to 𝐴𝑝 = 5 and 𝐹10.7 = 60, respectively. The red and shadow columns
denote 𝐴𝑝-HSSWS and 𝐴𝑝-CME, respectively.

according to their values: one,𝐴𝑝-CME for𝐴𝑝 ≥ 30, denotes
that the geomagnetic activity is driven byCME; the other,Ap-
HSSWS, denotes that the geomagnetic activity is induced by
HSSWS. This is a simple but quick classification method we
use in the field of space-weather forecasting to distinguish
what drives the geomagnetic activity for a given event.
According to Gonzalez et al. [43], the most acceptable clas-
sification of geomagnetic storms is a Dst (Disturbance Storm
Time) index < −200 nt for severe events, −200 nt < Dst <
−100 nt for strong events,−100 nt<Dst< −50 nt formoderate
events, and −50 nt < Dst < −30 nt for weak events. Moderate
and weak geomagnetic storms (Dst < −100 nt) are often
induced by HSSWS. We also refer to the Space Weather Pre-
dictionCenter’s criteria for geomagnetic storms,which define
that an event is below the G1 level (minor storm) when the
Kp index ≤ 5 (approximately equivalent to Dst < −100 nt and
𝐴𝑝 < 32). In general and considering the conversion relation-
ships among the Dst, Kp, and Ap indices, we choose 𝐴𝑝 = 30
as a key value for the classification of the driving source of the
geomagnetic activity. In this paper, we use the annual-mean
relative anomalies of these indices to analyze correlations
between polar ozone changes and solar activity in the upper
atmosphere. Figure 2 presents the indices used as a function
of time during the solar cycle.There are still some differences
between the red and shadow columns, in the sense that the
typical peaks of the𝐴𝑝-CME and𝐹10.7 indices are tied to solar
maximum, but the HSSWS-induced geomagnetic activity
occurs most often during the solar cycle’s declining phase.

2.3. Analytical Approach. We used the multiple regression
analysis method. We defined the Energy Index (EI) such
that EI𝐹10.7 = 𝐹10.7, EICME = (𝐴𝑝-CME)2, and EIHSSWS =
(𝐴𝑃-HSSWS)2, which represent the energy inserted into the
atmosphere by solar UV radiation, EPP driven by CMEs,
and EPP induced by HSSWS, respectively. We constructed
a regression model following (1) below, which implies that

http://wdc.kugi.kyoto-u.ac.jp/index.html
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Figure 3:The energy index (EI) of 𝐹10.7 (a), CME (b), and HSSWS (c) versus the polar ozone relative anomalies in the SH.The red dash lines
are linear fittings of the points.

ozone anomaly changes (𝑂var) are relevant to the energy
inserted by solar UV radiation and geomagnetic activity.

𝑂var = 𝐴0 + 𝐴1EICME + 𝐴2EIHSSWS + 𝐴3EI𝐹10.7. (1)

Note that we use different annual intervals in both hemi-
spheres when we analyze annual-mean values associated
with the ozone data and the 𝐴𝑝 and 𝐹10.7 indices. In the
southern hemisphere (SH), we apply normal annual intervals
(YYYY ranges from Jan. YYYY to Dec. YYYY); in north-
ern hemisphere (NH), we apply half-yearly moving annual
intervals (YYYY ranges from Jul. YYYY to Jun. YYYY + 1) to
avoid the influence of the northern polar night on the ozone
observations between years (we tried to move the period of
the northern polar night to the middle of the analysis year as
for the SH). During polar nights, no ozone observations are
obtained. The period of the polar night is at mid-year (Jun.
to Aug.) in the SH but during the interannual time (Dec. to
Feb.) in the NH. By moving the boundaries of our analysis
periods, we attempt to balance the impact of the polar night
on the ozone observations in both hemispheres. In the NH,
the starting point is on Jul. 1 and the end point is on Jun. 30
of the next year.This moves the polar night period in the NH
to mid-year, as for the SH.

3. Results

3.1. Southern Hemisphere. Figure 3 shows that the solar UV
flux and geomagnetic activity cause the positive and negative
forcing on the southern polar ozone, respectively. We derive

the regression equation as in equation (2) below. We derive
the impact proportion = |𝐴1| : |𝐴2| : |𝐴3| = 43 : 10 : 131. This
means that the impact of the geomagnetic activity is close
to 40% of the solar UV flux effect. CME-driven geomagnetic
activity contributes to the effects of the overall geomagnetic
activity. The energetic particles in CME-driven and HSSWS-
induced geomagnetic activity have different energy spectra,
affecting different levels in the atmosphere [44–48]. This
means that the higher energy of the particles, the lower into
the atmosphere they can reach [49]. High geomagnetic activ-
ity driven by CMEs is associated with more higher-energy
particles compared with that induced by HSSWS. Therefore,
the impact of the CME-driven geomagnetic activity should
exceed the impact of the HSSWS-induced geomagnetic
activity. However, the EPP impact on the polar atmosphere
also depends on the dynamical situation in the polar middle
atmosphere, which may cause interhemispheric differences
[48–51]. SH-𝑂var is calculated as follows:

SH-𝑂var = −1.45 − 0.43EICME − 0.10EIHSSWS

+ 1.31EI𝐹10.7.
(2)

3.2. Northern Hemisphere. The situation in the NH may
be complicated. The distribution of human activity in the
NH is significantly different from that in the SH, and the
impact of anthropogenic emissions on the northern polar
ozone must be pronounced. Anthropogenic emissions can
be represented by data of the equivalent effective strato-
spheric chlorine (EESC). Many previous studies [52–57]
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Figure 4: (a) The northern polar ozone relative anomalies (blue squares connected with dash lines) and the EESC data (red spots connected
with dash lines); (b) the correlation between the northern polar ozone relative anomalies and the EESC data, the red dash line is the linear
fitting of the points; (c) the northern polar ozone relative anomalies after detrending the EESC effects (blue squares connected with dash
lines). NH-𝑂∗var denotes that the ozone data of NH has detrended the EESC effects.

have reported a negative relationship between EESC and
northern polar ozone. We also found that the northern
polar ozone relative anomalies show a good relationship
with EESC, which means that the northern polar ozone
concentration in the upper atmosphere may be affected by
human activity. Figure 4(a) shows the northern polar ozone
relative anomalies and the EESC data. Figure 4(b) shows the
negative correlation between the ozone relative anomalies
and the EESC data, with a correlation coefficient, 𝑅 =
−0.8, which is consistent with the results derived by [58]
at 60∘–65∘N (although their study focused on total ozone).
Therefore, we detrended the EESC effects from the northern
polar ozone relative anomalies (see Figure 4(c)). The EESC
data used here can be calculated and downloaded from the
website of NASA’s Goddard Space Flight Center (http://acdb-
ext.gsfc.nasa.gov/Data_services/automailer/index.html), for
which we chose 3 years for the age of the air, 1.5 years for the
air spectrum width distribution, and the Br coefficient (𝛼 =
60). Figure 5 shows that the solar UV flux and geomagnetic
activity lead to positive and negative forcing on the northern
polar ozone (after detrending the EESC effects), respectively,
similar to the results in the SH. We derived a regression
equation, shown in (3). From (3), we derived the impact pro-
portion = |𝐴1| : |𝐴2| : |𝐴3| = 9 : 15 : 48. This suggests that the
impacts of CME-driven and HSSWS-induced geomagnetic
activities are similar to each other and reach 50% of the solar
UV flux effects. However, note that the general impact of
natural forcing in theNH is not as significant as that in the SH.

NH-𝑂∗var (which has detrended the EESC effects) is calculated
as follows:

NH-𝑂∗var = 20.0 − 0.09EICME − 0.15EIHSSWS

+ 0.48EI𝐹10.7.
(3)

4. Discussion

We applied multiple regression analysis to investigate the
contribution of geomagnetic activity to polar ozone changes
compared with solar UV flux in the upper atmosphere. The
results show that the observations coincide with the theory;
that is, solar UV radiation exhibits positive forcing and geo-
magnetic activity reveals negative forcing on polar ozone in
both hemispheres, the effects of geomagnetic activity are of
the same order of magnitude as the solar UV flux effects, and
the impact of geomagnetic activity on polar ozone changes in
the upper atmosphere is more significant in the SH than in
the NH.

We detrended the EESC effects from the NH data to
remove anthropogenic forcing in the northern polar upper
atmosphere, which implies that human influence is not negli-
gible in this region.The conclusion of this work is not signifi-
cantly different from those of previous studies; that is, that
the impact of geomagnetic activity on ozone is of the same
order of magnitude as that of solar UV radiation. Callis et al.
[59] and Rozanov et al. [60] used numerical models to cal-
culate the indirect effects of EPP and reached the conclusion

http://acdb-ext.gsfc.nasa.gov/Data_services/automailer/index.html
http://acdb-ext.gsfc.nasa.gov/Data_services/automailer/index.html
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Figure 5: As Figure 3, but for the northern polar ozone (after detrending EESC effects). NH-𝑂∗var denotes that the ozone data of NH has
detrended the EESC effects.

that indirect EPP effects on ozone are of the same order
of magnitude as those associated with the solar UV flux.
To some extent, our results are in agreement with their
conclusions. The differences between the hemispheres may
relate to local photochemical conditions, transport processes,
and the geomagnetic field [26, 27, 49, 51, 61–63]. The result
regarding the apparent hemispheric differences (i.e., the
impact of geomagnetic activity on polar ozone changes in
the upper atmosphere is more significant in the SH than in
the NH) is in general agreement with previous studies [49–
51], in the sense that more stable vortices in the SH can
help the EPP effects propagate from high levels downward
to low levels in the southern polar upper atmosphere. This
work is a preliminary statistical study of the impact of geo-
magnetic activity on polar ozone in the upper atmosphere.
Assessment of the underlying physical mechanism is left for
future studies.
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[22] A. Seppälä, P. T. Verronen, M. A. Clilverd et al., “Arctic and
Antarctic polar winter NOx and energetic particle precipitation

in 2002–2006,” Geophysical Research Letters, vol. 34, no. 12,
article L12810, 2007.
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