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In wireless communication, wormhole attack is a crucial threat that deteriorates the normal functionality of the network. Invasion
of wormholes destroys the network topology completely. However, most of the existing solutions require special hardware or
synchronized clock or long processing time to defend against long path wormhole attacks. In this work, we propose a wormhole
detection method using range-based topology comparison that exploits the local neighbourhood subgraph. The Round Trip
Time (RTT) for each node pair is gathered to generate neighbour information. Then, the network is reconstructed by ordinal
Multidimensional Scaling (MDS) followed by a suspicion phase that enlists the suspected wormholes based on the spatial
reconstruction. Iterative computation of MDS helps to visualize the topology changes and can localize the potential wormholes.
Finally, a verification phase is used to remove falsely accused nodes and identify real adversaries. The novelty of our algorithm is
that it can detect both short path and long path wormhole links. Extensive simulations are executed to demonstrate the efficacy of
our approach compared to existing ones.

1. Introduction

Security issues of a Wireless Sensor Network (WSN) are a
significant concern since sensors are deployed in a hostile
environment. Sensor nodes are vulnerable to both external
and internal attacks. Wormhole attack is a type of external
attack initiated by pairs of colluding attackers as shown in
Figure 1. These pairs of colluding attackers are connected by
low latency links, namely, wormhole links. In this paper, the
phrase “wormhole links” is synonymously used as “wormhole
tunnels”. High frequency or wired links are used to establish
these low latency links. At one end of the link the attacker
captures the packets, tunnels them via wormhole link, and
replays the packets at the other endonce the link is established
[1]. Thus, the distant sensor nodes around the two ends of
wormhole links consider each other as neighbours although
they are far from each other. Each wormhole node is capable
of faking a route that is shorter than the original route.
By building this high speed tunnel, a wormhole attack can

disrupt the routing mechanism, attract a large amount of
traffic, and also launch selective forwarding attack.Moreover,
the wormhole links also exploit some sophisticated attacks
like man-in-the-middle attack, cipher breaking attack, and
denial of service attack.

Several solutions have been proposed to repulse worm-
hole attack in the literature. However, most of the techniques
have their own limitations like requirements of synchronized
clock [2], positioning device, or directional antenna [3],
which increase the hardware cost of the system. Some existing
solutions use neighbour mismatch method [1], Round Trip
Time (RTT) calculation with message encryption using
hash function [4], and topological comparison using new
packet type [5]. But these solutions have certain limitations
like wormholes remaining undetected in sparse network,
increased message overhead, and so forth. In addition, some
localization-based approaches are proposed to relax these
limitations. However, most of them have some restrictions.
For example, node labelling scheme requires neighbour
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Figure 1: Wormhole attack scenario.

finding approach, which restricts its efficiency in large scale
networks. In short, the severity of effects of wormhole attack
in WSN, countermeasures, and their limitations motivate
us to propose a novel efficient scheme to defend against
wormhole attacks.

Wormhole tunnels can be of two types: long path and
short path. In long path wormhole tunnel, the colluding pair
of wormhole nodes is positioned far away from each other
whose distance is equivalent to 𝑘 hops where 𝑘 is greater than
a sufficiently large constant. Long path wormhole tunnels
have diverse and significant effect on the network topology
since it partitions the network into two ormore subnetworks.
On the other hand, in short path wormhole tunnels, the
wormhole nodes at both ends of the tunnel are relatively
shorter than 2 hops distance. Although short path wormhole
tunnels do not partition the network, they increase packet
dropping and, hence, network traffic is affected. Short path
wormhole tunnels may have interferences or overlapping
ranges which makes them even more difficult to be identified
by normal range-based detection techniques.

Long path wormholes have been studied in [6–8]. In this
paper, we have proposed algorithms for detection of long path
as well as short path wormhole tunnels.

In this work, we propose a novel range-based topol-
ogy comparison method for wormhole detection in WSN.
Behaviour of wormhole attackers in the network disrupts the
network connectivity; so, an abnormal network structure is
introduced by the wormholes which needs to be explored.
Each node gathers the RTT of a message and measures
the distance from its neighbours. Based on this distance,
a neighbourhood subgraph is generated. Then, by using
shortest path algorithm, an estimation distancematrix is con-
structed between all node pairs. Next, we apply the ordinal
Multidimensional Scaling (MDS) on the estimation distance
matrix to restructure the subgraph and embed it on a plane.
Ordinal MDS takes this estimation distance matrix as input
and produces a spatial configuration of nodes by assigning

virtual node positions (i.e., node coordinates). The estimated
distances between the node pairs are ranked and are com-
pared with the virtual distance formonotonicity relation.The
disparity caused by the disagreement of the rank order is
reduced via iterative computation of node coordinates and
the corresponding virtual distance is updated until the virtual
distance agrees with the rank order of the estimated shortest
distance.The underlying observation of our wormhole detec-
tion is as follows. If 𝑖 is a wormhole then a deviation can be
observed between the virtual distance and the estimated dis-
tance even after iterative computation of virtual coordinates
of the nodes. Otherwise, if 𝑖 is a normal node, the virtual
distance is a mere approximation of the estimated distance.
Thenodeswhich are violating themonotonic property are put
to the suspect node set. Then, a filtering technique is used to
determine the real wormhole link from the suspect node set.

It is well studied in [9] that the wormhole nodes hide
the tunneling/propagation delay when radio transmission
is used. So, this characteristic can be used to detect short
path wormhole tunnel instead of relying solely on topological
features of the network. Hence, we consider using the RTT of
a message. We assume that the wormhole nodes connected
by short path are present in the network if RTT of a message
between two ends of a short wormhole path is abnormally less
than the 1/𝑘 times of the average RTT of all normal links.

The main contributions of this work are as follows.

(i) We propose a wormhole detection algorithm that
can defend both the long path and the short path
wormhole links. For long path wormholes, there are
almost no false positives but, for short path wormhole
tunnels, some false positives do exist.

(ii) Our approach does not require any deterministic
threshold to generate probable wormholes.

(iii) We adopt a method to eliminate the true nodes which
are initially suspected.

(iv) Our proposed method has been compared with the
state-of-the-art TRM method [1], WORMEROS [4],
and MDS-based local connectivity [7]. Our method
can detect all wormhole nodes with fewer false posi-
tives.

The rest of the paper is organized as follows. Section 2
presents the previous research efforts that contribute to our
approach. In Section 3, the model definition of our work is
introduced. Section 4 presents the detailed outline of our
approach. Three principal modules of the proposed mech-
anism: efficient network reconstruction, suspicion phase,
and verification phase, are described in detail. In Section 5,
influence of several parameters and time complexity of our
approach are discussed. Section 6 presents the experimental
results obtained through simulation. Section 7 concludes the
paper and discusses the future extensions.

2. Related Work

2.1. Wormhole Detection in Wireless Networks. There are
several approaches for wormhole attack detection based on
the symptoms introduced by wormhole links.
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The first line of defence is based on special hardware
devices that use geographical leashes and temporal leashes
[2]. Leash is information added to the packet in order
to defend wormhole attack. In geographical leashes, GPS
technology is required to capture the node location included
in the packets and all the nodes require loosely synchronized
clock. Temporal leash ensures that each packet transmitted
between source and destination nodes has packet expiration
timewhich limits themaximum travel distance. All the nodes
need to have tightly synchronized clock. However, to protect
the leash, authentication data is added to the packet which
increase the communication and processing overhead. In [3],
directional antennas are used to locate the infeasible com-
munication; however, it mitigates wormhole problems par-
tially and degrades network connectivity by rejecting legiti-
mate neighbours. Čapkun and others [10] proposed mutual
authentication with distance-bounding algorithm to detect
wormhole attacks without requiring any clock synchroniza-
tion. But this approach uses special hardware for accurate
time measurements. All these countermeasures increase the
hardware cost of the system and are impractical in resource
constraint devices.

The second line of defence relies on RTT of the packets
and topology comparison [5]. Clock synchronization is an
issue for distance estimation between source and destina-
tion for every packet but topology comparison eliminates
this limitation. However, the scheme in [5] uses special
packet type which increases the communication overhead.
WORMEROS [4] detects and eliminates wormholes in two
consecutive phases. Firstly, RTT-based neighbour finding
method is applied without intermediate node cooperation.
A deterministic threshold value is used to compare the RTT
values between the source and destination and RTT values
higher than the threshold is considered as suspect wormhole
link. Secondly, encrypted message exchange with different
frequency confirms the wormholes. This algorithm detects
all wormholes but has more false positives. In [11], authors
gather the hop count value and delay associated with the
disjoint paths and calculate the propagation delay per hop to
detect wormhole attacks. It considers that the delay per hop
of the path under attack is much larger than the normal path.
Flooding mechanism is used to calculate and compare the
delay per hop.

The third line of defence is based on neighbour mismatch
which exploits the local neighbourhood information based
on expanding the transmission range [1]. Although the
scheme is lightweight and requires no additional hardware,
the algorithm efficiency drops in case of sparse network as
the entire method depends on neighbour set comparison. In
[12], the RTT between two successive nodes is considered for
wormhole detection and the neighbour set of each node is
compared with other successive nodes. The scheme does not
require any specific hardware but it suffers from increased
memory overhead since each node needs to store the neigh-
bour list. LiteWorp [13] introduces a notion called guard
nodes which overhear the transmission of two neighbouring
nodes and determines the malicious behaviour of one of its
neighbour. However, in sparse network, finding a guard node
is not always feasible for a particular link. MobiWorp [14]

is an extension of LiteWorp which assumes availability of
location information. Choi and others [15] use neighbour
node monitoring of each node and detect fake neighbours
that are beyond the transmission range.

The fourth line of defence uses graph mismatch under
connectivity models. Poovendran and Lazos [16] present
a location-based solution by using guard nodes that have
extra communication range to deal with wormhole attacks.
Establishing multihop pairwise keys is not properly handled
in the said graph-based framework.

The fifth line of defence considers statistical mismatch in
traffic flow to detect the presence of wormhole links. In split
multipath routing (SMR) protocol [17], a statistical analysis
and time constraint algorithm rely on a drastic deviation
in the routing statistics stored in the sink node under
wormhole attack. It is unable to detect multiple wormholes
in the network. PWORM [18] introduces packet marking
scheme to gather routing information against packet drop.
It calculates the frequency of a node appearing in the path
because wormhole attack attracts more traffic and appears
more frequently than normal nodes. Path length variations
are calculated to localize the wormhole.

In the last line of defence, abnormality in the network
topology due to wormhole tunnels is studied. In [8], worm-
hole attack is detected by identifying some prohibited sub-
structures in the network connectivity that are not generally
observed in normal connectivity graph. This method works
well in Unit Disk Graph (UDG) connectivity model but is
inaccurate for non-UDG model. In [19], authors propose
MDS visualization of wormholes (MDS-VOW) that detects
wormholes by visualizing anomalies in the reconstructed
network formed by using the MDS technique. This scheme
uses a centralized approach and it is suitable if one malicious
node resides at both ends of the wormhole links. For large
scale network, Wang and Lu [9] enhance the MDS-VOW
and propose an interactive wormhole detection method,
which monitors the topology changes based on real time
visualization approach known as interactive visualization of
wormholes (IVoW).However, this detection requires domain
knowledge and expertise to solve visual analysis problems.
Another connectivity-based approach is proposed in [6]
that uses bipartite subgraph theory to remove wormholes.
The algorithm is robust in different communication models
but suffers from many false positives. Dong and others
[20] propose a wormhole detection method that relies on
network connectivity information. It detects wormholes in
a distributed manner by observing topology deviations. It is
suitable for both continuous and discrete geometric terrain
where each node maintains connectivity with neighbouring
nodes on the surface. However, increased node density is an
issue in the detection performance. Chen and others. [21]
propose DV-hop localization scheme which calculates hop
count between the anchor nodes and estimates the average
size for one hop. Location of each unknown node is estimated
by using maximum likelihood estimation. In [22], mobile
beacon and positioning scheme are used for wormhole
detection. The mobile beacon can localize the attacker by
estimating the center of the attackers’ communication area. In
[7],MDS is executed to reconstruct the local subgraph of each
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Table 1: Summary of different techniques to detect wormholes.

Defense Basic method Pros Cons
Wu et al. [1] Local neighbourhood information Lightweight Less efficient in sparse networks

Hu et al. [2] Leashes Authentication protocol using
symmetric cryptography

Communication and processing
overhead

Hu and Evans [3] Cooperative protocol using
directional antennas

Uses one hop neighbour
information

Detects partial wormholes and
degrades network connectivity

Vu et al. [4] RTT calculation and encrypted
message exchange High detection rate High False positives and

computation overhead

Alam and Chan [5] RTT calculation and topology
comparison

Topology comparison reduces false
positives Communication overhead

Ban et al. [6] Bipartite subgraph theory Robust in different communication
models High false positives

Lu et al. [7] Connectivity-based approach Less false positives Short path wormholes remain
undetected

Maheshwari et al.
[8] Graph connectivity Efficient in UDG model Inaccurate in non-UDG models

Wang and Lu [9] Interactive visualization of
wormholes (IVoW) Improves detection efficiency

Requires domain knowledge and
expertise to solve visual analysis

problems

Čapkun et al. [10] Distance-bounding algorithm No additional clock synchronisation Special hardware needed for time
measurement

Chiu and Lui [11] Hop count and delay calculation High detection rate Memory overhead

Tun and Maw [12] RTT and number of neighbours
calculation No hardware required Memory overhead

Khalil et al. [13] Local monitoring using guard nodes Lightweight and suitable for
resource constraint networks Not efficient in sparse networks

Khalil et al. [14] Isolate attackers by secure central
authority (CA)

Isolate attackers with increased
scalability; low detection latency

Increased message exchange
between CA and mobile nodes

Choi et al. [15] Neighbour node monitoring
Timer prevents wormhole attacks

without requiring clock
synchronization

Does not support DSR optimization

Poovendran and
Lazos [16] Location-based and decentralized Time synchronization not required Packet transmission overhead

Zhao et al. [17] Statistical analysis of routing detect
wormholes Lightweight Detection rate declines in presence

of multiple wormholes

Lu et al. [18] Real time secure packet marking
algorithm

Detects both active and passive
attacks

Wormholes remain undetected in
less traffic scenario

Wang and
Bhargava [19] MDS-visualization of wormholes Efficient in case of single wormhole;

less false positives Centralized approach

Dong et al. [20] Distributed approach using network
connectivity information

Suitable for contiguous and discrete
geometric terrain

Increased node density affects
detection performance

Chen et al. [21] DV-hop localization Range-free localization Intolerant to packet loss

Chen et al. [22] Mobile beacon and positioning
scheme

Energy efficient and high detection
probability

Require GPS enabled beacon node
to detect wormholes

node based on its neighbour information. The reconstructed
network is then validated and verified for detecting probable
wormhole nodes. A refinement technique is used to exclude
suspect nodes and remove false positives.

Different techniques of wormhole detection along with
their pros and cons are summarized in Table 1.

In this work, we propose a novel wormhole detection
mechanism with almost no false positives and improved
detection performance in both sparse and dense networks.

2.2. Ordinal MDS and Its Applications. MDS is a collection
of techniques which embed dissimilar data for a given
dissimilarity matrix in a selected dimension space. The
embedding is often used to visualize and analyze exploratory
data [23]. MDS is applied on the dissimilarity matrix which
produces a position of objects in a small dimensional space as
output. The basic objective of MDS is to find the coordinates
of objects in a 𝑝 dimensional space so that there is a
good agreement between the observed dissimilarity and the
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interobject distances. Traditional MDS techniques are cate-
gorised into metric and nonmetric MDS. In metric MDS, the
dissimilarities between objects are linear to Euclidean dis-
tances whereas, in nonmetric or ordinalMDS, the dissimilar-
ities exhibit a monotonic transformation with the Euclidean
distances. OrdinalMDSnevertheless finds a good embedding
in Euclidean space by monotonic regression. It gains better
performance since it demands less rigid relationship between
dissimilarities and distances. For the last few years ordinal
MDS has widely been applied for node localization issues
in WSN [24–28]. Miao and others [25] propose a RI-MDS
localization algorithm that combines metric and nonmetric
MDS and use affine transformation to translate relative
coordinates to absolute ones. Nhat and others [24] propose
NMDS-TOA localization algorithm that combines TDOA
and MDS-map and uses sufficient number of anchor nodes
to form the final estimated map. The significance of applying
ordinal MDS over metric MDS is as follows.

(1) Ordinal MDS gains better performance by matching
the disparity as closely as possible with the virtual
distance having the restriction that the disparity
maintains a monotonic relationship with the esti-
mated distances between node pairs.

(2) The scaling is based on the rank order of the disparity.
Ideally, the ranks of the nodes based on estimated
distance aremonotonic with their ranks based on true
Euclidean distance.

(3) Ordinal MDS computes the node coordinates iter-
atively and updates the virtual distance to improve
rank order agreement between estimated distances
and virtual distances of node pairs.

(4) Ordinal MDS compensates the distortion caused by
distance measurement errors via iterations.

In our approach, we have used ordinal MDS to reconstruct
the local subgraph of each node.

3. Model Definition

In this section, we define the proposed model along with rea-
sons for choosing this model. For the purpose of wormhole
detection, we have considered two types of nodes: normal and
wormhole.

3.1. Network Model. The network model is structured with𝑁 sensor nodes deployed in a planar region and is denoted
by a communication graph 𝐺 = (𝑉, 𝐸). In this graph 𝐺, ver-
tices 𝑉 denote the nodes and edges 𝐸 denote the commu-
nication bidirectional links. We have considered UDG as
the connectivity model and the deployment environment is
assumed to be random. The sensor nodes do not require any
special hardware or globally synchronized clock. Moreover,
nodes are considered to be static and initially none of the
nodes is compromised. Initially, the transmission range of
every node is assumed to be identical, that is, 𝑟, since each
node is modelled as a UDG. But for the purpose of justifying
our wormhole detection method, we have expanded the
transmission range of each normal node to 𝑅 = 2𝑟, which

Normal node
Wormhole node

A

CB

Long path wormhole link (d1 > 2r)

Short path wormhole link (d2 ≤ 2r)

d1

d2

r 2r

W0 W1

W2

Figure 2: Illustration of proposed model.

means that each node is capable of collecting its neighbour
information when 𝑑 ≤ 2𝑟. Consider a node 𝑖 in graph 𝐺; the
neighbour of node 𝑖 is denoted as 𝑁2𝑟𝐺 (𝑖). Since our work is
primarily range-based, we measure distance based on RTT
denoted asΩ of a message between each node 𝑖 and its neigh-
bours𝑁2𝑟𝐺 (𝑖). We useΩ2𝑟𝐺 (𝑖, 𝑗) to denote the RTT between the
nodes 𝑖 and 𝑗 in the network 𝐺.
3.2. Adversary Model

3.2.1. Wormhole Definition. Under wormhole attack, the
malicious nodes generally work in pairs and establish a
high speed, long distance tunnel between them. This tunnel
or high frequency links create an illusion to the sensor
nodes around the two ends of the link as direct neighbours.
Wormhole nodes advertise a false short route to a destination,
capture packet from one location, and transmit them to its
paired wormhole node through the high speed tunnel.

In this work, we assume that the attacker can launch a
wormhole attack without modifying any packet or compro-
mising any node. Moreover, the cryptographic mechanisms
and encryption keys that are shared between the nodes for
secure communication remain unaware of the attacker.

Figure 2 depicts our model. In this figure, 𝑑1 and 𝑑2
represent the length of long path and short path wormhole
links, respectively. In the network𝐺, the path of thewormhole
link 𝑒 is assumed to be either long or short. In the long
wormhole link, the wormhole peer(s) are placed far apart,
so that the communication regions of the two ends do not
overlap with each other. Nodes at the two ends of an edge 𝑒
are denoted by 𝑖(𝑒) and 𝑗(𝑒). The shortest distance between𝑖(𝑒) and 𝑗(𝑒) is denoted by 𝑑𝐺(𝑖(𝑒), 𝑗(𝑒)). We have assumed
that long path wormhole tunnel is present in the network
if 𝑑𝐺(𝑖(𝑒), 𝑗(𝑒)) > 2𝑟, where 2𝑟 denotes the maximum
transmission range of normal nodes. In addition, we have
further assumed thatwormhole attack prevails in the network
even when the length of the wormhole tunnel is short; that is,
the distance between the wormhole nodes is 𝑑𝐺(𝑖(𝑒), 𝑗(𝑒)) ≤2𝑟.
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4. RTT-Based Iterative MDS for
Wormhole Detection

In this section, we put forward the detailed design and ana-
lysis of our wormhole detection approach based on ordinal
MDS.

4.1. Outline. For the detection of the wormhole attack,
range-based distance estimation and topological comparison
are used to identify the wormhole links. The overview of our
scheme is as follows. In the network, each node 𝑖 gathers
the RTT value of a message from its direct neighbours that
are within the transmission range 2𝑟. In other words, a
link is established between the node pairs if their distance
is 𝑑 ≤ 2𝑟. Based on the RTT measure, distances between
node 𝑖 and its direct neighbours are estimated and stored
in a sparse matrix. This sparse matrix is used to construct
the shortest distance matrix between all node pairs. Then,
on this internode shortest distance matrix, ordinal MDS is
applied which generates virtual node positions. Considering
this estimated node position, Euclidean distance between
the node pairs is calculated which generates virtual distance
matrix.

However, the presence of wormhole link causes a dis-
parity between estimated shortest path matrix and the
reconstructed distance matrix. Ordinal MDS reduces this
disparity via iterative computation of node position (i.e., node
coordinates) and thereafter updating the Euclidean distance
between the node pair. Then, the monotonic property is
checked in the updated Euclidean distance matrix in relation
to the RTT-based shortest distance matrix. Kruskal’s Stress1
[29] measure is applied to check whether the updated
node position fits the estimated dissimilarities, that is, the
shortest path matrix. But, due to wormhole placement
in the network, distance measurement errors cannot be
compensated by mere approximation. On the other hand,
absence of wormhole nodes results in a reconstruction
which is a mere approximation of the estimated shortest
distance matrix. The disparity between the reconstructed
distancematrix and the estimated shortest pathmatrix affects
the network reconstruction. The validity of the network
reconstruction is very crucial in identifying the adversaries.
In our approach, ordinal MDS is executed on each node
to reconstruct the network and detect the probable worm-
holes on the basis of distortion in the reconstruction. The
disparity generated via iterative MDS produces some false
alarm and so filtering mechanism is adopted to remove
the falsely accused nodes and identify the real wormhole
links.

In the light of the above discussion, our detection
approach mainly involves two modules: (a) applying ordinal
MDS on shortest distance matrix for network reconstruction
and (b) executing filtering techniques to identify the real
adversaries. In the first module, the suspect node list is
generated.The verification phase in the secondmodule filters
the normal nodes from the suspect list and final wormhole
nodes are presented.

In the following section, these twomodules are described
in detail.

Input: A network graph 𝐺(𝑉, 𝐸)
Output: Shortest distance matrix/Dissimilarity matrix [𝑃Ω𝑖,𝑗](1) for each node 𝑖 ∈ 𝑉 do(2) Each node 𝑖 collects RTT values from its neighbours

whose 𝑑 ≤ 2 and forms sparse matrix(3) Construct neighbourhood subgraph ΓΩ𝐺 (𝑖) of node 𝑖(4) Apply ordinal MDS on [𝑃Ω𝑖,𝑗] to reconstruct the
subgraph(5) end for

Algorithm 1: Floyd-Warshall shortest distance algorithm for short-
est distance matrix.

4.2. Ordinal RTT-Based Reconstruction. In this section, the
first module is divided into three phases for better under-
standing.

4.2.1. RTT-Based Distance Estimation. Two nodes are consid-
ered to be neighbours if 𝑑 ≤ 2𝑟. Each node 𝑖 in the network𝐺 collects the RTT, Ω, of a message from its neighbours and
estimates the distance based on the travel time. We measure
RTT, Ω, by sending ICMP PING packets from node 𝑖 to its
neighbour and receiving an acknowledgment back for the
same packet. Theoretically, in a wireless environment, the
RTT,Ω, of a message can be related to the distance 𝑑 between
nodes assuming that the wireless signal moves at a speed of
light 𝑐. So we calculate the distance by the following formula:

𝑑 = 𝑐 × (Ω)2 . (1)

This measured distance 𝑑 between every pair of sensor nodes
that can hear each other is stored in a sparse matrix. Thus,
each node 𝑖 generates a neighbourhood subgraph denoted
by ΓΩ𝐺 (𝑖). Then, Floyd-Warshall shortest path algorithm is
applied to calculate the shortest distance between all node
pairs in ΓΩ𝐺 (𝑖). The shortest distance matrix is denoted as[𝑃Ω𝑖,𝑗]. Algorithm 1 presents the Floyd-Warshall shortest path
algorithm.

4.2.2. Network Reconstruction. In this section, nonmetric
MDS technique is applied on the shortest distance matrix[𝑃Ω𝑖,𝑗] which is also known as dissimilarity matrix to rebuild

a network ΓΩ𝐺(𝑖). In this network ΓΩ𝐺(𝑖), a virtual position (i.e.,
node coordinates) is assigned to each node to calculate the
Euclidean distance between each node pair (𝑖, 𝑗) in ΓΩ𝐺(𝑖).
Thus a virtual distance matrix [𝐷𝑚𝑖,𝑗] is generated. Each value
in the matrix [𝐷𝑚𝑖,𝑗] is denoted as𝐷𝑚𝑖,𝑗.

For ease of understanding, we subdivide the steps of
ordinal MDS as follows.

(a) In nonmetric MDS, the disparity between each node
pairs is related to Euclidean distance by some monotone
function 𝑑𝑖,𝑗 = 𝑓(𝛿𝑖,𝑗). That is, in nonmetric MDS or ordinal
MDS, for two pairs of nodes (𝑖, 𝑗) and (𝑘, 𝑙), if the shortest
path distance of node pairs (𝑖, 𝑗) is less than (𝑘, 𝑙), then the
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Euclidean distance of node pairs (𝑖, 𝑗) is also less than (𝑘, 𝑙)
and vice versa.

Let (𝑖, 𝑗) and (𝑘, 𝑙) denote the two node pairs in network𝐺, respectively. The distance between all the node pairs in
the shortest distance matrix [𝑃Ω𝑖,𝑗] is ranked from the smallest
to the largest. The shortest path distances between two node
pairs (𝑖, 𝑗) and (𝑘, 𝑙) are compared with the virtual distances
of the corresponding node pairs in Euclidean distance matrix
in [𝐷𝑚𝑖,𝑗] to check the monotonic relationship. If there is any
disparity in the distances of the two node pairs (𝑖, 𝑗) and(𝑘, 𝑙), that is, if 𝑃Ω𝑖,𝑗 < 𝑃Ω𝑘,𝑙 and 𝐷𝑚𝑖,𝑗 > 𝐷𝑚𝑘,𝑙, then Pool
Adjacent Violators (PAV) algorithm [30] is applied to obtain
a distance estimator 𝐷𝑚𝑖,𝑗. PAV algorithm works by averaging
the distance of node pairs 𝐷𝑚𝑖,𝑗 and 𝐷𝑚𝑘,𝑙 which has violated
the monotonic property with the distance of the preceding
nonviolator. It is expressed by the following condition:

If (𝑃Ω𝑖,𝑗 < 𝑃Ω𝑘,𝑙) and (𝐷𝑚𝑖,𝑗 > 𝐷𝑚𝑘,𝑙), then
𝐷𝑚𝑖,𝑗 = 𝐷𝑚𝑘,𝑙 = (𝐷𝑚𝑖,𝑗 + 𝐷𝑚𝑘,𝑙)2 . (2)

Otherwise, 𝐷𝑚𝑖,𝑗 = 𝐷𝑚𝑖,𝑗
𝐷𝑚𝑘,𝑙 = 𝐷𝑚𝑘,𝑙. (3)

(b) Based on this average distance estimator, new coor-
dinate 𝑥𝑚𝑖 for each node 𝑖 ∈ 𝐺 is computed by the following
formula:

𝑥𝑚𝑖 = 𝑥𝑚−1𝑖 + 𝑎𝑛 − 1∑
𝑖 ̸=𝑗

(1 − 𝐷𝑚−1𝑖,𝑗𝐷𝑚−1𝑖,𝑗 )(𝑥𝑚−1𝑗 − 𝑥𝑚−1𝑖 ) , (4)

where 𝑛 = number of nodes, 𝑚 = iteration counter, and 𝑎 =
iteration increment of steepest descent method.

Thereafter, the Euclidean distance 𝐷𝑚𝑖,𝑗 is updated in the
virtual distance matrix [𝐷𝑚𝑖,𝑗].

(c) Then, Kruskal’s Stress1 [29] measure is applied to
test how well the reconstructed distance matrix or the new
spatial node configuration fits the shortest distancematrix. In
particular, value of Stress1 decreases if rank order agreement
improves between shortest distance matrix and the recon-
structed distance matrix. Ordinal MDS always aims to min-
imize the stress. Stress1 measure is denoted by the following
formula:

Stress1 = √∑𝑛𝑖=0,𝑗=0,𝑖 ̸=𝑗 (𝐷𝑖,𝑗 − 𝐷𝑖,𝑗)2∑𝑛𝑖=0,𝑗=0,𝑖 ̸=𝑗 (𝐷𝑖,𝑗)2 . (5)

The Stress1 measure is executed until the stress value is
satisfied. That is, Stress1 < threshold 𝜀. This threshold, 𝜀,
is obtained by observing how well the new configuration
of nodes matches the shortest distance matrix, such that 𝜀
becomes constant after iterative computation of nodes’ coor-
dinates. If Stress1 > 𝜀, the process is repeated; otherwise, it is
terminated. The steps of ordinal MDS are presented in Algo-
rithm 2 which generates the suspect node set.

4.2.3. Suspicion Phase. In this phase, a mechanism has been
adopted to find which nodes can be suspected or challenged.
We have observed in our simulation that after repeated
iterations, the threshold, 𝜀, becomes almost a constant value
of 0.17. We are considering those nodes as suspect wormhole
nodeswhich violate themonotonic property even after Stress1< 𝜀. We add those nodes in the suspect node set. As dis-
cussed in the adversary model, wormhole nodes introduced
disparity between the shortest distance and the reconstructed
distance. Since wormhole nodes are placed far apart, there
is a significant mismatch between the shortest path distance
and the virtual distance. However, there are some normal
nodeswhich show such type of disparity too after the network
reconstruction. After implementing this phase, all the suspect
wormhole nodes are produced.

4.3. Verification Phase. In suspicion phase, some normal
nodes may be mistakenly identified as suspect wormhole
nodes which introduce false positive results. Removal of
too many false positive nodes breaks the normal links and
disrupts the network functionality. So, we use a filtering
technique to verify and confirm real wormhole nodes and
remove nodes involved in false positive.

4.3.1. Long Path Wormhole Link Detection. The wormhole
nodes create a local structure; so, for detection of long path
wormhole links, we use the theory of complete bipartite
graph. Let 𝑊1 and 𝑊2 be two sets that contain wormhole
nodes 𝑤1 and 𝑤2, respectively, in network 𝐺. Let the edge
set be denoted by𝑊1 × 𝑊2 between the node pair 𝑤1 ∈ 𝑊1
and 𝑤2 ∈ 𝑊2. Considering the node sets 𝑊1 and 𝑊2 that
contain nodes at the two ends of the wormhole, each node𝑖 is given the illusion that all the nodes in set𝑊2 are its direct
neighbours. Thus, all edge sets 𝑊1 × 𝑊2 share a node from
both the set𝑊1 and the set𝑊2 and there are no edges formed
between twonodes in the same set either in𝑊1 or in𝑊2.Thus,
a complete bipartite subgraph 𝐺󸀠 of 𝐺 is constructed.

Under wormhole-free environment, for each node pair(𝑤1 ∈ 𝑊1,𝑤2 ∈ 𝑊2), the shortest distance is 𝑑𝐺󸀠(𝑤1(𝑒), 𝑤2(𝑒))≤ 2𝑟. Therefore, for any node pair (𝑤1, 𝑤2), either there exists
an edge 𝑒 between𝑤1 and𝑤2 or there is a common neighbour
between them. This happens iff𝑁2𝑟𝐺󸀠(𝑤1) ∩ 𝑁2𝑟𝐺󸀠(𝑤2) ̸= 𝜙.

By carefully studying the behaviour of long path worm-
hole links, we can guarantee that there is no common element
or node between the two ends of a wormhole tunnel.Thus, we
arrive at Theorem 1.

Theorem 1. There exists a long path wormhole between the
node pair (𝑤1 ∈ 𝑊1, 𝑤2 ∈ 𝑊2) if the distance between them
is much greater than twice the transmission range, that is,𝑑𝐺󸀠(𝑤1(𝑒), 𝑤2(𝑒)) > 2𝑟, and there is no common neighbour
between 𝑤1 and 𝑤2 which is denoted by𝑁2𝑟𝐺󸀠(𝑤1) ∩ 𝑁2𝑟𝐺󸀠(𝑤2) =𝜙.

Theorem 1 is used to filter the suspect wormhole nodes
using complete bipartite subsets. Firstly, all the connected
components in this suspect nodes set 𝑆 are identified. Let 𝑁
be the set of such connected components. For detection of a
wormhole pair, we consider only the connected component
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Input: Shortest distance matrix/Dissimilarity matrix [𝑃Ω𝑖,𝑗]
Output: Suspect node set 𝑆(1) Each node 𝑖 ∈ 𝑉 is assigned an arbitrary initial location as (𝑥𝑖, 𝑦𝑖)(2) Set the threshold value 𝜀 = 0.17 for Stress1 measure(3) Set iteration counter𝑚 = 0(4) Compute Euclidean distance between each node pair (𝑖, 𝑗) ∈ 𝑉 to generate virtual distance matrix [𝐷𝑚𝑖,𝑗](5) Apply monotone regression using PAV algorithm on [𝑃Ω𝑖,𝑗] and [𝐷𝑚𝑖,𝑗] to calculate disparity and get intermediate matrix [𝐷𝑚𝑖,𝑗](6) if (𝑃Ω𝑖,𝑗 < 𝑃Ω𝑘,𝑙) and (𝐷𝑚𝑖,𝑗 > 𝐷𝑚𝑘,𝑙) then(7) 𝐷𝑚𝑖,𝑗 = 𝐷𝑚𝑘,𝑙 = (𝐷𝑚𝑖,𝑗 + 𝐷𝑚𝑘,𝑙)/2(8) Add node 𝑖 to the suspect node set 𝑆(9) else(10) 𝐷𝑚𝑖,𝑗 = 𝐷𝑚𝑖,𝑗(11) 𝐷𝑚𝑘,𝑙 = 𝐷𝑚𝑘,𝑙(12) end if(13) Calculate new coordinate (𝑥𝑚𝑖 , 𝑦𝑚𝑖 ) for each node 𝑖𝑚 using steepest descent method(14) Set 𝑎 = 0.2 as proposed by Kruskal [29](15) 𝑥𝑚𝑖 = 𝑥𝑚−1𝑖 + (𝑎/(𝑛 − 1))∑𝑖 ̸=𝑗(1 − 𝐷𝑚−1𝑖,𝑗 /𝐷𝑚−1𝑖,𝑗 )(𝑥𝑚−1𝑗 − 𝑥𝑚−1𝑖 )(16) 𝑦𝑚𝑖 = 𝑦𝑚−1𝑖 + (𝑎/(𝑛 − 1))∑𝑖 ̸=𝑗(1 − 𝐷𝑚−1𝑖,𝑗 /𝐷𝑚−1𝑖,𝑗 )(𝑦𝑚−1𝑗 − 𝑦𝑚−1𝑖 )(17) Recalculate the Euclidean distance of each node pair 𝐷𝑚𝑖,𝑗 to update distance matrix [𝐷𝑚𝑖,𝑗](18) Calculate the Kruskal’s Stress1 measure(19) if Stress1 > 𝜀 then(20) Set𝑚 = 𝑚 + 1(21) Go to step (5)
(22) else
(23) Terminate
(24) end if

Algorithm 2: Steps of ordinal MDS algorithm for suspect node set.

and, hence, exclude isolated nodes. Then, we apply complete
bipartite subgraph algorithm [31] for each connected compo-
nent 𝐶 ∈ 𝑁. The algorithm in [31] generates several complete
bipartite subgraphs denoted as (𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑥 ∈ 𝑁). Let each
node pair be denoted as (𝑤1, 𝑤2) ∈ 𝐶 such that 𝑤1 ∈ 𝑊1
and 𝑤2 ∈ 𝑊2, where 𝑊1 and 𝑊2 are the two partitions of
the bipartite subgraph. On each bipartite subgraph, we test
the condition given in Theorem 1. For each 𝐶, we check𝑑𝐺󸀠(𝑤1(𝑒), 𝑤2(𝑒)) > 2𝑟. If 𝑐0 ∈ 𝑁 is a complete bipartite
subgraph that satisfies the condition𝑁2𝑟𝐺󸀠(𝑤1) ∩ 𝑁2𝑟𝐺󸀠(𝑤2) = 𝜙
then we have detected all the wormhole nodes connected by
long path.Moreover, the basic aim of detecting the wormhole
attack is to nullify them without disrupting the network
functions. Since the wormhole nodes attract large volume
of traffic, it is necessary to discard the increased network
traffic passing through the wormhole link while retaining the
functionalities of the nodes.We do this by removing the edges𝑊0 ×𝑊1 in the complete bipartite subgraph.The detection of
long path wormholes is presented in Algorithm 3.

4.3.2. Short Path Wormhole Link Detection. When two
wormholes at two ends are very close to each other, those
wormhole nodes are connected by short path. Thus, the
shortest distance between the wormhole peer connected by
short path is 𝑑𝐺(𝑤1(𝑒), 𝑤2(𝑒)) ≤ 2𝑟. Eventually, these nodes
get filtered out when wormholes connected by long path are
detected.

Input: Suspect node set 𝑆
Output: Long path wormhole nodes(1) Identify all connected components𝑁 from 𝑆(2) for each 𝐶 ∈ 𝑁 do(3) Find Complete Bipartite Set𝑊1,𝑊2 for node pair(𝑤1, 𝑤2) ∈ 𝐶 such that 𝑤1 ∈ 𝑊1 and 𝑤2 ∈ 𝑊2(4) for each 𝑤1 ∈ 𝑊1 and 𝑤2 ∈ 𝑊2 do(5) if 𝑑𝐺󸀠 (𝑤1(𝑒), 𝑤2(𝑒)) > 2𝑟 then(6) if 𝑁2𝑟

𝐺󸀠
(𝑤1) ∩ 𝑁2𝑟𝐺󸀠 (𝑤2) = 𝜙 then(7) Discard the edges𝑊1 ×𝑊2(8) end if(9) end if(10) end for(11) end for

Algorithm 3: Long path wormhole detection algorithm.

So, merely relying on RTT-based distance estimation for
detecting short path wormholes is not the right approach.We
use RTT for detecting wormhole nodes connected by short
path. The RTT between two ends of a short path wormhole
tunnel is much less than the RTT between normal nodes
since thewormhole nodes hide the propagation delay in radio
transmission.
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Input: Suspect node set 𝑆
Output: Short path wormhole nodes(1) Each node 𝑖 calculate RTT of each link(2) Node 𝑖 calculates average RTT of all its neighbours 𝜒𝑁(𝑖)𝐺(3) if Ω2𝑟𝐺 (𝑤󸀠1, 𝑤󸀠2) ≤ 𝜒𝑁(𝑖)𝐺 /2 then(4) Confirm the link Ω2𝑟𝐺 (𝑤󸀠1, 𝑤󸀠2) as wormhole links

connected by a short path(5) end if

Algorithm 4: Short path wormhole detection algorithm.

According to Theorem 1, all possible node pairs are
identified from the suspect list by applying the algorithm of
complete bipartite subgraph. Let (𝑤󸀠1, 𝑤󸀠2) be one such con-
nected node pair that belongs to 𝐶 (set of complete bipartite
subgraphs) whose 𝑑 ≤ 2𝑟. As mentioned in the adversary
model, RTT between the wormholes connected by short path
is abnormally less than average RTT of all normal links.Thus,
the RTT between short path wormhole links is at most 1/𝑘
times of average RTT of all normal links as shown in Algo-
rithm 4. In the following section, we analyze this condition.

5. Discussion on Parameters

In this section, we discuss how different parameters influence
the performance of the detection method. Moreover, we also
justify the value chosen for RTT.

Effect of 𝑟. In our experimental set up, we set 𝑟 = 2. There
are primarily two reasons. Typical length of a long path
wormhole tunnel is set to 6 to 8 hops.The value of 𝑟 is chosen
so that 2𝑟 is justmore than the length of thewormhole tunnel.
If the value of 𝑟 is increased such that 2𝑟 is much greater than
the length of the wormhole tunnel, a larger neighbourhood
subgraph will be generated due to which number of false
positives will increase.

Effect of 𝜀. The computation of Stress1 measure determines
how smoothly the reconstructed network can be embedded
on a plane. Setting the optimum threshold of Stress1 measure
helps in identifying the suspect nodes in our approach.
In particular, setting lower threshold fails to capture all
wormhole nodes although it reduces the overhead of the ver-
ification phase. On the other hand, higher threshold captures
all wormhole nodes but may introduce false positives and
may increase overhead of the verification phase. It has been
observed experimentally that 𝜀 > 0.2 induces false positives.
So, 𝜀 = 0.17 is considered as optimum value where all the
suspect wormhole nodes are included in the suspect set for
further filtering that results in few false positives.

Effect of 𝑘. For short path wormhole tunnel detection, let
the RTT between (𝑤󸀠1, 𝑤󸀠2) be Ω2𝑟𝐺 (𝑤󸀠1, 𝑤󸀠2). We require thatΩ2𝑟𝐺 (𝑤󸀠1, 𝑤󸀠2) is at most 1/𝑘 times of average RTT of all normal
links. In normal links, let RTT between each node pair (𝑖, 𝑗)
be 𝑝. Let the RTT between the wormhole peer be 𝑝/2 as
wormhole nodes hide the tunneling delay. Therefore, we can

say 𝑝 > 𝑝/2. Let, for each node 𝑖, the average RTT with all its
neighbours whose 𝑑 ≤ 2𝑟 be denoted as 𝜒𝑁(𝑖)𝐺 , where 𝑁(𝑖)
is the neighbours of node 𝑖 in network 𝐺. Substituting 𝑝/2
with Ω2𝑟𝐺 (𝑤󸀠1, 𝑤󸀠2) and setting 𝑘 = 2, we check the conditionΩ2𝑟𝐺 (𝑤󸀠1, 𝑤󸀠2) ≤ 𝜒𝑁(𝑖)𝐺 /2 for the detection of short path worm-
hole links. When 𝑘 = 2, the attacker connected by short path
is very likely to be detected.

This parameter is used to detect short path wormhole
tunnel. Let the RTT between the normal node pair (𝑖, 𝑗)
be 𝑝. Since the wormhole nodes hide the tunneling delay
while propagating the packet, we may assume that the time
to tunnel the packet between wormhole nodes connected by
short path is less than 𝑝. Hence, RTT between the wormhole
pair is considered to be 𝑝/𝑘, where 𝑘 = 2. Setting 𝑘 > 2 will
reduce the tunneling delay to such an extent that it may not
be practical in a real short path wormhole tunnel scenario.

5.1. Time Complexity Analysis. Range-based ordinal MDS
method for detecting wormholes has several steps: Floyd-
Warshall shortest path algorithm, ordinal MDS method, and
wormhole detection using complete bipartite subgraph. The
time complexity has been analyzed as follows.

(i) The time complexity of Floyd-Warshall shortest path
algorithm is O(V2).

(ii) The time complexity of ordinal MDS is O(V3).
(iii) Algorithm 3 comprises two parts. In the first part, we

consider finding connected components in the set of
suspect nodes. Let us consider the suspect nodes to
be 𝑤0, 𝑤1, 𝑤2, . . . , 𝑤𝑖 ∈ 𝑆. The time complexity for
finding a connected component in the suspect node
set 𝑆, that is, a path/edge fromnode𝑤1 to𝑤2, isO(𝑤𝑒)
since each path or edge is obtained in O(𝑒) time [32].
Thus, the time complexity for finding each complete
bipartite subgraph is O(𝑤𝑒).
In the second part, Algorithm 3 needs to find a
common neighbour of (𝑤1, 𝑤2) for each connected
node pair (𝑤1, 𝑤2). Since the search is restricted to
only one common neighbour for each wormhole
pair, the number of common neighbour is a constant𝑐. Thus, the time complexity of finding common
neighbour is O(𝑐𝑛), that is, O(𝑛).

6. Experimental Analysis

To verify the efficacy and performance of our method, exper-
iments are conducted under different node distributions,
radio models, and positions of wormholes.

6.1. Simulation Environment

6.1.1. Node Deployment. We have chosen two node deploy-
ment models: random deployment and perturbed grid
deployment. In perturb grid model, the nodes are deployed
on a grid 𝑎 × 𝑏. Each node in the network is perturbed with a
perturb ratio 𝑝 with the node’s initial position. Each cell is a
square grid with edge length 𝑙.Then, nodes having coordinate(𝑥, 𝑦) are perturbed with 𝑝 = 0.2 and are placed in the region



10 Journal of Computer Networks and Communications

[𝑥−𝑝𝑙, 𝑥+𝑝𝑙]×[𝑦−𝑝𝑙, 𝑦+𝑝𝑙]. In random deployment, nodes
are placed randomly in the network field. It has been observed
that in perturbed grid deployment the nodes’ positions show
more uniformity than the random deployment.

6.1.2. Communication Model. In our method, we have
adopted UDG as the connectivity model. In UDG model,
each pair of nodes 𝑖 and 𝑗 has bidirectional link if and
only if their distance is no larger than 𝑟, where 𝑟 is the
communication radius.

6.1.3. Wormhole Placement. The first pair of wormhole node
is placed randomly in the network. The other pairs are
placed at uniform distances from the first pair. We have
observed that if all wormhole nodes are placed randomly,
they do not attract much traffic due to isolation. We have
considered varying number of wormhole nodes with varying
node density.

6.2. Simulation Results. We conduct experiments under
various node densities and compare them with TRM [1],
WORMEROS [4], and MDS-based local connectivity [7]
methods and present the results. We use ns-2 simulator
to implement our algorithm for performance evaluation.
We deploy 100 nodes over a square field considering three
network dimensions 10 × 10, 500 × 500, and 1000 × 1000.The
initial transmission range of each node is set to 250m. But,
later, it is expanded to 500m.The average node degree varies
from4 to 20.Themaximumnumber ofwormhole nodes is 20.
For long path wormholes, our detection algorithm considers
the fact that the colluding wormholes are not less than 6 hops
apart from each other.

6.3. Detection Rate. Figures 3(a), 3(b), and 3(c) depict the
relationship between varying number of wormholes and
detection performance under three network distribution
fields considering the UDG connectivity model and random
deployment.

The results in Figures 3(a), 3(b), and 3(c) show that
our method has almost 100% detection rate under different
network field size with varying wormhole nodes and varying
node density. In Figure 3(a), TRMmethod has slightly better
detection rate when the network is dense. But Figures 3(b)
and 3(c) show a sharp decline in detection performance
of around 71% and 63%, respectively, when the network
changes from dense to sparse. As TRM method solely relies
on neighbour mismatch, the detection rate fails when the
node density decreases. On the other hand, our approach uses
the complete bipartite subgraph algorithm to clearly identify
all the adversaries and, hence, the method of detection is
suitable for both sparse and dense networks.

Figure 3(d) shows that perturbed grid deployment intro-
duces some isolated wormholes which remain undetected
and hence leaves an impact on the wormhole detection rate.
It can be observed, from Figure 3(d), that the percentage
of isolated wormholes gradually reduces to zero when the
number of wormholes increases. Moreover, reduction in
the number of isolated wormholes improves the detection
efficiency because increasing number of wormholes establish

pairwise wormhole links which are identified easily using the
complete bipartite subgraph methods.

6.4. False Positive and False Negative. We conduct this exper-
iment to examine the false positive and false negative rate
with varying network density ranging from 20 to 100 nodes
distributed randomly and in perturbed grid in a constant
field size of 1000 × 1000. Figures 4(a) and 4(b) show the
false positive rate in relation to the average node degree
for random distribution and perturbed grid distribution,
respectively. Figures 4(a) and 4(b) indicate that the number
of false positives decreases as the node degree increases.
Figure 4(a) shows that our method has greatly surpassed
WORMEROS method and MDS-based local connectivity
method in random deployment. In Figure 4(b), for perturbed
grid distribution, the number of false positives in ourmethod
is less than MDS-based local connectivity method. However,
we observe that initially when there are a less number of
nodes, say 20 to 40, with average node degree from 4 to 8, our
method shows few false positives.The reason is that some true
nodes are suspected as probable wormholes while detecting
short path wormhole links. As the node size increases, there
is almost no false positives.

The result obtained in Figure 5 shows that in our approach
the false negative is reduced to zero thus achieving detection
rate of almost 100% in both sparse and dense networks while
WORMEROS method has a detection rate of 92% only in
dense networks with few false negatives.

6.5. Cost Analysis. The proposed long path wormhole link
detection method comprises three algorithms, namely, Algo-
rithms 1–3. We have calculated the number of iterations that
take place in these three algorithms and computed their total.
This total number is considered to be the cost, 𝑐, of our
detection method. We have considered random deployment.
We have executed our detection method a number of times
by varying number of nodes and number of wormholes. For
a fixed number of node and a fixed number of wormholes,
the detection method is run a number of times over random
deployments. The cost plotted in Figure 6 is the average of
cost of all such runs. Figure 6 shows the cost of detecting
wormholes with respect to the number of nodes and the
number of wormholes in the network. When the number of
nodes increases, detection cost becomes higher. If we keep the
number of nodes fixed and vary the number of wormholes,
cost increases but the rate of increase is less. When the
number of wormhole nodes is 4, then the curve for cost, 𝑐,
versus number nodes, 𝑛, may be approximated by a function𝑐 = O(𝑛1.6). Thus, the solution is scalable.

6.6. Observation on Node Degree. Figure 7 shows that the
presence of wormholes increases the average node degree
by creating false neighbours. It is observed that wormhole-
free environment shows a lower average node degree ranging
from 4 to 15 while perturbed grid shows a relatively medium
average node degree ranging from 10 to 25. However, random
deployment shows high range of average node degree of 15 to
27. Thus, it could be inferred that wormhole attack creates an
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Figure 3: (a)–(c) show detection efficiency of 20 wormhole nodes in random deployment with varying network field size. (d) Detection
efficiency of 20 wormhole nodes in perturbed grid deployment in 1000 × 1000 grid.

illusion of false neighbours in the network in order to attract
large volume of traffic.

6.7. Multiple Wormholes. Figure 8 presents three scenarios
of multiple wormholes placed at different position of the
network. Figures 8(a) and 8(b) show the wormhole links
which are far away from each other. Our method can detect
all wormhole nodes connected by long path with almost no
false positives. Figure 8(c) depicts a scenario where both ends
of a wormhole pair are connected by a long path. One end of
such wormhole pair is adjacent to one of the ends of another
wormhole pair. These adjacent wormhole nodes eventually
establish a short path wormhole link between each other. In
our approach, such wormholes which are closely positioned
to each other can be detected but with some false positives.
The reason is that there might be some normal node pair

(𝑖, 𝑗) which is closely positioned. The RTT of such node pair
ismuch less than the average RTT value of the network due to
its proximity. The RTT value between such normal node pair
is very close to abnormally lowRTT value and, thus, this node
pair (𝑖, 𝑗) gets enlisted as wormholes too. As the sensor nodes
generally maintain a distance from each other, such closely
placed nodes are rare.

7. Conclusion

For the past few years, wormhole attacks have drawn more
attention since they partition the network in two sets and dis-
rupt the normal network functionalities. However, in earlier
works, many countermeasures are proposed but those meth-
ods may require special hardware and/or suffer from high
overhead. In this work, we analyze the topological differences
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Figure 4: False positive rate with average node degree in (a) and (b).
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Figure 5: False negative rate with average node degree in UDG model with random deployment.
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(a) (b)

(c)

Figure 8: Multiple wormholes are placed at different positions of the network. (a) and (b) show wormhole links connected by long paths.
Wormhole links connected by short path are shown in (c).
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induced by wormholes and propose ordinal MDS-based
network reconstruction using RTT to detect wormhole links.
Our method can detect multiple wormhole links connected
by short path and long path. The simulation results demon-
strate that our approach can detect all wormhole nodes in
dense as well as in sparse networks with perturbed grid and
random deployment. Detection of long path wormhole links
with almost no false positives has been achieved. Detection
of wormholes connected by short paths introduces some false
positives. So, in future, the issue of false positive for short path
wormhole links remains open for further investigations.
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