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We propose an alternative framework for total variation based image denoising models. The model is based on the minimization
of the total variation with a functional coefficient, where, in this case, the functional coefficient is a function of the magnitude of
image gradient. We determine the considerations to bear on the choice of the functional coefficient. With the use of an example
functional, we demonstrate the effectiveness of amodel chosen based on the proposed consideration. In addition, for the illustrative
model, we prove the existence and uniqueness of the minimizer of the variational problem. The existence and uniqueness of the
solution associated evolution equation are also established. Experimental results are included to demonstrate the effectiveness of
the selected model in image restoration over the traditional methods of Perona-Malik (PM), total variation (TV), and the D-𝛼-PM
method.

1. Introduction

The objective of any image restoration process should not
focus only on the removal of noise, but it should also observe,
as Perona and Malik [1], Koenderink [2], and Witkin [3]
determined, that no new spurious details are created in
the restored image; at each scale-space representation, the
boundaries/edges are sharp or preserved, and, at all scales,
intraregion smoothing is preferred to interregion smoothing.

In the light of the above considerations, researchers
have observed that it is then logical to obtain or develop
edge indicators that would be adapted to the local image
structure [4]. Consequently, a number of edge indicators
have been proposed and logically grafted into the partial
differential equation (PDE) based evolution equations [1, 5].
In addition, energy minimization problems are continually
being formulated which focus on producing adaptive partial
differential equations [6, 7].

Total variation (TV)method, widely considered a power-
ful technique for smoothing, edge preservation, and general
image restoration, was first proposed by Rudin et al. [8]. The
method is based on the strength of the argument that TV
norms principally are 𝐿

1-norms of derivatives and that 𝐿1-
norms provide the proper basis for image restoration [8, 9].

TV functionals are defined in the space of functions of
bounded variation (BV) and therefore do not necessarily
require image functions to be continuous and smooth. This
factmakes them allow for “jumps” or discontinuities and thus
be able to protect edges.

The 𝐿
2-norm of the gradient of image allows removing

noise; however, it has the adverse effect of penalizing too
much the gradients corresponding to edges [10]. A functional
based on the 𝐿2-norm does not permit discontinuities in the
solution, and thus edges cannot be recovered properly [11].

The total variation (TV) norm in [8] is a regularization
functional of the form

TV (𝑢) = ∫

Ω

|∇𝑢| 𝑑𝑥 = ∫

Ω

√𝑢
2

𝑥
+ 𝑢

2

𝑦
𝑑𝑥. (1)

Although TV regularization above allows for edge recovery, it
has some demerits. Firstly, the formulation favours solutions
which are piecewise constant. This has the effect of causing
staircase effects and may even generate false edges on the
image [12]. Secondly, the method has the effect of reducing
contrast even in regions of the same pixel intensity or in
noise-free observed images [13, 14].

Various modifications have, therefore, been proposed, in
an attempt to address the drawbacks of the TV model, to
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make it as adaptive as possible to the local image structure.
For instance, Strong and Chan in [15] proposed the spatially
adaptive regularization functional of the form

𝐽 (𝑢) = ∫

Ω

𝛼 (𝑥) |∇𝑢| 𝑑𝑥, (2)

where the control factor 𝛼(𝑥) is designed to slow diffusion
in the neighbourhood of edges. Then, we have the efforts,
according to Blomgren et al. in [13], which produced a
denoising functional of the form

𝐽 (𝑢) = ∫

Ω

|∇𝑢|
𝑝(|∇𝑢|)

, (3)

where 𝑝 is a nondecreasing function of the magnitude of
gradient, 𝑝(𝑠) → 2 as 𝑠 → 0 and 𝑝(𝑠) → 1 as 𝑠 → ∞.
This model is designed to automatically tap into the benefits
of both isotropic diffusion and TV regularization. For other
modifications, we refer the reader to, among others, theworks
in [12, 16, 17].

In this paper, however, we propose an alternative frame-
work of variational model for image denoising, where the
regularization potential is a product of a gradient based func-
tional coefficient and the normof gradient of image (potential
function for TV); namely, 𝐹(𝑢) = ∫

Ω
Ψ(|∇𝑢|) ⋅ |∇𝑢|𝑑𝑥.That is,

the coefficient function is a function of the magnitude of the
gradient of the image. We propose the criteria for the choice
of the coefficient. Finally, we have selected a model based on
the proposed criteria, as an example for further analysis and
demonstration of experimental results.

The structure of this paper is as follows. In Section 2, we
present the proposed model (4) and discuss the general cri-
teria for choosing the functional coefficient to the traditional
TV potential. Section 2 is concluded by considering, based
on the proposed criteria, an example functional for further
analysis. In Section 3, we give certain preliminary definitions
and lemmas we rely on, variously, in this paper. In addition,
we prove the existence and uniqueness of the solution to
the minimization problem (11) and the associated evolution
equation (27)–(29). In Section 4, we define the weak solution
to the evolution problem (27)–(11). Furthermore, we present
the formulation of the approximate evolution equation (32)–
(36), prove the existence of solutions to the approximate
evolution problem, and conclude Section 4with the existence
and uniqueness of the solution to the evolution problem
(27)–(29). In Section 5, we give the numerical schemes
and experimental results to demonstrate the strength and
effectiveness of our method. Additionally, we have presented
a brief discussional comparison of our results with those of
other methods like PM, original TV, and D-𝛼-PM method
by Guo et al. [5]. A brief summary concludes the paper in
Section 6.

2. Proposed Model

In this section, inspired by the works of Chan and Shen
[18], Vese [19], and Chen et al. [12], among others, we
propose an alternative framework for total variation based
denoising model. The model is based on minimization of a

functional, where the regularization potential is a product of
the total variation potential and a gradient based functional
coefficient. The coefficient, which acts to penalize the norm
of gradient and detect any edges, is also taken as function
of the norm of the gradient of image. So, we present the
general form of the model and determine certain properties
of the functional coefficient, especially in terms of linearity,
sublinearity, and superlinearity growth at infinity. Ultimately,
we have selected a specific example of model, based on the
proposed guidelines, for further analysis.

2.1.TheNew Framework for Energy Functional. Theproposed
energy functional is given in the following general form:

min
𝑢∈BV∩𝐿

2
(Ω)

{𝐹 (𝑢)=∫

Ω

Ψ (|∇𝑢|) |∇𝑢| 𝑑𝑥+

𝜆

2

∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥} ,

(4)

where Ψ(𝑠) is a function that detects edges and penalizes
the norm of gradient and 𝑓 is the noise image. Observe
that if we set Ψ(𝑠) = 𝑠, then the kernel of 𝐹(𝑢) becomes
a variational problem of the 𝐿

2-norm that is known not to
allow for discontinuities, since it leads to the traditional edge
obliterating isotropic diffusion [20], while if Ψ(𝑠) = 1 the
problem becomes the usual TV functional, which allows a
diffusion mechanism that is strictly normal to the image
gradient [12].

The functional 𝐹(𝑢) in (4) should verify the Euler-
Lagrange equation

0 = − div {(Ψ
(|∇𝑢|) +

Ψ (|∇𝑢|)

|∇𝑢|

)∇𝑢} + 𝜆 (𝑢 − 𝑓) . (5)

Next, we establish certain properties of Ψ(𝑠) from (5) that
should influence its choice. For the purposes of denoising, to
be able to smooth the image in homogeneous regions, that
is, regions where 𝑠 = |∇𝑢| → 0, Ψ(𝑠) is expected such
that lim

𝑠→0
(Ψ


(|∇𝑢|) + (Ψ(|∇𝑢|)/|∇𝑢|)) = 𝐶 (constant) > 0.

On the other hand, to preserve discontinuities (edges) in the
image, that is, in areas where 𝑠 = |∇𝑢| → +∞, Ψ(𝑠) takes a
form such that lim

𝑠→+∞
(Ψ


(|∇𝑢|) + (Ψ(|∇𝑢|)/|∇𝑢|)) = 0.

Now, for a littlemore precision on the expected behaviour
ofΨ(𝑠), we decompose divergence part in terms of the tangent
and normal directions to the isophote lines. Equation (5) then
becomes

0 = [Ψ

(|∇𝑢|) +

Ψ (|∇𝑢|)

|∇𝑢|

] 𝑢
𝑇𝑇

+ [2Ψ

(|∇𝑢|) + Ψ


(|∇𝑢|) |∇𝑢|] 𝑢𝑁𝑁

− 𝜆 (𝑢 − 𝑓) .

(6)

Then, to be able to achieve isotropic diffusion within homo-
geneous regions, from (6), we may impose the condition that

lim
𝑠→0

[Ψ

(𝑠) +

Ψ (𝑠)

𝑠

] = lim
𝑠→0

[2Ψ

(𝑠) + Ψ


(𝑠) ⋅ 𝑠] = 𝐶 > 0,

(7)

where 𝐶 is a constant. The above condition yields from (6) a
diffusion model that diffuses isotropically.
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In the regions neighboring the edges, the model should
dissipate diffusion effects across the edges and favor diffusion
along the edges. This implies that as 𝑠 → ∞, [Ψ

(𝑠) +

(Ψ(𝑠)/𝑠)] → 𝐶
1
, where 𝐶

1
is an arbitrary positive constant,

while [2Ψ

(𝑠) + Ψ


(𝑠) ⋅ 𝑠] → 0. These conditions might

be difficult to meet simultaneously for Ψ(𝑠). Therefore,
motivated by the works in [10, 19], a weaker compromise is
imposed by demanding that both terms approach zero, but at
different rates, with diffusion along the direction normal to
the isophote lines approaching zero faster than the diffusion
along the tangent to isophote lines.This leads to the condition
that

lim
𝑠→+∞

[2Ψ

(𝑠) + Ψ


(𝑠) ⋅ 𝑠]

[Ψ

(𝑠) + (Ψ (𝑠) /𝑠)]

= 0. (8)

Hence, we observe that, for Ψ(𝑠) to become an effective
coefficient in the functional in (4), it should be such that
conditions (7) and (8) are satisfied.

For simplicity of notation in subsequent stages, we will
denote, from (5),

𝜑

(∇𝑢) := Ψ


(|∇𝑢|) |∇𝑢| + Ψ (|∇𝑢|) ,

so that 𝜑 (∇𝑢) := Ψ (|∇𝑢|) |∇𝑢| .

(9)

Furthermore, we are interested in the properties of Ψ(𝑠)
with regard to its growth at infinity and its overall impact on
the functional 𝐹(𝑢):

if lim
𝑠→+∞

Ψ (𝑠)

𝑠

=

{
{
{
{

{
{
{
{

{

𝐶, then 𝐹 (𝑢) is superlinear,

0,

then 𝐹 (𝑢) is either
superlinear or linear,

+∞, then 𝐹 (𝑢) is superlinear.

(10)

Note that 𝐶 > 0 is a constant and growth.

2.1.1. Summary on the Characterization of Growth of Ψ( ⋅ ).
The aim of this section is to discuss the property of the
function coefficientΨ(𝑠) that will lead to a functional 𝐹(𝑢) of
linear growth at infinity, but, of course, subject to conditions
(7)-(8). The characterization is based upon the results of
process (10).

Observe that setting the coefficient Ψ(𝑠) in the regular-
ization kernel, as a function of the norm of gradient of the
image to be linear growth, leads to a functional 𝐹(𝑢) in
(4), which is of superlinear growth. Such a functional yields
associated diffusion equation which either diffuses images
uniformly, without being sensitive to discontinuities or edges,
or generally does not yield good denoising results [10, 21].

ChoosingΨ(𝑠) that is of superlinear growth leads to 𝐹(𝑢)
which is invariably of superlinear growth. For instance, if we
set Ψ(𝑠) = 𝑠

𝑝
, (𝑝 > 1) which is of superlinear growth at

infinity, then we obtain the function Ψ(𝑠) ⋅ 𝑠 = 𝑠
𝑝+1. This

functional is of superlinear growth and does not give good
results in image denoising.This is because, with such a choice
ofΨ(𝑠), the derivative ofΨ(𝑠) ⋅ 𝑠would yield a nondegenerate
elliptic differential operator of the second order, which would
have an oversmoothing effect under the optimality condition
[22].

Bildhauer and Fuchs [21] reckon that a regularization
function need not necessarily be of power growth.Therefore,
another example for Ψ(𝑠) of superlinear growth is Ψ(𝑠) ⋅ 𝑠 =

𝑠
2 log(1+𝑠), whereΨ(𝑠) = 𝑠 log(𝑠+1) is viewed as some kind of
compromise between the cases 𝑝 > 1 and 𝑝 = 1 of coefficient
of power growth [21]. This formulation too does not promise
any better results.

Consequently, we observe that to achieve maximal
results, which entails reconstructing a noise image in such a
way that the edges are protectedwhile diffusionwithin homo-
geneous regions proceeds rather uniformly, it is required
that Ψ(𝑠) be of sublinear growth at infinity. Also, the chosen
Ψ(𝑠) should be such that the functional 𝐹(𝑢) generated is
of linear growth. Moreover, Ψ(𝑠) should be such that the
conditions in (7)-(8) are satisfied. Functionals which arise
from such potential functions tend to give better image
denoising results. Some examples of the functions Ψ(𝑠) of
sublinear growth are Ψ(𝑠) := 𝑠/(1 + 𝑠), Ψ(𝑠) := log(1 + 𝑠),
and Ψ(𝑠) := 1/(1 + 𝛼𝑠). The function Ψ(𝑠) := 𝑠/(1 + 𝑠) is a
good candidate for further consideration.

In this paper, therefore, we choose the control function
Ψ(𝑠) := 𝑠/(1 + 𝑠), which is function of sublinear growth
at infinity. This leads to a nondecreasing potential function
for 𝑠 ∈ R+, which is strictly convex and of linear growth at
infinity given in the form Ψ(𝑠) ⋅ 𝑠 := 𝑠

2
/(1 + 𝑠).

With this choice, we observe the following further prop-
erties of Ψ(𝑠);

(i) lim
𝑠→0

Ψ(𝑠) = 0;
(ii) lim

𝑠→∞
Ψ(𝑠) = 1;

(iii) Ψ(𝑠) is nondecreasing for 𝑠 ≥ 0. This, as observed
from (6), ensures only forward diffusion along the
tangent to the isophote lines.

3. The Minimization Problem

Our model based on the presentation above is then given by

min
𝑢∈BV∩𝐿

2
(Ω)

{𝐹 (𝑢) = ∫

Ω

𝜑 (∇𝑢) 𝑑𝑥 +

𝜆

2

∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥} ,

(11)

where

𝜑 (∇𝑢) :=

|∇𝑢|
2

1 + |∇𝑢|

. (12)

Hence, in this section, we study the existence and uniqueness
of the minimization problem (11). The following preliminary
information prefaces our reasoning here and in the subse-
quent sections of this paper.

3.1. Preliminaries

Definition 1. Let Ω be an open subset of R𝑛. A function 𝑢 ∈

𝐿
1
(Ω) has a bounded variation inΩ, denoted by BV(Ω), if

∫

Ω

|𝐷𝑢|= sup {∫
Ω

𝑢 div 𝜑𝑑𝑥 : 𝜑 ∈ 𝐶
1

0
(Ω;R

𝑛
) ,




𝜑




≤ 1}<∞,

(13)
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where BV(Ω) denotes the space of such functions. Then, BV-
norm is given by

‖𝑢‖BV = ∫

Ω

|∇𝑢| + ‖𝑢‖
𝐿
1
(Ω)

. (14)

Definition 2 (see [23]). If 𝑢 ∈ BV(Ω), then

𝐷𝑢 = ∇𝑢𝑑𝑥 + 𝐷
𝑠
𝑢. (15)

Andwriting𝐷𝑢 and its total variation onΩ, |𝐷𝑢|(Ω), one has
(see [7])

|𝐷𝑢| (Ω) = ∫

Ω

|∇𝑢| 𝑑𝑥 + ∫

Ω

𝐷
𝑠
𝑢. (16)

𝐷𝑢 is a Radon measure, where ∇𝑢 is the density of the
absolutely continuous part of𝐷𝑢with respect to the Lebesgue
measure,L𝑛, and𝐷

𝑠
𝑢 is the singular part.

Lemma 3 (see [24]). Let 𝜑 : R𝑛
→ R. The function 𝜑 is

convex if and only if

𝜑 (𝑥) ≥ 𝜑

(𝑦) (𝑥 − 𝑦) + 𝜑 (𝑦) , ∀𝑥, 𝑦 ∈ R

𝑛
, (17)

and if 𝜑 ∈ 𝐶
2
(R2

), then 𝜑 is convex if and only if ∇2
𝜑 ≥ 0.

Lemma 4 (see [10]). Let Φ : R → R+ be convex, even, and
nondecreasing on R+ with linear growth at infinity. Also, let
Φ

∞ be the recession function of Φ defined by

Φ
∞
(𝜔) = lim

𝑠→∞

Φ (𝑠𝜔)

𝑠

. (18)

Then, for 𝑢 ∈ BV(Ω) and setting Φ(𝜃) = Φ(|𝜃|), one has

∫

Ω

Φ (𝐷𝑢) = ∫

Ω

Φ (|∇𝑢|) 𝑑𝑥 + Φ
∞
(1) ∫

Ω

𝐷
𝑠
𝑢. (19)

This implies that 𝑢 → ∫
Ω
Φ(𝐷𝑢) is lower semicontinuous for

the BV(Ω) topology.

3.2. Existence and Uniqueness of Solution to the Minimization
Problem. Since the objective here is to preserve edges, which
are viewed as discontinuities, the natural function space to
seek the solution is the BV(Ω) space. In image analysis,
the BV(Ω) space allows for discontinuities across the edges
of images. Furthermore, due to nonreflexivity of the 𝐿

1
(Ω)

space, which would have been a more natural space within
which to seek the solution, it is noted that the solution to
the minimization problem might not exist there. Therefore,
the BV-𝑤∗

(Ω), which denotes BV-𝑤𝑒𝑎𝑘∗ topology, provides
the most reasonable alternative space for the existence of the
solution. Inwhat follows, wewill, for convenience of notation,
refer to BV-𝑤𝑒𝑎𝑘∗(Ω) simply as BV(Ω). This space allows
obtaining compactness because of the separability of 𝐿1

(Ω)

space even though it is not reflexive [10]. Hence, we state and
prove the following existence and uniqueness theorem for our
problem.

Theorem 5. Given 𝜑(∇𝑢) as assigned above, there exists 𝑢 ∈

BV(Ω) ∩𝐿
2
(Ω) which is a unique solution to the minimization

problem (11).

Proof. Since 𝜑(∇𝑢) as specifically defined above for (11) is of
linear growth and given the fact thatlim

𝑠→∞
𝜑(𝑠) = +∞, it

implies that it is also coercive. Consequently, there exists a
sequence {𝑢

𝑛
} ∈ BV(Ω) ∩ 𝐿

2
(Ω) such that 𝐹(𝑢

𝑛
) ≤ 𝐶. Hence,

we have ∫
Ω
𝜑(∇𝑢

𝑛
) < 𝐶, and, from the inequality of the

second component of 𝐹(𝑢), namely, ∫
Ω
(𝑢

𝑛
−𝑓)

2
𝑑𝑥 ≤ 𝐶, if we

define 𝑤
𝑛
= (1/|Ω|) ∫

Ω
𝑢
𝑛
𝑑𝑥, V

𝑛
= 𝑢

𝑛
− 𝑤

𝑛
, we observe that

∫
Ω
V
𝑛
𝑑𝑥 = 0. We then deduce from [10] that | ∫

Ω
𝑢
𝑛
𝑑𝑥| ≤ 𝐶

and ‖𝑢
𝑛
‖
𝐿
2
(Ω)

≤ 𝐶.
This indicates that {𝑢

𝑛
} is bounded in 𝐿

2
(Ω) and 𝐿

1
(Ω).

And from 𝐹(𝑢
𝑛
) ≤ 𝐶 it is also clear that 𝑢

𝑛
is abounded in

BV(Ω). Thus, there exists a subsequence {𝑢
𝑛𝑗
} ∈ BV(Ω) of

{𝑢
𝑛
} such that

𝑢
𝑛
𝑗

→ 𝑢, weakly in 𝐿
2
(Ω) ,

𝑢
𝑛
𝑗

→ 𝑢, strongly in 𝐿
1
(Ω) .

(20)

And on the strength of the lemma on convex functions of
measures (see Lemma 4) and the weak lower semicontinuity
of the 𝐿2-norm for the second component of 𝐹(𝑢), we deduce
that 𝐹(𝑢) is lower semicontinuous. In fact, the recession
function Φ

∞
(𝜔) in the definition of convex function of

measures is finite for our functional. That is, Φ∞
(𝜔) = 1.

Hence, we obtain that

∫

Ω

𝜑 (∇𝑢) 𝑑𝑥 + ∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥

≤ lim inf
𝑗→∞

∫

Ω

𝜑 (∇𝑢
𝑛
𝑗

) 𝑑𝑥 + lim inf
𝑗→∞

∫

Ω

(𝑢
𝑛
𝑗

− 𝑓)

2

𝑑𝑥

(21)

or

∫

Ω

𝜑 (∇𝑢) 𝑑𝑥 + ∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥

≤ lim inf
𝑗→∞

{∫

Ω

𝜑 (∇𝑢
𝑛
𝑗

) 𝑑𝑥 + ∫

Ω

(𝑢
𝑛
𝑗

− 𝑓)

2

𝑑𝑥} .

(22)

We, thus, have

𝐹 (𝑢) ≤ lim inf
𝑗→∞

𝐹(𝑢
𝑛
𝑗

) = min
𝑢∈BV(Ω)∩𝐿

2
(Ω)

𝐹 (𝑢) . (23)

Thus, 𝑢 ∈ BV(Ω) ∩ 𝐿
2
(Ω) is a minimizer of the problem

(11). Uniqueness of 𝑢 is drawn from the strict convexity of
𝜑(∇𝑢) and convexity of the second component of𝐹(𝑢), which
implies the overall strict convexity of the functional 𝐹(𝑢).
Additionally, a strictly convex functional admits at most one
minimum.This, then, implies that 𝑢 is a unique minimizer of
(11).

3.3. The Associated Evolution Equation. From the energy
minimization problem as assigned above, namely,

min
𝑢∈BV∩𝐿

2
(Ω)

{𝐹 (𝑢) = ∫

Ω

|∇𝑢|
2

1 + |∇𝑢|

𝑑𝑥 +

𝜆

2

∫

Ω

(𝑢 − 𝑓)
2

𝑑𝑥} ,

(24)
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we have the associated Euler-Lagrange equation given by

0 = − div( 2 + |∇𝑢|

(1 + |∇𝑢|)
2
∇𝑢) + 𝜆 (𝑢 − 𝑓) , 𝑥 ∈ Ω, (25)

with the Neumann boundary condition

𝜕𝑢

𝜕 ⃗𝑛

= 0, 𝑥 ∈ 𝜕Ω. (26)

We compute for 𝑢 in the Euler-Lagrange equation (25) by
putting it into a dynamical system, where the time 𝑡 is used
as an evolution parameter. Hence, the evolution equation
associated with the minimization problem (4) is given by

𝜕𝑢

𝜕𝑡

= div( 2 + |∇𝑢|

(1 + |∇𝑢|)
2
∇𝑢) − 𝜆 (𝑢 − 𝑓) , (𝑥, 𝑡) ∈ 𝑄

𝑇
,

(27)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ Ω, (28)

𝜕𝑢

𝜕 ⃗𝑛

= 0, (𝑥, 𝑡) ∈ 𝜕𝑄
𝑇
, (29)

where 𝑓(𝑥) is the noise image, 𝑄
𝑇
:= [0, 𝑇] × Ω, and 𝜕𝑄

𝑇
:=

𝜕Ω × [0, 𝑇].
In order to see whether the potential 𝜑(𝑠) := Ψ(𝑠) ⋅ 𝑠,

as defined above, respects the general principle of image
reconstruction, where it is required that reconstructed image
be formed by homogeneous regions separated by sharp
edges, we decompose the divergence term of (25) using the
local image structures like tangent and normal directions to
the isophote lines. Writing it in its nonconservative form,
analogous to (6), yields

0 = −(

2 + |∇𝑢|

(1 + |∇𝑢|)
2
)𝑢

𝑇𝑇
− (

2

(1 + |∇𝑢|)
3
)𝑢

𝑁𝑁
+ 𝜆 (𝑢 − 𝑓) .

(30)

Notice from (30) that as |∇𝑢| → 0, signaling homogeneous
regions, the potential 𝜑(𝑠) behaves like a linear isotropic
diffusion encouraging uniform smoothing in both the 𝑢

𝑁𝑁

and 𝑢
𝑇𝑇

directions. However, as |∇𝑢| → ∞, corresponding
to the neighbourhood of the edges, diffusion rate along the
normal (or 𝑢

𝑁𝑁
) direction is diminished, while the diffusion

along the tangent (or 𝑢
𝑇𝑇
) direction is preferred, thereby

preserving the edges. The model therefore is well-behaved,
since it reasonably satisfies the principle cited above.

4. Weak Solution to the Flow Associated with
the Minimization Problem

In this section, we present the definition of weak solution to
the evolution problem (27)–(29), propose an approximating
evolution equation, establish existence result for the solution
of the approximate evolution equation, and, then, by logical
mathematical manipulation and passing to the limits, present
a proof of the existence and uniqueness of the solution of the
evolution problem (27)–(29).

We refer to the works in [25–28] as themotivation for our
definition of theweak solution to the evolution problem (27)–
(29).

Definition 6. A measurable function 𝑢 : 𝑄
𝑇

→ R, is called
an entropy solution of (27)–(29) if 𝑢 ∈ 𝐿

∞
([0, 𝑇];BV(Ω) ∩

𝐿
2
(Ω)), 𝜕𝑢/𝜕𝑡 ∈ 𝐿

2
(𝑄

𝑇
), 𝑢(𝑥, 0) = 𝑓 in Ω in the trace sense,

and if there exists 𝑧 ∈ 𝐿
1
(𝑄

𝑇
;R𝑁

), ‖𝑧‖
𝐿
∞
(𝑄
𝑇
;R𝑁) ≤ 1, 𝜕𝑢/𝜕𝑡 =

div(𝑧) − 𝜆(𝑢 − 𝑓) inD
(𝑄

𝑇
) such that

∫

Ω

(𝑢 (𝑡) − 𝜐 (𝑡))

𝜕𝑢

𝜕𝑡

𝑑𝑥

≤ ∫

Ω

𝑧 (𝑡) ⋅ ∇V 𝑑𝑥 − ‖𝐷𝑢 (𝑡)‖

− 𝜆∫

Ω

(𝑢 − 𝑓) (𝑢 (𝑡) − 𝜐) 𝑑𝑥

(31)

for every 𝜐 ∈ 𝐿
∞
(0, 𝑇;𝑊

1,1
(Ω)), a.e. for 𝑡 ∈ [0, 𝑇].

4.1. Existence of the Solution of the Approximate Evolu-
tion Problem (32)–(34). Before we study the existence and
uniqueness of the evolution problem (27)–(29) above, let us
consider the following approximate evolution problem: for
1 < 𝑝 ≤ 2 and𝑓

𝑝
∈ 𝑊

1,𝑝
(Ω), we construct the approximation

𝜕𝑢
𝑝

𝜕𝑡

= div (𝜑

𝑝
(∇𝑢

𝑝
)) − 𝜆 (𝑢

𝑝
− 𝑓

𝑝
) , (𝑥, 𝑡) ∈ 𝑄

𝑇
, (32)

𝜕𝑢
𝑝

𝜕 ⃗𝑛

= 0, (𝑥, 𝑡) ∈ 𝜕𝑄
𝑇
, (33)

𝑢
𝑝
(𝑥, 0) = 𝑓

𝑝
, 𝑥 ∈ Ω, (34)

where

𝜑
𝑝
(∇𝑢

𝑝
) =






∇𝑢

𝑝







𝑝+1

1 +






∇𝑢

𝑝







, (35)

which implies that

𝜑


𝑝
(∇𝑢

𝑝
) =

((𝑝 + 1) + 𝑝






∇𝑢

𝑝






)






∇𝑢

𝑝







𝑝−1

∇𝑢
𝑝

(1 +






∇𝑢

𝑝






)

2
. (36)

Theorem 7. The approximate evolution equation (32)–
(34) with (35) and (36) has a weak solution 𝑢

𝑝
∈ 𝐿

∞
(0, 𝑇;

𝑊
1,𝑝
(Ω)), 𝜕𝑢

𝑝
/𝜕𝑡 ∈ 𝐿

2
(𝑄

𝑇
) such that

∫∫

𝑄
𝑇

[𝜙

𝜕𝑢
𝑝

𝜕𝑡

+ 𝜑


𝑝
(∇𝑢

𝑝
) ⋅ ∇𝜙] 𝑑𝑥 𝑑𝑡

= −𝜆∫∫

𝑄
𝑇

(𝑢
𝑝
− 𝑓

𝑝
) 𝜙 𝑑𝑥 𝑑𝑡,

(37)

lim
𝑡→0
+






𝑢
𝑝
(𝑥, 𝑡) − 𝑓

𝑝





𝐿
2
(Ω)

= 0, (38)

where 1 < 𝑝 ≤ 2, for any 𝑡 ∈ [0, 𝑇], for every 𝜙 ∈

𝐿
2
(0, 𝑇;𝑊

1,𝑝
(Ω)), 𝜕𝜙/𝜕 ⃗𝑛 = 0, a.e. on [0, 𝑇], and that

‖𝑢
𝑝
‖
𝐿
∞
(0,𝑇;𝑊

1,𝑝
(Ω))

+ ‖𝑢
𝑝
‖
𝐿
∞
(0,𝑇;𝐿

2
(Ω))

+ ‖𝜕𝑢
𝑝
/𝜕𝑡‖

𝐿
2
(𝑄
𝑇
)
≤ 𝐶.
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Proof. We apply Rothe’s method in [29] to construct an
approximating solution sequence 𝑢

𝑛

𝑝
for the approximate

evolution problem (32)–(34). We divide the interval [0, 𝑇]
into 𝑛 equal parts, where ℎ = 𝑇/𝑛. For any 𝑘 : 1 ≤ 𝑘 ≤ 𝑛, for
any integer 𝑛 > 0 and a function 𝑢(𝑥, 𝑡), we have

𝑢
𝑛,𝑘

𝑝
(𝑥) = 𝑢

𝑝
(𝑥, 𝑘ℎ) (39)

for 𝑘 = 0, 1, . . . , 𝑛.
We then consider the difference approximating equation

of (32) as follows:

𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝

ℎ

= div (𝜑

𝑝
(∇𝑢

𝑛,𝑘

𝑝
)) − 𝜆 (𝑢

𝑛,𝑘

𝑝
− 𝑓

𝑝
) .

(40)

Denoting V
𝑝
:= 𝑢

𝑛,𝑘

𝑝
, then the above equation becomes

div (𝜑
(∇V

𝑝
)) − (

1

ℎ

+ 𝜆) V
𝑝
+ (𝜆𝑓

𝑝
+

𝑢
𝑛,𝑘−1

ℎ

) = 0. (41)

The idea here is to prove that if the value of 𝑢𝑛,𝑘−1

𝑝
is known

and 𝑢
𝑛,0

𝑝
= 𝑓

𝑝
, then (41) admits a weak solution V

𝑝
:= 𝑢

𝑛,𝑘

𝑝
.

From (41), we may back-project to the general functional
𝐽 defined in𝐻

1
(Ω), given by

𝐽 (V
𝑝
) = ∫

Ω

(






∇V

𝑝







𝑝+1

1 +






∇V

𝑝







)𝑑𝑥 +

1

2

∫

Ω

(

1

ℎ

+ 𝜆) V2
𝑝
𝑑𝑥

− ∫

Ω

(𝜆𝑓
𝑝
+

𝑢
𝑛,𝑘−1

ℎ

) V
𝑝
𝑑𝑥.

(42)

It can be shown that 𝐽(⋅) above is convex and lower semi-
continuous in 𝑊

1,𝑝
(Ω). Hence, there exists a minimizing

sequence {𝑢𝑛

𝑝
} for 𝐽(V

𝑝
) such that 𝐽(𝑢𝑛

𝑝
) = infV

𝑝
∈𝑊
1,𝑝𝐽(V

𝑝
). For

simplicity and without loss of generality, we will let 𝜆 = 1.
Then, for any test function 𝜙(𝑥) ∈ 𝐶

∞

0
(Ω) with (40) and

integration by parts, we have
1

ℎ

∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
) 𝜙 (𝑥) 𝑑𝑥 + ∫

Ω

𝜑


𝑝
(∇𝑢

𝑛,𝑘

𝑝
) ⋅ ∇𝜙 (𝑥) 𝑑𝑥

+ ∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑓

𝑝
) 𝜙 (𝑥) 𝑑𝑥 = 0.

(43)

To obtain the approximate solution to the whole domain 𝑄
𝑇
,

we denote

𝑢
𝑛

𝑝
(𝑥, 𝑡) =

𝑛

∑

𝑘=1

𝜒
𝑛,𝑘

(𝑡) 𝑢
𝑛,𝑘

𝑝
; 𝑢

𝑛

𝑝
(𝑥, 0) = 𝑓

𝑝
(𝑥) ,

V𝑛
𝑝
(𝑥, 𝑡) =

𝑛

∑

𝑘=1

𝜒
𝑛,𝑘

(𝑡)

× (𝑢
𝑛,𝑘−1

𝑝
(𝑥) + 𝜆

𝑛,𝑘
(𝑡) (𝑢

𝑛,𝑘

𝑝
(𝑥) − 𝑢

𝑛,𝑘−1

𝑝
(𝑥))) ,

(44)

where 𝜒𝑛,𝑘
(𝑡) is the indicator function of 𝑡 ∈ [(𝑘 − 1)ℎ, 𝑘ℎ],

𝜆
𝑛,𝑘

(𝑡) =

{

{

{

𝑡

ℎ

− (𝑘 − 1) , 𝑡 ∈ [(𝑘 − 1) ℎ, 𝑘ℎ) ,

0, otherwise.
(45)

Equation (43) implies that

∫∫

𝑄
𝑇

[𝜙 (𝑥, 𝑡)

𝜕V𝑛
𝑝

𝜕𝑡

+ 𝜑


𝑝
(∇𝑢

𝑛

𝑝
) ⋅ ∇𝜙 (𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡

+ ∫∫

𝑄
𝑇

(𝑢
𝑛

𝑝
− 𝑓

𝑝
) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0

(46)

for 𝜙 ∈ 𝐶
∞

0
(𝑄

𝑇
).

In the steps that follow, we obtain some estimates for
𝑢
𝑛

𝑝
(𝑥, 𝑡) and V𝑛

𝑝
(𝑥, 𝑡). For this purpose, let us choose the test

function 𝜙(𝑥) in (43) such that 𝜙(𝑥) = 𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
. We then

obtain
1

ℎ

∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
)

2

𝑑𝑥

+ ∫

Ω

𝜑

(∇𝑢

𝑛,𝑘

𝑝
) ⋅ (∇𝑢

𝑛,𝑘

𝑝
− ∇𝑢

𝑛,𝑘−1

𝑝
) 𝑑𝑥

+ ∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑓

𝑝
) (𝑢

𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
) 𝑑𝑥 = 0.

(47)

Applying convexity leads to
1

ℎ

∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
)

2

𝑑𝑥

+

1

2

∫

Ω

(𝑢
𝑛,𝑘

− 𝑓
𝑝
)

2

𝑑𝑥 + ∫

Ω

𝜑
𝑝
(∇𝑢

𝑛,𝑘

𝑝
) 𝑑𝑥

≤ ∫

Ω

𝜑
𝑝
(∇𝑢

𝑛,𝑘−1

𝑝
) 𝑑𝑥 +

1

2

∫

Ω

(𝑢
𝑛,𝑘−1

𝑝
− 𝑓

𝑝
)

2

𝑑𝑥.

(48)

Summing (48) from 𝑘 to 𝑟 for 1 ≤ 𝑘 ≤ 𝑟 ≤ 𝑛 yields

∫

Ω

𝜑
𝑝
(∇𝑢

𝑛,𝑟

𝑝
) 𝑑𝑥 ≤ ∫

Ω

𝜑
𝑝
(∇𝑓

𝑝
) 𝑑𝑥, (49)

which implies that

sup
0<𝑡<𝑇

∫

Ω

𝜑
𝑝
(∇𝑢

𝑛

𝑝
) 𝑑𝑥 ≤ ∫

Ω

𝜑
𝑝
(∇𝑓

𝑝
) 𝑑𝑥 = 𝐶

1

(𝐶
1
≡ constant) .

(50)

In addition, let us consider that

𝐶
1
≥ ∫

Ω

𝜑
𝑝
(∇𝑢

𝑛

𝑝
) 𝑑𝑥 = ∫

Ω






∇𝑢

𝑛

𝑝







𝑝+1

1 +






∇𝑢

𝑛

𝑝







𝑑𝑥

= ∫

|∇𝑢
𝑛

𝑝
|≤𝑘






∇𝑢

𝑛

𝑝







𝑝+1

1 +






∇𝑢

𝑛

𝑝







𝑑𝑥 + ∫

|∇𝑢
𝑛

𝑝
|>𝑘






∇𝑢

𝑛

𝑝







𝑝+1

1 +






∇𝑢

𝑛

𝑝







𝑑𝑥

≥ ∫

|∇𝑢
𝑛

𝑝
|≤1

|∇𝑢|
𝑝+1

𝑑𝑥 + ∫

|∇𝑢
𝑛

𝑝
|>1

1

2






∇𝑢

𝑛

𝑝







𝑝

,

(51)

for some appropriately defined constant 𝑘. Observe from the
above inequality that

∫

|∇𝑢
𝑛

𝑝
|≤1






∇𝑢

𝑛

𝑝







𝑝+1

𝑑𝑥 ≤ 𝐶
1
, (52)

1

2

∫

|∇𝑢
𝑛

𝑝
|>1






∇𝑢

𝑛

𝑝







𝑝

𝑑𝑥 ≤ 𝐶
1
. (53)
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Application ofHölder inequality yields the following inequal-
ity:

∫

|∇𝑢
𝑛

𝑝
|≤1






∇𝑢

𝑛

𝑝







𝑝

𝑑𝑥

≤ (∫

|∇𝑢
𝑛

𝑝
|≤1






∇𝑢

𝑛

𝑝







𝑝+1

𝑑𝑥)

𝑝/(𝑝+1)

(∫

|∇𝑢
𝑛

𝑝
|≤1

1 𝑑𝑥)

1/(𝑝+1)

.

≤ 𝐶
1

(54)

It is then clear from (53) and (54) that

∫

Ω






∇𝑢

𝑛

𝑝







𝑝

𝑑𝑥 ≤ 𝐶
1
. (55)

Hence, we can conclude from (50)–(54) that

sup
0≤𝑡≤𝑇

∫

Ω






∇𝑢

𝑛

𝑝







𝑝

𝑑𝑥 ≤ 𝐶
1
. (56)

Now, summing (48) from 𝑘 to 𝑛 leads to

1

ℎ

𝑛

∑

𝑘=1

∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
)

2

𝑑𝑥 +

1

2

∫

Ω

(𝑢
𝑛

𝑝
− 𝑓

𝑝
)

2

𝑑𝑥

≤ ∫

Ω

𝜑
𝑝
(∇𝑓

𝑝
) 𝑑𝑥.

(57)

Equation (57) implies that

1

ℎ

𝑛

∑

𝑘=1

∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
)

2

𝑑𝑥 ≤ ∫

Ω

𝜑
𝑝
(∇𝑓

𝑝
) 𝑑𝑥 = 𝐶

1
. (58)

Moreover, by definition of V𝑛
𝑝
(𝑥, 𝑡), we see that

𝜕V𝑛
𝑝

𝜕𝑡

=

1

ℎ

𝑛

∑

𝑘=1

𝜒
𝑛,𝑘

(𝑡) (𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
) , (59)

which by (58) implies that












𝜕V𝑛
𝑝

𝜕𝑡












2

𝐿
2
(𝑄
𝑇
)

=

1

ℎ
2

𝑛

∑

𝑘=1

ℎ






𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝







2

≤ 𝐶
1
. (60)

It can be deduced from (50) that

sup
0<𝑡<𝑇

∫

Ω

𝜑
𝑝
(∇V𝑛

𝑝
) 𝑑𝑥 ≤ 𝐶

1
. (61)

Now, observe from (57) that

1

2

∫

Ω

(𝑢
𝑛

𝑝
− 𝑓

𝑝
)

2

𝑑𝑥 ≤ 𝐶
1
. (62)

Using Minkowski’s inequality on the strength of (62), we
deduce that






𝑢
𝑛

𝑝





𝐿
2
(Ω)

−






𝑓
𝑝





𝐿
2
(Ω)

≤






𝑢
𝑛

𝑝
− 𝑓

𝑝





𝐿
2
(Ω)

≤ 𝐶
1
, (63)

which leads to





𝑢
𝑛

𝑝





𝐿
2
(Ω)

≤ 𝐶
1
+






𝑓
𝑝





𝐿
2
(Ω)

= 𝐶
2
. (64)

From the above estimate, it can be deduced that

sup
0<𝑡<𝑇






V𝑛
𝑝





𝐿
2
(Ω)

≤ 𝐶
2
. (65)

Denoting 𝜑


𝑝
(∇𝑢

𝑛

𝑝
) := 𝐵𝑢

𝑛

𝑝
, then from (56), (60), (61), (64),

and (65), it can be seen that the sequences {𝑢𝑛

𝑝
},{V𝑛

𝑝
}, {𝜕V𝑛

𝑝
/𝜕𝑡},

and {𝐵𝑢
𝑛

𝑝
} are bounded. Hence, there exist subsequences of

{𝑢
𝑛

𝑝
}, {V𝑛

𝑝
}, {𝜕V𝑛

𝑝
/𝜕𝑡}, and {𝐵𝑢

𝑛

𝑝
}, respectively, denoted by the

same sequences such that, as 𝑛 → ∞,

𝑢
𝑛

𝑝
⇀ 𝑢

𝑝
, weakly in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑢
𝑛

𝑝
⇀ V

𝑝
, weakly in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑢
𝑝

𝑝
⇀ 𝑢

𝑝
, weakly in 𝐿

∞
(0, 𝑇;𝑊

1,𝑝
(Ω)) ,

𝜕V𝑛
𝑝

𝜕𝑡

⇀

𝜕V
𝑝

𝜕𝑡

, weakly in 𝐿
2
(𝑄

𝑇
) ,

𝐵𝑢
𝑛

𝑝
⇀ 𝑍, weak in 𝐿

∞
(0, 𝑇; 𝐿

𝑞
(Ω))

𝑁

, for 𝑞 =

𝑝

𝑝 − 1

,

(66)

for some 𝑢
𝑝
, V

𝑝
, and 𝑍.

Next, we show that V
𝑝
= 𝑢

𝑝
. Observe from (44)-(45) that

V𝑛
𝑝
− 𝑢

𝑛

𝑝
=

𝑛

∑

𝑘=1

𝜒
𝑛,𝑘

(1 − 𝜆
𝑛,𝑘
) (𝑢

𝑛,𝑘−1

𝑝
− 𝑢

𝑛,𝑘

𝑝
) , (67)

which by (58) leads to






V𝑛
𝑝
− 𝑢

𝑛

𝑝







2

𝐿
2
(𝑄𝑇)

≤

𝑛

∑

𝑘=1

ℎ






𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝







2

𝐿
2
(Ω)

≤ 𝐶
1
ℎ
2
. (68)

This implies that ‖V𝑛
𝑝
− 𝑢

𝑛

𝑝
‖
2

𝐿
2
(𝑄
𝑇
)
≤ 0 as ℎ → 0. Since from

the subsequences above it can be seen that 𝑢𝑛

𝑝
converges to 𝑢

𝑝

and V𝑛
𝑝
converges to V

𝑝
, both in 𝐿

2
(𝑄

𝑇
), it follows from (68)

that V
𝑝
= 𝑢

𝑝
.

Furthermore, from (56), (60), (64), and (65) and letting
𝑛 → ∞, it can be deduced that










𝜕V
𝑝

𝜕𝑡









𝐿
2
(𝑄
𝑇
)

+






𝑢
𝑝





𝐿
∞
(0,𝑇;𝐿

2
(Ω))

+






𝑢
𝑝





𝐿
∞
(0,𝑇;𝑊

1,𝑝
(Ω))

≤ 𝐶
3
,

where 𝐶
3
= (2𝐶

1
+ 𝐶

2
) .

(69)

Thus, the above convergence results imply that, as 𝑛 → ∞

and for any 𝜙 ∈ 𝐶
∞

0
(𝑄

𝑇
), (46) yields

∫∫

𝑄
𝑇

𝜕𝑢
𝑝

𝜕𝑡

𝜙 𝑑𝑥 𝑑𝑡

+ ∫∫

𝑄
𝑇

𝑍 ⋅ ∇𝜙𝑑𝑥 𝑑𝑡 + ∫∫

𝑄
𝑇

(𝑢
𝑝
− 𝑓

𝑝
) 𝜙 𝑑𝑥 𝑑𝑡 = 0.

(70)

Now, it remains to show that 𝑍 = 𝐵𝑢
𝑝
. Here, we follow

the works in [25, 30, 31].
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Recalling that 𝜑

𝑝
(∇𝑢

𝑛,𝑘

𝑝
) := 𝐵𝑢

𝑛,𝑘

𝑝
, then for any 𝑤 ∈

𝐿
𝑝
(0, 𝑇;𝑊

1,𝑝
(Ω)) and for 𝑘 from 1 to 𝑛, by the monotonicity

condition, we obtain the inequality

∫

Ω

(𝐵𝑢
𝑛,𝑘

𝑝
− 𝐵𝑤 (𝑡)) (∇𝑢

𝑛,𝑘

𝑝
− ∇𝑤 (𝑡)) 𝑑𝑥 ≥ 0. (71)

Now, letting 𝜙 = 𝑢
𝑛,𝑘

𝑝
in (43), we obtain

1

ℎ

∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑢

𝑛,𝑘−1

𝑝
) 𝑢

𝑛,𝑘

𝑝
𝑑𝑥

+ ∫

Ω

𝐵𝑢
𝑛,𝑘

𝑝
⋅ ∇𝑢

𝑛,𝑘

𝑝
𝑑𝑥 + ∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑓

𝑝
) 𝑢

𝑛,𝑘

𝑝
𝑑𝑥 = 0.

(72)

Applying Young’s inequality on the first term of (72) together
with the inequality (71) and integrating over((𝑘−1)ℎ, 𝑘ℎ), we
obtain

1

2

∫

Ω

[






𝑢
𝑛,𝑘

𝑝







2

−






𝑢
𝑛,𝑘−1

𝑝







2

] 𝑑𝑥

+ ∫

𝑘ℎ

(𝑘−1)ℎ

∫

Ω

𝐵𝑢
𝑛,𝑘

𝑝
⋅ ∇𝑤𝑑𝑥𝑑𝑡

+ ∫

𝑘ℎ

(𝑘−1)ℎ

∫

Ω

𝐵𝑤 (∇𝑢
𝑛,𝑘

𝑝
− ∇𝑤) 𝑑𝑥 𝑑𝑡

+ ℎ∫

Ω

(𝑢
𝑛,𝑘

𝑝
− 𝑓

𝑝
) 𝑢

𝑛,𝑘

𝑝
𝑑𝑥 ≤ 0.

(73)

Summing up (73) for 𝑘 from 1 to 𝑛, we obtain

1

2

∫

Ω

[






𝑢
𝑛

𝑝
(𝑇)







2

−






𝑓
𝑝







2

] 𝑑𝑥 + ∫∫

𝑄
𝑇

𝐵𝑢
𝑛

𝑝
⋅ ∇𝑤𝑑𝑥𝑑𝑡

+ ∫∫

𝑄
𝑇

𝐵𝑤 (∇𝑢
𝑛

𝑝
− ∇𝑤) 𝑑𝑥 𝑑𝑡

+ ∫∫

𝑄
𝑇

(𝑢
𝑛

𝑝
− 𝑓

𝑝
) 𝑢

𝑛

𝑝
𝑑𝑥 𝑑𝑡 ≤ 0.

(74)

Recalling the convergence sets in (66) and letting 𝑛 → ∞,
(74) yields

1

2

∫

Ω

[






𝑢
𝑝
(𝑇)







2

−






𝑓
𝑝







2

] 𝑑𝑥 + ∫∫

𝑄
𝑇

𝑍 ⋅ ∇𝑤𝑑𝑥𝑑𝑡

+ ∫∫

𝑄
𝑇

𝐵𝑤 (∇𝑢
𝑝
− ∇𝑤) 𝑑𝑥 𝑑𝑡

+ ∫∫

𝑄
𝑇

(𝑢
𝑝
− 𝑓) 𝑢

𝑝
𝑑𝑥 𝑑𝑡 ≤ 0.

(75)

Equation (75) may be rewritten in the form

∫∫

𝑄
𝑇

𝑢
𝑝

𝜕𝑢
𝑝

𝜕𝑡

𝑑𝑥 𝑑𝑡 + ∫∫

𝑄
𝑇

𝑍 ⋅ ∇𝑤𝑑𝑥𝑑𝑡

+ ∫∫

𝑄
𝑇

𝐵𝑤 (∇𝑢
𝑝
− ∇𝑤) 𝑑𝑥 𝑑𝑡

+ ∫∫

𝑄
𝑇

(𝑢
𝑝
− 𝑓

𝑝
) 𝑢

𝑝
𝑑𝑥 𝑑𝑡 ≤ 0.

(76)

Now, setting 𝜙 = 𝑢
𝑝
in (70), we obtain

∫∫

𝑄
𝑇

𝑢
𝑝

𝜕𝑢
𝑝

𝜕𝑡

𝑑𝑥 𝑑𝑡 + ∫∫

𝑄
𝑇

𝑍 ⋅ ∇𝑢
𝑝
𝑑𝑥 𝑑𝑡

+ ∫∫

𝑄
𝑇

(𝑢
𝑝
− 𝑓

𝑝
) 𝑢

𝑝
𝑑𝑥 𝑑𝑡 = 0.

(77)

Then, substituting equation (77) into (76) leads to

∫∫

𝑄
𝑇

(𝑍 − 𝐵𝑤) (∇𝑢
𝑝
− ∇𝑤) 𝑑𝑥 𝑑𝑡 ≥ 0. (78)

Since 𝑤 is arbitrary, we may set 𝑤 = 𝑢
𝑝
− 𝜅𝑠 where 𝜅 > 0 and

∇𝑠 ∈ 𝐿
∞
(0, 𝑇;𝑊

1,𝑝
(Ω)). We then have

∫∫

𝑄
𝑇

(𝑍 − 𝐵 (𝑢
𝑝
− 𝜅𝑠)) ∇𝑠 𝑑𝑥 𝑑𝑡 ≥ 0. (79)

Sending𝜅 → 0, we obtain

∫∫

𝑄
𝑇

(𝑍 − 𝐵𝑢
𝑝
) ∇𝑠 𝑑𝑥 𝑑𝑡 ≥ 0, ∀𝑠 ∈ 𝐿

∞
(0, 𝑇;𝑊

1,𝑝
(Ω)) .

(80)

Observe that, in fact, equality holds if we set 𝑠 = −𝑠 in the
inequality above. We thus deduce that 𝐵𝑢

𝑝
= 𝑍. Hence,

𝜑


𝑝
(∇𝑢

𝑝
) = 𝐵(𝑢

𝑝
) = 𝑍 a.e. in 𝑄

𝑇
. Therefore, (70) together

with (80) leads to the identity (37).Thus, 𝑢
𝑝
is a weak solution

to (32)–(34), taken together with (35) and (36).
To prove the secondpart, that is, the relation (38), we let in

(70) 𝜙 = 𝑢
𝑝
(𝑥, 𝑡) and then 𝜙 = 𝑢

𝑝
(𝑥, 𝑡

1
), for 0 ≥ 𝑡

1
≥ 𝑡

2
≥ 𝑇.

Consider

∫

Ω

(𝑢
2

𝑝
(𝑥, 𝑡

2
) − 𝑢

2

𝑝
(𝑥, 𝑡

1
)) 𝑑𝑥

= −2∫

𝑡
2

𝑡
1

∫

Ω

𝜑


𝑝
(∇𝑢

𝑝
(𝑥, 𝑡)) ∇𝑢

𝑝
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

− 2∫

𝑡
2

𝑡
1

∫

Ω

(𝑢
𝑝
(𝑥, 𝑡) − 𝑓

𝑝
) 𝑢

𝑝
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡,

∫

Ω

(𝑢
𝑝
(𝑥, 𝑡

1
) 𝑢

𝑝
(𝑥, 𝑡

2
) − 𝑢

2

𝑝
(𝑥, 𝑡

1
)) 𝑑𝑥

= −∫

𝑡
2

𝑡
1

∫

Ω

𝜑


𝑝
(∇𝑢

𝑝
(𝑥, 𝑡)) ∇𝑢

𝑝
(𝑥, 𝑡

1
) 𝑑𝑥 𝑑𝑡

− ∫

𝑡
2

𝑡
1

∫

Ω

(𝑢
𝑝
(𝑥, 𝑡) − 𝑓

𝑝
) 𝑢

𝑝
(𝑥, 𝑡

1
) 𝑑𝑥 𝑑𝑡.

(81)

Observe that from the above equation we have

∫

Ω






𝑢
𝑝
(𝑥, 𝑡

2
) − 𝑢

𝑝
(𝑥, 𝑡

1
)







2

𝑑𝑥

= ∫

Ω

(𝑢
2

𝑝
(𝑥, 𝑡

2
) − 𝑢

2

𝑝
(𝑥, 𝑡

1
)) 𝑑𝑥

+ 2∫

Ω

(𝑢
2

𝑝
(𝑥, 𝑡

1
) − 𝑢

𝑝
(𝑥, 𝑡

1
) 𝑢

𝑝
(𝑥, 𝑡

2
)) 𝑑𝑥
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= −2∫

𝑡
2

𝑡
1

∫

Ω

𝜑


𝑝
(∇𝑢

𝑝
(𝑥, 𝑡)) ∇𝑢

𝑝
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

− 2∫

𝑡
2

𝑡
1

∫

Ω

(𝑢
𝑝
(𝑥, 𝑡) − 𝑓

𝑝
) 𝑢

𝑝
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ 2∫

𝑡
2

𝑡
1

∫

Ω

𝜑


𝑝
(∇𝑢

𝑝
(𝑥, 𝑡)) ∇𝑢

𝑝
(𝑥, 𝑡

1
) 𝑑𝑥 𝑑𝑡

+ 2∫

𝑡
2

𝑡
1

∫

Ω

(𝑢
𝑝
(𝑥, 𝑡) − 𝑓

𝑝
) 𝑢

𝑝
(𝑥, 𝑡

1
) 𝑑𝑥 𝑑𝑡.

(82)

We deduce from the above equation that

lim
𝑡→0
+






𝑢
𝑝
(𝑥, 𝑡) − 𝑓

𝑝





𝐿
2
(Ω)

= 0, since 𝑢
𝑝
(𝑥, 0) = 𝑓

𝑝
. (83)

4.2. Existence and Uniqueness of the Solution to the Evolution
Problem (27)–(29)

Theorem 8. Let 𝑓 ∈ BV(Ω) ∩ 𝐿
2
(Ω). Then, there exists a

unique weak solution 𝑢 ∈ 𝐿
∞
(0, 𝑇;BV(Ω) ∩ 𝐿

2
(Ω)), 𝜕𝑢/𝜕𝑡 ∈

𝐿
2
(𝑄

𝑇
), and 𝑢(𝑥, 0) = 𝑓 in the trace sense.

Proof. ByTheorem 7, there exists 𝑢
𝑝
, which is a weak solution

to the approximate problem (32)–(34) and a constant 𝐶 such
that






𝑢
𝑝





𝐿
∞
(0,𝑇;𝑊

1,𝑝
(Ω))

+






𝑢
𝑝





𝐿
∞
(0,𝑇;𝐿

2
(Ω))

+











𝜕𝑢
𝑝

𝜕𝑡









𝐿
2
(𝑄
𝑇
)

≤ 𝐶.

(84)

From (84), we deduce that there exists a subsequence of {𝑢
𝑝
}

denoted by {𝑢
𝑝
} itself and a function 𝑢 ∈ 𝐿

∞
(0, 𝑇;BV(Ω) ∩

𝐿
2
(Ω) with 𝜕𝑢/𝜕𝑡 ∈ 𝐿

2
(𝑄

𝑇
) such that, as 𝑝 → 1

+,

𝑢
𝑝
→ 𝑢 in 𝐿

1
(Ω) , given ‖𝐷𝑢‖ ≤ lim inf

𝑝→1
+






𝐷𝑢

𝑝





𝐿
𝑝
(Ω)

,

a.e. ∈ (0.𝑇) .

(85)

From (84), we may also deduce that

𝜕𝑢
𝑝

𝜕𝑡

⇀

𝜕𝑢

𝜕𝑡

weakly in 𝐿
2
(𝑄

𝑇
) . (86)

Since BV(Ω) → 𝐿
𝑝
(Ω), (1 ≤ 𝑝 ≤ 𝑁/(𝑁 − 1)) continuously

[7, 27, 31, 32] and also considering (84), we deduce that

𝑢
𝑝
→ 𝑢, strongly in 𝐿

2
(𝑄

𝑇
) . (87)

Applying the method in [25], we next show that 𝜑

𝑝
(∇𝑢

𝑝
) is

weakly compact in 𝐿
1
(𝑄

𝑇
;R𝑁

). Using Jensen’s inequality and
Hölder’s inequality, we may have that










∫∫

𝑄
𝑇

𝜑


𝑝
(∇𝑢

𝑝
) 𝑑𝑥 𝑑𝑡











≤ ∫∫

𝑄
𝑇






𝜑


𝑝
(∇𝑢

𝑝
)






𝑑𝑥 𝑑𝑡

≤ 𝑝∫∫

𝑄
𝑇






∇𝑢

𝑝







𝑝−1

𝑑𝑥 𝑑𝑡

≤ 𝑝(∫∫

𝑄
𝑇






∇𝑢

𝑝







𝑝

𝑑𝑥 𝑑𝑡)

(𝑝−1)/𝑝

(1)
1/𝑝

≤ 𝑝(𝐶)
(𝑝−1)/𝑝

L
𝑁
(𝑄

𝑇
)
1/𝑝

.

(88)

Hence, 𝜑


𝑝
(∇𝑢

𝑝
) is bounded and equi-integrable in

𝐿
1
(𝑄

𝑇
;R𝑁

) and is therefore weakly compact in 𝐿
1
(𝑄

𝑇
;R𝑁

).
Thus, we may deduce that

𝜑


𝑝
(∇𝑢

𝑝
) ⇀ 𝑧 weakly in 𝐿

1
(𝑄

𝑇
;R

𝑁
) . (89)

Hence, we obtain

∫∫

𝑄
𝑇

𝜕𝑢

𝜕𝑡

𝜙 𝑑𝑥 𝑑𝑡

+ ∫∫

𝑄
𝑇

𝑧 ⋅ ∇𝜙 𝑑𝑥 𝑑𝑡 + ∫∫

𝑄
𝑇

(𝑢 − 𝑓) 𝜙 𝑑𝑥 𝑑𝑡 = 0

(90)

for every 𝜙 ∈ 𝐶
∞

0
(𝑄

𝑇
) and 𝜕𝑢/𝜕𝑡 = div(𝑧) − 𝜆(𝑢 − 𝑓) in

D
(𝑄

𝑇
).

Now, it remains to show that ‖𝑧‖
𝐿
∞
(𝑄
𝑇
;R𝑁) ≤ 1.

For any 𝑟 > 0 and setting 𝐵
𝑝,𝑟

= {(𝑥, 𝑡) ∈ 𝑄
𝑇
: |∇𝑢

𝑝
| > 𝑟},

we have






𝐵
𝑝,𝑟






≤

𝐶

𝑟
𝑝
, for any 𝑝 > 1, 𝑟 > 0. (91)

Then, as above, there exist a function 𝑔
𝑟
∈ 𝐿

1
(𝑄

𝑇
: R𝑁

) and
the indicator function 𝜒

𝐵
𝑝,𝑟

of 𝐵
𝑝,𝑟

such that

𝜑


𝑝
(∇𝑢

𝑝
) 𝜒

𝐵
𝑝,𝑟

→ 𝑔
𝑟

weakly in 𝐿
1
(𝑄

𝑇
;R

𝑁
) as 𝑝 → 1

+
.

(92)

And, for any 𝜙 ∈ 𝐿
∞
(𝑄

𝑇
;R𝑁

), it can be shown that











∫∫

𝑄
𝑇

𝜑


𝑝
(∇𝑢

𝑝
) ⋅ 𝜙𝜒

𝐵
𝑝,𝑟

𝑑𝑥 𝑑𝑡











≤

𝐶

𝑟

. (93)

Letting 𝑝 → 1
+, we obtain

∫∫

𝑄
𝑇





𝑔
𝑟





𝑑𝑥 𝑑𝑡 ≤

𝐶

𝑟

, for any 𝑟 > 0. (94)

Now, taking into consideration equations (91), (93) and (94),
we deduce that











∫∫

𝑄
𝑇

𝜑


𝑝
(∇𝑢

𝑝
) ⋅ 𝜙𝜒

𝑄
𝑇
/𝐵
𝑝,𝑟











≤ 𝑟
𝑝−1

, for any 𝑝 > 1, (95)

letting 𝑝 → 1
+, we get that 𝜑



𝑝
(∇𝑢

𝑝
) ⋅ 𝜙𝜒

𝑄
𝑇
/𝐵
𝑝,𝑟

con-
verges weakly to some function 𝑓

𝑟
∈ 𝐿

1
(𝑄

𝑇
;R𝑁

) with
‖𝑓

𝑟
‖
𝐿
∞
(𝑄
𝑇
;R𝑁) ≤ 1. And since for any 𝑟 > 0 we may write

𝑧 = 𝑓
𝑟
+ 𝑔

𝑟
, with 𝑔

𝑟
satisfying condition (94), it follows that

‖𝑧‖
𝐿
∞
(𝑄
𝑇
;R𝑁) ≤ 1.
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Next, we verify the solution definition inequality (31). By
setting 𝜙 = (𝑢

𝑝
− 𝜐

𝑛
)𝜂(𝑡), (37) leads to

∫∫

𝑄
𝑇

(𝑢
𝑝
− 𝜐

𝑛
) 𝜂 (𝑡)

𝜕𝑢
𝑝

𝜕𝑡

𝑑𝑥 𝑑𝑡

= −∫∫

𝑄
𝑇

𝜑


𝑝
(∇𝑢

𝑝
) ⋅ ∇ ((𝑢

𝑝
− 𝜐

𝑛
) 𝜂 (𝑡)) 𝑑𝑥 𝑑𝑡

− 𝜆∫∫

𝑄
𝑇

(𝑢
𝑝
− 𝑓

𝑝
) (𝑢

𝑝
− 𝜐

𝑛
) 𝜂 (𝑡) 𝑑𝑥 𝑑𝑡.

(96)

Taking the limit as 𝑝 → 1
+ gives the inequality

∫∫

𝑄
𝑇

(𝑢 (𝑡) − 𝜐
𝑛
(𝑡)) 𝜂 (𝑡)

𝜕𝑢

𝜕𝑡

𝑑𝑥 𝑑𝑡

≤ ∫∫

𝑄
𝑇

𝑧 (𝑡) ⋅ ∇𝜐
𝑛
𝜂 (𝑡) 𝑑𝑥 𝑑𝑡 − ∫

𝑇

0

‖∇𝑢‖ 𝜂 (𝑡) 𝑑𝑡

− 𝜆∫∫

𝑄
𝑇

(𝑢 − 𝑓) (𝑢 − 𝜐
𝑛
) 𝜂 (𝑡) 𝑑𝑥 𝑑𝑡.

(97)

Taking the limit as 𝑛 → ∞ for every 𝜐 ∈ 𝐿
∞
(0, 𝑇;𝑊

1,1
(Ω))

and recognizing the arbitrary nature of 𝜂(𝑡), we obtain

∫

Ω

(𝑢 (𝑡) − 𝜐 (𝑡))

𝜕𝑢

𝜕𝑡

𝑑𝑥

≤ ∫

Ω

𝑧 (𝑡) ⋅ ∇𝜐 𝑑𝑥 − ‖𝐷𝑢‖ − 𝜆∫

Ω

(𝑢 − 𝑓) (𝑢 − 𝜐) 𝑑𝑥,

(98)

for every 𝜐 ∈ 𝐿
∞
(0, 𝑇;𝑊

1,1
(Ω)), a.e. in [0, 𝑇]. That concludes

the proof of the existence of the entropy solution of problem
(27)–(29).

Uniqueness of Weak Solution. Let 𝑢
1
and 𝑢

2
be two entropy

solutions of the problem (27)–(29), such that, respectively,
their initial data are 𝑢

1
(𝑥, 0) = 𝑓

10
and 𝑢

2
(𝑥, 0) = 𝑓

20
. Then,

for every 𝜐 ∈ 𝐿
∞
(0, 𝑇;𝑊

1,1
(Ω)), a.e. on [0, 𝑇], there exists

𝑧
1
, 𝑧

2
∈ 𝐿

∞
(𝑄

𝑇
;R𝑁

) such that

∫

Ω

(𝑢
1
− 𝜐)

𝜕𝑢
1

𝜕𝑡

𝑑𝑥

≤ ∫

Ω

𝑧
1
⋅ ∇𝜐 𝑑𝑥 −





∇𝑢

1





− 𝜆∫

Ω

(𝑢
1
− 𝑓) (𝑢

1
− 𝜐) 𝑑𝑥,

(99)

∫

Ω

(𝑢
2
− 𝜐)

𝜕𝑢
2

𝜕𝑡

𝑑𝑥

≤ ∫

Ω

𝑧
2
⋅ ∇𝜐 𝑑𝑥 −





∇𝑢

2





− 𝜆∫

Ω

(𝑢
2
− 𝑓) (𝑢

2
− 𝜐) 𝑑𝑥.

(100)

In addition, let 𝑢
1𝑛

and 𝑢
2𝑛

be approximations, respectively,
for 𝑢

1
and 𝑢

2
, such that

lim
𝑛→∞

(




∇𝑢

1𝑛




𝐿
1
(Ω)

−




𝐷𝑢

1





) = 0,

lim
𝑛→∞

(




∇𝑢

2𝑛




𝐿
1
(Ω)

−




𝐷𝑢

2





) = 0,

lim
𝑛→∞





𝑢
1𝑛
− 𝑢

1





= 0,

lim
𝑛→∞





𝑢
2𝑛
− 𝑢

2





= 0,

(101)

a.e. on [0, 𝑇]. By setting 𝜐 = 𝑢
2𝑛

in (99) and 𝜐 = 𝑢
1𝑛

in (100), adding the two equations, applying Lemma 3, and
rearranging the result, we obtain

∫

Ω

(𝑢
1
− 𝑢

2
) (

𝜕𝑢
1

𝜕𝑡

−

𝜕𝑢
2

𝜕𝑡

) 𝑑𝑥

+ ∫

Ω

(𝑢
1
− 𝑢

1𝑛
)

𝜕𝑢
2

𝜕𝑡

𝑑𝑥 + ∫

Ω

(𝑢
2
− 𝑢

2𝑛
)

𝜕𝑢
1

𝜕𝑡

𝑑𝑥

≤ ∫

Ω

𝑧
1
⋅ ∇𝑢

2𝑛
𝑑𝑥 −





∇𝑢

2





+ ∫

Ω

𝑧
2
⋅ ∇𝑢

1𝑛
𝑑𝑥 −





∇𝑢

1






−

𝜆

2

∫

Ω

((𝑢
1𝑛
− 𝑓)

2

− (𝑢
1
− 𝑓)

2

) 𝑑𝑥

−

𝜆

2

∫

Ω

((𝑢
2𝑛
− 𝑓)

2

− (𝑢
2
− 𝑓)

2

) 𝑑𝑥.

(102)

Then, integrating the inequality above from 0 to 𝑡 and taking
the limit as 𝑛 → ∞, yield

∫

Ω

(𝑢
1
− 𝑢

2
)
2

𝑑𝑥 ≤ (𝑓
10
− 𝑓

20
)
2

. (103)

This establishes the uniqueness of the entropy solution.

5. Numerical Experiments

In this section, we show the performance of the proposed
formulation in denoising images involving a Gaussian white
noise. The results are then compared with those obtained by
the classical methods of Perona andMalik (PM) [1], Rudin et
al. (TV) [8], and Guo et al. [5].

The following numerical scheme has been proposed for
the implementation of the model.

5.1. Additive Operator Splitting (AOS) Scheme. Here, we
have implemented the evolution problem (27)–(29) using
AOS scheme proposed by Weickert et al. in [33]. Thus, the
equations are discretized as follows:

𝜆
0
= 0,

𝑢
𝑛+1

=

1

𝑚

𝑚

∑

𝑙=1

[𝐼 − 𝑚𝜏𝐴
𝑙
(𝑢

𝑘
)]

−1

[𝑢
𝑛
+ 𝜆𝜏 (𝑓 − 𝑢

𝑛
)] ,

div𝑛 =
(𝑢

𝑛+1
− 𝑢

𝑛
)

𝜏

,

𝜆
𝑛
=

1

𝜎
2
𝑀𝑁

(𝑢 − 𝑓) div𝑛,

𝑢
0

𝑖,𝑗
= 𝑓

𝑖,𝑗
= 𝑓 (𝑖ℎ, 𝑗ℎ) ,

𝑢
𝑛

𝑖,0
= 𝑢

𝑛

𝑖,1
, 𝑢

𝑛

0,𝑗
= 𝑢

𝑛

1,𝑗
,

𝑢
𝑛

𝐼,𝑖
= 𝑢

𝑛

𝐼−1,𝑖
, 𝑢

𝑛

𝑖,𝐽
= 𝑢

𝑛

𝑖,𝐽−1
,

(104)
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where 𝐴
𝑙
(𝑢

𝑛
) = [𝑎

𝑖,𝑗
(𝑢

𝑛
)],

𝑎
𝑖,𝑗
(𝑢

𝑛
) :=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝐶
𝑛

𝑖
+ 𝐶

𝑛

𝑗

2ℎ
2

, [𝑗 ∈ N (𝑖)] ,

− ∑

𝑁∈N(𝑖)

𝐶
𝑛

𝑖
+ 𝐶

𝑛

𝑁

2ℎ
2

, (𝑗 = 𝑖) ,

0, else,

𝐶
𝑛

𝑖
:=

2 + 𝐾






∇𝑢

𝑛

𝑖,𝑗







(1 +






∇𝑢

𝑛

𝑖,𝑗






)

2
,

(105)

where






∇𝑢

𝑛

𝑖,𝑗






=

1

2

∑

𝑝,𝑞∈N(𝑖)






𝑢
𝑛

𝑝
− 𝑢

𝑛

𝑞







2ℎ

, (106)

whereN(𝑖) is the set of the two neighbors of pixel 𝑖 (boundary
pixels have only one neighbor) and 𝐾 is introduced, for
convenience, as a tuning parameter in the implementation of
the proposed formulation.

5.2. Discussion of the Results. The experiments in this work
have been performed on a Compaq610 computer, having
Intel(R) Core (TM)2 Duo CPU T5870 each 2.00GHz, phys-
ical RAM of 4.00GB, and Professional Windows 8 64-bit
Operating System, on MATLAB R2013b. The image restora-
tion performance has been measured in terms of the peak
signal-to-noise ratio (PSNR), mean absolute deviation/error
(MAE), structural similarity index measure (SSIM), the
measure of similarity of edges (PSNRE), and visual effects.
The iteration stopping mechanism is based on the maximal
PSNR.

At the end of iteration process, the PSNR, MAE, SSIM,
and PSNRE values are recorded. PSNR and MAE values as
discussed in [34] are, respectively, given by the following
formulas:

PSNR (𝑢, 𝑢
0
) = 10log

10

𝑀𝑁




max 𝑢

0
−min 𝑢

0






2





𝑢 − 𝑢

0






2

𝐿
2

dB,

MAE (𝑢, 𝑢
0
) =





𝑢 − 𝑢

0




𝐿
1

𝑀𝑁

,

(107)

where 𝑢
0
denotes the noise-free image, 𝑢 is the denoised

image, 𝑀 × 𝑁 is the dimension of image, and |max 𝑢
0
−

min 𝑢
0
| yields the gray scale range of the original image.

SSIM, designed by Wang et al. [35], is a quality metric
used to measure the similarity between any two images. It
is widely considered to work in a manner analogous to the
human visual system. As opposed to the PSNR, SNR, MAE,
and MSE, which are error based measures, SSIM models
image distortion as a combination of loss of correlation,
luminance degradation, and contrast distortion. Given any
two images 𝑢 and 𝑢

0
, SSIM measure is given by the formula

SSIM (𝑢, 𝑢
0
) = 𝐿 (𝑢, 𝑢

0
) ⋅ 𝐶 (𝑢, 𝑢

0
) ⋅ 𝑅 (𝑢, 𝑢

0
) . (108)

𝐿(𝑢, 𝑢
0
) = (2𝜇

𝑢
𝜇
𝑢
0

+ 𝑘
1
)/(𝜇

2

𝑢
+ 𝜇

2

𝑢
0

+ 𝑘
1
) compares the two

images’ mean luminance 𝜇
𝑢
and 𝜇

𝑢
0

. The maximal value of

𝐿(𝑢, 𝑢
0
) = 1, if 𝜇

𝑢
= 𝜇

𝑢
0

, 𝐶(𝑢, 𝑢
0
) = (2𝜎

𝑢
𝜎
𝑢
0

+ 𝑘
2
)/(𝜎

2

𝑢
+

𝜎
2

𝑢
0

+ 𝑘
2
), measures the closeness of contrast of the two

images 𝑢 and 𝑢
0
. Contrast is determined in terms of standard

deviation, 𝜎. Contrast comparison measure 𝐶(𝑢, 𝑢
0
) = 1

maximally if and only if 𝜎
𝑢
= 𝜎

𝑢
0

, that is, when the images
have equal contrast.

𝑅(𝑢, 𝑢
0
) = (𝜎

𝑢𝑢
0

+ 𝑘
3
)/(𝜎

𝑢
𝜎
𝑢
0

+ 𝑘
3
), where 𝜎

𝑢𝑢
0

is covari-
ance between 𝑢 and 𝑢

0
, is a structure comparison measure

which determines the correlation between the images 𝑢 and
𝑢
0
. It attains maximal value of 1 if structurally the two images

coincide, but its value is equal to zero when there is absolutely
no structural coincidence. The quantities 𝑘

1
, 𝑘

2
, and 𝑘

3
are

small positive constants that avert the possibility of having
zero denominators.

Taking the edge map EM(𝑢) from (27) with𝐾 the tuning
parameter, we have

EM (𝑢) =

2 + 𝐾 |∇𝑢|

(1 + |∇𝑢|)
2
. (109)

Hence, the corresponding edge similarity measure is given by

PSNRE = PSNR (EM (𝑢) ,EM (𝑢
0
)) dB [5] . (110)

All these measures have been deployed not only to judge
the extent of signal recovery, but also to see the extent of
structural coincidence between the original image and the
reconstruction image. It should be noted, however, that there
is no hard and fast rule for selecting between the error based
measures and the structural similarity index measure [36].
Therefore, any or both can be used at the same time to
measure the quality of image recovery.

We have compared results of the construction by our
method to those of Perona-Malik method [1], total variation
method of Rudin et al. [8], and the D-𝛼-PM algorithm
proposed by [5]. Adjustable parameters in the experiments
were time step 𝜏, thresholding\tuning parameter 𝐾, and
others depending on the respective model. However, fidelity
parameter 𝜆 was dynamically obtained in the course and
process of iteration.

In Tables 1 and 2, we have, respectively, presented the
results of the reconstruction for the synthetic image, Figure 1,
and those of the textured image, Lena, Figure 2.The compar-
isons are based upon PSNR, MAE, SSIM, and PSNRE values
and visual effects.

For the nontextured synthetic image, Figure 1, it is
observed that, in spite of higherCPU time, ourmethod enjoys
superior signal and structural recovery, at PSNR = 38.52,
MAE = 3.16, and SSIM = 0.9905 (see Table 1). In addition, as
evidenced by Figure 1(e), reconstructions due the proposed
model do not show the relative blurriness speckles evident in
Figure 1(c) (by PMmethod); it does not manifest the relative
blockiness visible on Figure 1(d) (by TV method) neither
does it show heavily jagged edges apparent in Figure 1(f) due
to the D-𝛼-PM algorithm. Comparing Figure 1(e) produced
by our method and Figure 1(a) of the original image, it can
be observed that the differences are extremely marginal. The
edges also seem better preserved and sharper.

Furthermore, although in terms of numerical metrics
our method compares fairly well with those obtained by the
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Table 1: Numerical results for synthetic image (300 × 300) experiments.

Algorithm Parameters Number of steps CPU time (sec) PSNR MAE SSIM PSNRE
𝜎 𝐾 𝜏

PM 30 4 0.25 356 1.56 36.57 3.78 0.9817 25.06
TV 30 0.25 205 1.66 34.56 4.73 0.9725 14.75
D-𝛼-PM 30 1 0.25 40 2.33 37.2 3.18 0.9825 24.7
Our method 30 0.01 5 65 3.98 38.52 3.16 0.9905 24.90

Table 2: Numerical results for Lena image (300 × 300) experiments.

Algorithm Parameters Number of steps CPU time (sec) PSNR MAE SSIM PSNRE
𝜎 𝐾 𝜏

PM 30 5 0.25 113 0.45 25.94 12.88 0.6939 20.69
TV 30 0.25 129 1.15 27.75 10.45 0.7698 20.70
D-𝛼-PM 30 4 2 10 0.50 28.15 7.21 0.7780 24.57
Our method 30 0.1 5 15 1.07 27.84 10.20 0.7805 26.34

D-𝛼-PM, it should be noted that the increased number of
parameters in the D-𝛼 that have to be manually tweaked or
manipulated to obtain optimal results aggregately hinders the
effectiveness of the method.

For the textured image of Lena in Figure 2, the metrics
evidence that our method still gives better signal recovery
and structural coincidence compared to its comparisons (see
Table 2). By visual observation, Figure 2(c) produced by PM
method shows speckles and blur, while Figure 2(d) shows
heavy presence of staircase effect, and Figure 2(f) shows
heavier ramp-like features. However, Figure 2(e) produced by
our method not only shows no speckles and blur but also
manifests significant reduction of staircase effect.

In respect of the edge similarity measure PSNRE, for the
nontexture image (see Figure 1), we observe a phenomenon
where the PM method only marginally beats the proposed
method. However, the method far outperforms the TV
method. For the texture image (see Figure 2), experiments
show that the proposed method generally outperforms the
PM, TV, and D-𝛼-PM methods in reconstruction of image
from noise (see Tables 1 and 2).

In addition, experiments demonstrate that the tuning
parameter 𝐾 introduced in the implementation of the pro-
posed model is texture sensitive. In the nontextured images,
𝐾 tends to be very small, while as texture increases the value
of 𝐾 also tends to increase. Generally observed is that the
AOS implementation algorithm shows gray value invariance,
stability based on extremumprinciple, Lyapunov functionals,
and convergence even for larger values of the scale parameter
𝜏 [33]. This does not apply in the case of TV and PM, since
they become unstable for 𝜏 > 0.25.TheD-𝛼-PM survives this
eventuality only when implemented by the AOS algorithm.

Generally, therefore, the proposed formulation performs
better than TV method and PM method and indeed fairly
better than the D-𝛼-PM algorithm not only in the quan-
titative metric measures but also in terms of visual effect.
The D-𝛼-PMmethod competes fairly well with the proposed
method. However, the increased number of parameters in
the D-𝛼-PMmay disadvantage its practical ability to produce
optimal results. Moreover, our formulation seems to handle

texture images better than its comparison. Finally, given the
nonmonotone nature of the flux function of the D-𝛼-PM
model proposed by Guo et al. [5], it is an extremely ill-posed
problem, generating both backward and forward diffusion at
various times in the evolution process.Therefore, analytically
speaking, its ability to arrive at steady state and produce
data with minimum energy is highly in mathematical doubt.
Notwithstanding the foregoing, the discrete or numerical
implementation of the D-𝛼-PM method still does give an
approximated solution.

6. Conclusion

In this paper, we have proposed an alternative framework for
total variation based image denoising models. The model is
based on minimization of total variation with a functional
coefficient. We set out to determine factors to consider when
choosing the functional coefficient for the minimization
potential, and we have established that, for a well-behaved
minimization functional, it is desirable that the functional
coefficient be of sublinear growth at infinity. The chosen
functional coefficient, apart from its sublinear growth at
infinity, must be one that results in a potential which is
nondecreasing, of linear growth at infinity, and convex.
Convexity can then be used to obtain lower semicontinuity,
as it is also instrumental in determination of existence of a
minimizer to the functional.

We picked on an example to illustrate the effectiveness
of the consideration. We have shown for the example that
existence anduniqueness ofminimizer can be established and
that the evolution equation has a unique entropy solution.
In addition, numerical implementation of the evolution
equation on images demonstrates better denoising results
than those offered by traditional competition due to PM
method, TV method, and even the D-𝛼-PM in [5].

The successful application or otherwise of any regulariza-
tion formulation in practical denoising always depends on the
type of image under consideration, the type of noise involved,
the application intended for the restored image, and indeed
the platform upon which the formulation is implemented.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Synthetic image (300 × 300). (a) Original image. (b) Noisy image corrupted by Gaussian noise for 𝜎 = 30. (c) PM algorithm,
𝐾 = 4, 𝜏 = 0.25 (356 steps). (d) TV algorithm, 𝜏 = 0.25 (205 steps). (e) Our method, 𝐾 = 0.01, 𝜏 = 5 (65 steps). (f) D-𝛼-PM algorithm,
𝑘 = 1, 𝜏 = 0.25, (40 steps).
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Lena image (300 × 300). (a) Original image. (b) Noisy image corrupted by Gaussian noise for 𝜎 = 30. (c) PM algorithm, 𝐾 = 5,
𝜏 = 0.25 (113 steps). (d) TV method, 𝜏 = 0.25 (129 steps). (e) Our method, 𝐾 = 0.1, 𝜏 = 5 (15 steps). (f) D-𝛼-PM algorithm, 𝐾 = 4, 𝜏 = 2 (10
steps).
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Consequently, some of the constraints that might affect
the practical performance of a regularization formulation
modeled along the lines proposed here, including the sample
formulation used, include the nature of the noise and even
the hardware in which the implementation has been carried
out. Formore efficient performance, we suggest that platform
with higher processing capabilities be deployed. The extent
of degradation and the level of preservation required are
also other factors that determine the performance of the
formulation. For instance, in case of heavy degradation, it
is widely recommended that a preconvolution of the noise
image with Gaussian be done before the implementation
of the suggested formulation to recover edges and other
semantically important features. In addition, there may also
be cases where noise removalmay be counterproductive.This
may occur when the oscillation due to noise is of the same
scale as that of the features or patterns for which preservation
is intended [37]. To surmount such a challenge, one may
require a combination of formulations.

However, generally, we have observed that models
derived along the lines of the approach proposed here give
formulations which not only generate better results but also
submit rather progressively to mathematical analysis.

Conflict of Interests

The authors declare that there is no conflict of interests re-
garding the publication of this paper.

Acknowledgments

This work is partially supported by the National Science Fou-
ndation of China (11271100 and 11301113), the Ph.D. Progr-
ams Foundation of Ministry of Education of China (no.
20132302120057), the class General Financial Grant from the
China Postdoctoral Science Foundation (Grant no.
2012M510933), the Fundamental Research Funds for the
Central Universities (Grant no. HIT. NSRIF. 2011003), the
Program for Innovation Research of Science in Harbin
Institute of Technology (Grant no. PIRS OF HIT A201403),
and also the 985 Project of Harbin Institute of Technology.

References

[1] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[2] J. J. Koenderink, “The structure of images,” Biological Cybernet-
ics, vol. 50, no. 5, pp. 363–370, 1984.

[3] A. Witkin, Scale-Space Filtering. Readings in Computer Vision:
Issues, Problems, Principles, and Paradigms, 1987.

[4] J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1 of
European Consortium for Mathematics in Industry, Teubner,
Stuttgart, Germany, 1998.

[5] Z. Guo, J. Sun, D. Zhang, and B. Wu, “Adaptive Perona-Malik
model based on the variable exponent for image denoising,”
IEEE Transactions on Image Processing, vol. 21, no. 3, pp. 958–
967, 2012.

[6] Y.Chen andT.Wunderli, “Adaptive total variation for image res-
toration in BV space,” Journal of Mathematical Analysis and
Applications, vol. 272, no. 1, pp. 117–137, 2002.

[7] L. Vese, “A study in the BV space of a denoising-deblurring vari-
ational problem,” Applied Mathematics and Optimization, vol.
44, no. 2, pp. 131–161, 2001.

[8] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear Phenom-
ena, vol. 60, no. 1–4, pp. 259–268, 1992.

[9] S. Osher and L. I. Rudin, “Feature-oriented image enhancement
using shock filters,” SIAM Journal onNumerical Analysis, vol. 27,
no. 4, pp. 919–940, 1990.

[10] G. Aubert and P. Kornprobst, Mathematical Problems in Image
Processing: Partial Differential Equations and the Calculus of
Variations, vol. 147 of Applied Mathematical Sciences, Springer,
New York, NY, USA, 2nd edition, 2006.

[11] A. Marquina and S. Osher, “Explicit algorithms for a new time
dependent model based on level set motion for nonlinear debl-
urring and noise removal,” SIAM Journal on Scientific Comput-
ing, vol. 22, no. 2, pp. 387–405, 2000.

[12] Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear gro-
wth functionals in image restoration,” SIAM Journal on Applied
Mathematics, vol. 66, no. 4, pp. 1383–1406, 2006.

[13] P. Blomgren, T. F. Chan, and P. Mulet, “Extensions to total vari-
ation denoising,” in Advanced Signal Processing: Algorithms,
Architectures and Implementations VII, Proceedings of the SPIE
3162, pp. 367–375, San Diego, Calif, USA, July 1997.

[14] T. F. Chan and S. Esedoglu, “Aspects of total variation regular-
ized 𝐿1 function approximation,” SIAM Journal on AppliedMat-
hematics, vol. 65, no. 5, pp. 1817–1837, 2005.

[15] D. M. Strong and T. F. Chan, “Spatially and scale adaptive total
variation based regularization and anisotropic diffusion in
image processing,” Diusion in Image Processing, UCLA Math
Department CAM Report Cite- seer 1996, 1996.

[16] A. Chambolle and P.-L. Lions, “Image recovery via total vari-
ation minimization and related problems,” Numerische Mathe-
matik, vol. 76, no. 2, pp. 167–188, 1997.

[17] L. Xiao, L.-L. Huang, and B. Roysam, “Image variational den-
oising using gradient fidelity on curvelet shrinkage,” Eurasip
Journal on Advances in Signal Processing, vol. 2010, Article ID
398410, 2010.

[18] T. F. Chan and J. Shen, “Mathematical models for local nontex-
ture inpaintings,” SIAM Journal onAppliedMathematics, vol. 62,
no. 3, pp. 1019–1043, 2002.

[19] L. Vese,Problemes variationnels et EDP pour l analyse d images et
l evolution de courbes [Ph.D. thesis], Universite de Nice Sophia-
Antipolis, 1996.

[20] T. Chan, A. Marquina, and P. Mulet, “High-order total vari-
ation-based image restoration,” SIAM Journal on Scientific Com-
puting, vol. 22, no. 2, pp. 503–516, 2000.

[21] M. Bildhauer andM. Fuchs, “A variational approach to the den-
oising of images based on different variants of the TV-regu-
larization,” Applied Mathematics and Optimization, vol. 66, no.
3, pp. 331–361, 2012.

[22] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iter-
ative regularizationmethod for total variation-based image res-
toration,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp.
460–489, 2005.

[23] X. Zhou, “An evolution problem for plastic antiplanar shear,”
Applied Mathematics and Optimization, vol. 25, no. 3, pp. 263–
285, 1992.



16 Abstract and Applied Analysis

[24] B. Dacorogna, Introduction to the Calculus of Variations, World
Scientific, 2004.

[25] M. Xu and S. Zhou, “Existence and uniqueness of weak solu-
tions for a generalized thin film equation,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 60, no. 4, pp. 755–774,
2005.

[26] F. Andreu, V. Caselles, J. I. Dı́az, and J. M. Mazón, “Some qual-
itative properties for the total variation flow,” Journal of Func-
tional Analysis, vol. 188, no. 2, pp. 516–547, 2002.

[27] Q. Liu, Z. Yao, and Y. Ke, “Entropy solutions for a fourth-order
nonlinear degenerate problem for noise removal,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 67, no. 6, pp.
1908–1918, 2007.

[28] Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear Diffusion Equations,
World Scientific, River Edge, NJ, USA, 2001.

[29] Z. Wu, J. Yin, and C. Wang, Elliptic & Parabolic Equations,
World Scientific, River Edge, NJ, USA, 2006.

[30] L. C. Evans and Y. Yu, “Various properties of solutions of the
infinity-Laplacian equation,” Communications in Partial Differ-
ential Equations, vol. 30, no. 7–9, pp. 1401–1428, 2005.

[31] Z. Guo, J. Yin, and Q. Liu, “On a reaction-diffusion system app-
lied to image decomposition and restoration,” Mathematical
and Computer Modelling, vol. 53, no. 5-6, pp. 1336–1350, 2011.

[32] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Prop-
erties of Functions, vol. 5 of Studies in Advanced Mathematics,
CRC Press, Boca Raton, Fla, USA, 1992.

[33] J. Weickert, B. M. Ter Haar Romeny, and M. A. Viergever, “Effi-
cient and reliable schemes for nonlinear diffusion filtering,”
IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 398–410,
1998.

[34] S. Durand, J. Fadili, andM.Nikolova, “Multiplicative noise rem-
oval using L1 fidelity on frame coefficients,” Journal of Mathe-
matical Imaging and Vision, vol. 36, no. 3, pp. 201–226, 2010.

[35] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–
612, 2004.
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