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Considering the larger vibration amplitude and several viscoelastic material layers, a fractional-derivativeMaxwell Kelvin (FDMK)
viscoelastic mechanical model is proposed for “5+4” viscoelastic damping wall, which is used for vibration control of building
structures. The development of the model is based on in-parallel combination of fractional Maxwell model and fractional Kelvin
model. The proposed model is experimentally validated and very good agreement between predicted and experimental results was
obtained. The results confirm that the FDMK model is accurate in simulating the hysteresis properties of the “5+4” viscoelastic
damping wall under large deformation. From the areas of the experimental and theoretical hysteresis loops, under 300% strain, the
predicted result is the most accurate in prediction of the energy dissipation and the second is the prediction under 450% strain.
Moreover, from the comparisons of dynamic properties (storagemodulus, lossmodulus, etc.), the FDMKmodelworks satisfactorily.
The FDMKmodel is more sensitive in energy dissipation than in energy storage.

1. Introduction

Protection of the mechanical response of the building struc-
tures subjected to earthquake has become an increasingly
critical issue. Viscoelastic dampers have long been used
in controlling the vibration in civil engineering [1]. For
example, 260 viscoelastic dampers were installed in the
Columbia Center building in Seattle in order to decrease
wind-induced vibration. A pioneer application can be traced
back to New York in 1969 where around 10 000 viscoelastic
dampers were installed in the towers of the World Trade
Center to resist wind loads [2]. Similar implementation of
viscoelastic dampers for seismic mitigation can be also found
in [3]. However, general application of the structures with
added viscoelastic dampers cannot be significantly developed
without comprehensive understanding of the constitutive
behavior of viscoelastic dampers. Current researches on
constitutive modeling mainly focus on the classical and
fractional-derivative models which can be found in [4–11].

Classical constitutive modeling is the diverse combi-
nation of springs and dashpots [12–16], for example, the

Maxwell (M) and Kelvin (K) models, Burger model, gen-
eralized Maxwell model (GMM), and other models [17,
18]. The literature [17] studied shear-type buildings with
Maxwell model-based brace-damper systems. The general-
ized Maxwell model (GMM) was experimentally verified by
simulating the behavior of a fluid damper [18]. Although
these models are simple and can be easily applied in practical
engineering, studies [19–21] have shown that the parameters
obtained under low-frequency vibration could be inaccurate
when vibration frequency increased to a higher extent. A two-
parameter cooling law was proposed to offer a dependable
estimate of the internal temperature of fluid dampers [20].
Under this kind of situation,more complexmodel parameters
should be included or otherwise the original model would
lose its accuracy [6, 22]. However, this can make the classical
model too cumbersome for general application. To solve the
problem, fractional models, such as the fractional Kelvin
model and fractional Maxwell model, were proposed and
received increasingly considerable attention [23–25]. The
literature [23] presented an approximate analytical solution
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to calculate the force of viscous dampers subjected to low-
frequency motions. A family of parameters identification
methods were proposed for the Maxwell and Kelvin frac-
tional models [24]. The fractional-derivative models can
accurately capture the viscoelastic damping properties of the
dampers by using even fewer model parameters.

The dynamic characteristics of a viscoelastic damper
largely depend on the geometry of the device once the
material is determined [26]. The classical and fractional-
derivative models [6, 27, 28] mentioned above were mainly
verified based on the “3+2” (composed of two viscoelastic
layers bonded with three parallel steel plates) viscoelastic
dampers. The literature [6] discussed two specific examples
by constitutive modeling of viscoelastic solid damper and
viscoelastic liquids damper. Considering the larger vibration
amplitude, the literature [29] proposed a “5+4” (composed of
four viscoelastic layers bonded with five parallel steel plates)
super large viscoelastic damping wall (VDW) under large
deformation (at 225%, 300%, and 450% strain). Compared
with the traditional viscoelastic damping device, “5+4” VDW
has a substantial number of advantages. For example, “5+4”
VDW can supply large space for doors or windows in a
building. The placement of “5+4” VDW can be also equal to
the interstory displacement so as to improve the efficiency of
energy dissipation with a great deal of application potential.

However, the constitutive model of “5+4” VDW is not yet
sufficiently validated by test results. Due to the large defor-
mation and four viscoelastic material layers, highly nonlinear
viscoelastic behavior may exist in such damper.The objective
of this paper is to propose a reasonable mathematical model
for “5+4” VDW. As will be shown, the proposed model,
called FDMK, will be derived by parallel combination of the
Maxwell and Kelvin components. It will be validated by char-
acterizing various damping properties (storage modulus, loss
modulus, storage stiffness, loss stiffness, equivalent damping
coefficient, and loss factor) of the “5+4” VDW.

The paper is organized as follows. In Section 2, constitu-
tivemodel of “5+4” VDW is derived. In Section 3, parameters
of the derivedmodel are identifiedwith nonlinear least square
method by using MATLAB (version 7.0). Then, the model
behavior is investigated in the frequency domain and verified
by fitting the experimental data.

2. Dynamic Characteristics and
Modeling of (5+4) VDW

Experimental studies have demonstrated that the damping
properties of viscoelastic dampers are related not only to the
viscoelasticmaterial, but also to the damper deformation.The
structure diagram of the “5+4” VDW can be found in Fig-
ure 1(a) and the three-dimensional view of the corresponding
loading device can be found in Figure 1(b). The upper steel
plate is connected to the flange structures (green part in
Figure 1(b)).The details are shown in Figure 1(c).The bottom
steel plate is fixed at the test bed (purple part in Figure 1(b)).
The details are shown in Figure 1(d). Experimental details,
such as the test material, test setup, and test results, are
available in [29]. Figure 3 shows the force-displacement

hysteresis loops measured in a sinusoidal test by PA30-240
(Tobul Accumulator Inc., as shown in Figure 2). It is quite
evident that increasing the deformation generally results in
larger cycles, that is, higher temporal shifting between stress
and strain. It can be also observed that the force-deformation
loops exhibit high nonlinearity.

The FDMK model proposed by this paper is considered
as in-parallel combination of the fractional Maxwell model
and the fractional Kelvin model, as schematically shown in
Figure 4.

The Riemann-Liouville fractional derivative is defined as
[30]

𝐷
𝑟

[𝑓 (𝑡)] =
1

Γ (1 − 𝑟)

𝑑

𝑑𝑡
∫

𝑡

0

𝑓 (𝑡 − 𝜏)

𝜏𝑟
𝑑𝜏

=
𝑑

𝑑𝑡
∫

𝑡

0

𝐼
𝑟
(𝜏) 𝑓 (𝑡 − 𝜏) 𝑑𝜏

= 𝐼
𝑟
(𝑡) 𝑓 (0) + ∫

𝑡

0

𝐼
𝑟
(𝜏)

𝑑

𝑑𝑡
𝑓 (𝑡 − 𝜏) 𝑑𝜏,

(1)

where 𝑟 is the fractional order of derivative with respect to
time 𝑡 and 0 < 𝑟 < 1. Γ is the gamma function. And Γ(𝑧) =

∫
∞

0

𝑡
𝑧−1

𝑒
−𝑡

𝑑𝑡, 𝑧 > 0.
The constitutive equation of the Abel dashpot is defined

as

𝜎 (𝑡) = 𝜂𝐷
𝑟

[𝜀 (𝑡)] = 𝜂𝐼
𝑟
(𝑡) ∗ 𝑑𝜀 (𝑡) . (2)
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By rearranging (5), the relationship between stress and strain
can be explicitly formulated as

𝜎 (𝑡) = Θ𝜀 (𝑡) , (6a)
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Figure 1: “5+4” super large viscoelastic damping wall.
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(a) High pressure nitrogen gas bottle (b) Piston energy storage system

Figure 2: Test power source.

where

Θ =
𝐺
2
𝜂
1
𝜂
2
𝐷
𝑟

(𝐺
1
+ 𝜂
1
𝐷
𝑟

)

(𝐺
1
𝜂
2
+ 𝜂
1
𝜂
2
𝐷𝑟) (𝐺

2
𝜂
2
+ 𝜂
2

2
𝐷𝑟) + 𝐺

2
𝜂
2

2
𝐷𝑟

. (6b)

The Fourier transform of (6a) and (6b) is written as
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The symbol 𝑖 denotes the imaginary unit; 𝜔 denotes the
circular frequency, where 𝜔 = 2𝜋𝑓, and 𝑓 is the frequency.
𝜎̃(𝜔) and 𝜀̃(𝜔) are the Fourier transforms of the stress and
strain histories, respectively.

By performing inverse Fourier transform of (7), the
following relationships (𝐺󸀠, the storage modulus of FDMK
model, and 𝐺

󸀠󸀠, the loss modulus of FDMK model) can be
obtained:
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The viscoelastic damper can be characterized by the
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Figure 3: 𝐹-𝑢 hysteresis curves of VDW at different frequencies and displacement values.

where 𝐴 is the total shear area and ℎ is the thickness of the
viscoelastic damping material slab. The values of 𝐴 and ℎ

are 1000000mm2 and 10mm, respectively. The equipment
damping coefficient 𝐶

𝑑
is defined by
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3. Model Validation

In this study, the FDMKmodel characterized by (8), (9), (10),
and (11)will be employed to simulate the viscoelastic damping
behavior of “5+4” VDW under large deformation. As shown
above, there are only five characteristic parameters (𝜂

1
,𝐺
1
, 𝜂
2
,

𝐺
2
, and 𝑟) to be determined. The test results of “5+4” VDW

by Xu and Li [29] as shown in Tables 1, 2, and 3 are used to
validate the proposed model.

An important problem of the FDMK model is the iden-
tification of the model parameters from experimental data.
Pritz [4] discussed the method of parameters identification
of five-parameter fractional-derivative model, which utilized
the asymptotic properties of the storage and loss modulus
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Table 1: Properties of “5+4” viscoelastic damping wall (at 225% strain and 21.2∘C).

Frequency (Hz) 𝐺
󸀠 (MPa) 𝐺

󸀠󸀠 (MPa) 𝜂 (MPa⋅s) 𝐾
󸀠

𝑑
(kN/mm) 𝐾

󸀠󸀠

𝑑
(kN/mm) 𝐶

𝑑
(kN⋅s/mm)

𝑓 = 0.5 2.65 0.76 0.29 2.65 0.76 1.52
𝑓 = 1.0 1.79 1.05 0.59 1.79 1.05 0.70
𝑓 = 1.5 1.34 0.85 0.63 1.34 0.85 0.57
𝑓 = 2.0 1.16 0.89 0.77 1.16 0.89 0.45
𝑓 = 5.0 1.00 0.91 0.91 1.00 0.91 0.40
𝑓 = 10.0 0.96 0.94 0.98 0.96 0.94 0.38

Table 2: Properties of “5+4” viscoelastic damping wall (at 300% strain and 21.2∘C).

Frequency (Hz) 𝐺
󸀠 (MPa) 𝐺

󸀠󸀠 (MPa) 𝜂 (MPa⋅s) 𝐾
󸀠

𝑑
(kN/mm) 𝐾

󸀠󸀠

𝑑
(kN/mm) 𝐶

𝑑
(kN⋅s/mm)

𝑓 = 0.5 2.36 0.67 0.29 2.36 0.67 1.34
𝑓 = 1.0 2.69 0.63 0.23 2.69 0.63 0.42
𝑓 = 1.5 1.89 0.63 0.33 1.89 0.63 0.42
𝑓 = 2.0 2.43 0.62 0.26 2.43 0.62 0.31
𝑓 = 5.0 2.20 0.61 0.28 2.20 0.61 0.28
𝑓 = 10.0 2.10 0.50 0.24 2.10 0.50 0.25

Table 3: Properties of “5+4” viscoelastic damping wall (at 450% strain and 21.2∘C).

Frequency (Hz) 𝐺
󸀠 (MPa) 𝐺

󸀠󸀠 (MPa) 𝜂 (MPa⋅s) 𝐾
󸀠

𝑑
(kN/mm) 𝐾

󸀠󸀠

𝑑
(kN/mm) 𝐶

𝑑
(kN⋅s/mm)

𝑓 = 0.5 3.54 0.29 0.08 3.54 0.29 0.58
𝑓 = 1.0 3.20 0.29 0.09 3.20 0.29 0.19
𝑓 = 1.5 2.89 0.32 0.11 2.89 0.32 0.21
𝑓 = 2.0 2.72 0.33 0.12 2.72 0.33 0.17
𝑓 = 5.0 2.71 0.34 0.13 2.71 0.34 0.16
𝑓 = 10.0 2.65 0.36 0.14 2.65 0.36 0.11

functions. Makris [31] mentioned one more detailed descrip-
tion of the least square method for identification procedure.
Park [6] determined the parameters of two mechanical
models of viscoelastic dampers. In this paper, the parameters
are obtained by using nonlinear least square method within
MATLAB to analyze a set of storage modulus and loss
modulus data (defined as the square root of the sum of
squares of storage modulus and loss modulus data). In the
least square method, the error between the model and the
experimental complex modulus 𝐺

∗ (𝐺∗ = 𝐺
󸀠

+ 𝑖𝐺
󸀠󸀠) is

minimized in order to search the model parameters. The

optimal parametric values of the FDMK model are obtained
by theminimumof the following objective function (see (12))
which is defined by the error functional minimum between
the theoretical and experimental data:

min 𝐼̃ (𝐺
1
, 𝐺
2
, 𝜂
1
, 𝜂
2
, 𝑟) =

6

∑

𝑖=1

(𝑟
𝑖
− 𝑠
𝑖
)
2

. (12)

Note that 𝑖 = 1–6, since there are a total of 6 excitation
frequencies in the test, that is, 0.5, 1.0, 1.5, 2.0, 5.0, and
10.0Hz. Symbols 𝑟

𝑖
and 𝑠
𝑖
denote the data point obtained from
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Table 4: Best-fitting parameters of the FDMKmodel.

𝐺
1
(MPa) 𝐺

2
(MPa) 𝜂

1
(MPa⋅s) 𝜂

2
(MPa⋅s) 𝑟

Value 8.69 3.58 0.75 0.98 0.60

Table 5: Comparison of the areas of the experimental and theoreti-
cal hysteresis loops.

Frequency
(Hz)

Theoretical value
(kN⋅mm)

Experimental value
(kN⋅mm) Δ

0.5 (225%) 2279 2413 5.6%
1.5 (225%) 2104 2249 6.9%
0.5 (300%) 2849 2826 0.8%
1.5 (300%) 2445 2540 3.7%
0.5 (450%) 5240 5394 2.9%
1.5 (450%) 4427 4530 2.3%

the experiment and the FDMK model for the 𝑖th excitation
frequency, respectively. The results of the parameters identi-
fication are shown in Table 4, together with their normalized
error.

3.1. Comparisons of Hysteresis Loops between Test and Simu-
lation. Figure 5 compares the experimental hysteresis loops
with the simulation by the FDMK model for the excitation
frequencies of 0.5 and 1.5Hz under 225% strain, 300% strain,
and 450% strain. The red solid lines in Figure 5 represent
the experimental loops, while the dotted lines depict the
theoretical loops simulated by using the parameters listed in
Table 4. Notably, the experimental and theoretical loops have
almost the same relative displacement and force. Figure 5 also
shows that the hysteresis loops are Z-shaped, whereas both
loops do not show an inclined elliptical shape and behaved
in a nonlinear viscoelastic manner because the viscoelastic
materials belonged to Si content [32]. Figure 5(a) demon-
strates that the simulated results obtained by the FDMK
model underestimate the damper force in the third quadrant
at 225% strain and frequency of 0.5Hz but overestimate the
damper force in the fourth quadrant at 225% strain and
frequency of 1.5Hz. Figures 5(c), 5(d), 5(e), and 5(f) illustrate
that the theoretical results are in good agreement with the
experimental loops under large deformation.

Moreover, the area of a hysteresis loop is equivalent to
the ability of the energy dissipated by the damper. Table 5
compares the area of the theoretical loops to the experimental
loops under frequencies 0.5 and 1.5Hz at three strains, 225%,
300%, and 450%, respectively. Note that Δ in Table 5 denotes
the error percentage of the dissipated energy simulated by the
FDMKmodel. The error percentage is defined as

Δ =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐴Exp − 𝐴The

𝐴Exp

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100%, (13)

where 𝐴Exp and 𝐴The denote the areas of the experimental
and theoretical hysteresis loops, respectively. The areas of the
experimental and theoretical hysteresis loops were integrated
by MATLAB programs and the values are shown in Table 5.
Based on the error percentage calculated by (13), under 300%
strain, the predicted result is the most accurate in prediction
of the energy dissipation and the second is the prediction
under 450% strain. From the area values, at 225% strain
and the frequency of 0.5Hz, the model underestimates the
experimental results, while, at 225% strain and the frequency
of 1.5Hz, the model overestimates the experimental results.
This is consistent with the results presented in Figure 5.

3.2. Comparisons of Mechanical Properties. The mechanical
properties of viscoelastic damping wall are important techni-
cal parameters used for the designing of vibration reduction
in engineering structures. So, this section will demonstrate
the model prediction of the mechanical properties, typically
the storage modulus 𝐺󸀠, the loss modulus 𝐺󸀠󸀠, the storage
stiffness 𝐾󸀠

𝑑
, the loss stiffness 𝐾󸀠󸀠

𝑑
, the equivalent damping

coefficient 𝐶
𝑑
, and the loss factor 𝜂. These values from exper-

iment are presented in Tables 1–3. The FDMK viscoelastic
mechanical model representations for 𝐺󸀠 and 𝐺

󸀠󸀠 are given
in the form of (8). Additionally, 𝐾󸀠

𝑑
and 𝐾

󸀠󸀠

𝑑
are related to 𝐺󸀠

and 𝐺󸀠󸀠 as (10).
The results obtained at 225% and 450% strains will be

briefly described. A comparison of the storage modulus
resulting from the FDMK model with the corresponding
experimental results is presented in Figure 6. A similar
comparison for the loss modulus is shown in Figure 7. Note
that, in view of (10), the storage stiffness 𝐾󸀠

𝑑
and the loss

stiffness 𝐾󸀠󸀠
𝑑
are linear functions of the storage modulus 𝐺󸀠

and the loss modulus 𝐺󸀠󸀠, respectively. The curve shapes for
𝐺
󸀠 and 𝐾

󸀠

𝑑
are similar to each other; likewise, 𝐺󸀠󸀠 and 𝐾

󸀠󸀠

𝑑

share the same trends.The presented results demonstrate that
the FDMK model could reasonably describe the modulus of
the damping wall under large deformation. The presented
model works satisfactorily. Moreover, the values of 𝐺󸀠󸀠 and
𝐾
󸀠󸀠

𝑑
calculated by FDMKmodel are closer to the experimental

test than the values of 𝐺󸀠 and 𝐾
󸀠

𝑑
. This indicates that the

FDMK model is more sensitive in energy dissipation than
in energy storage. As shown in Figure 7(a), the 𝐺

󸀠󸀠 value
under 𝜔 = 1.0 exhibits mutation. This may be explained as
follows: the mutation possibility of the energy dissipation of
the viscoelastic material used for VDW has occurred under
𝜔 = 1.0. These general trends can provide a beneficial
guideline for engineers to predict the behavior of the damping
wall subjected to different excitation.

The plot of the equivalent damping coefficient versus
frequency is shown in Figure 8. It can be observed that the
equivalent damping coefficient 𝐶

𝑑
of the viscoelastic damp-

ing wall can be well characterized by the FDMK model. The
results of 𝜂 (Figure 9) show some departures from the FDMK
representation, but the overall trend of the curve coincides
with the experimental results. Therefore, it is suggested that
the design values could be increased in actual design of “5+4”
viscoelastic damping wall under large deformation.
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Figure 5: Comparison between the experimental and numerically reconstructed hysteresis loops.
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Figure 6: Model simulation of the storage modulus.
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Figure 7: Model simulation of the loss modulus.

4. Conclusions

This paper proposed a FDMK model for “5+4” viscoelastic
damping wall subjected to large deformation. The FDMK
model was composed of a fractional Kelvin model and a
fractionalMaxwell model, which were connected in a parallel
way. Comparison between the experimental and predicted
results showed that the theoretical results matched very well
the experimental hysteresis loops under the large deforma-
tion. From the areas of the experimental and theoretical
hysteresis loops, under 300% strain, the predicted result was

the most accurate in prediction of the energy dissipation and
the second was the prediction under 450% strain.

Moreover, the FDMKmodel wasmore sensitive in energy
dissipation than in energy storage.The design values could be
increased in actual design of “5+4” viscoelastic damping wall
under large deformation.
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