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Archaea plays an important role in the global geobiochemical circulation of various environments. However, much less is known
about the ecological role of archaea in freshwater lake sediments. Thus, investigating the structure and diversity of archaea
community is vital to understand the metabolic processes in freshwater lake ecosystems. In this study, sediment physicochemical
properties were combined with the results from 16S rRNA clone library-sequencing to examine the sediment archaea diversity
and the environmental factors driving the sediment archaea community structures. Seven sites were chosen from Poyang Lake,
including two sites from the main lake body and five sites from the inflow river estuaries. Our results revealed high diverse archaea
community in the sediment of Poyang Lake, including Bathyarchaeota (45.5%), Euryarchaeota (43.1%), Woesearchaeota (3.6%),
Pacearchaeota (1.7%), Thaumarchaeota (1.4%), suspended Lokiarchaeota (0.7%), Aigarchaeota (0.2%), and Unclassified Archaea
(3.8%). The archaea community compositions differed among sites, and sediment property had considerable influence on archaea
community structures and distribution, especially total organic carbon (TOC) and metal lead (Pb) (𝑝 < 0.05). This study provides
primary profile of sediment archaea distribution in freshwater lakes and helps to deepen our understanding of lake sediment
microbes.

1. Introduction

As the third domain of life, archaea was once considered as
significant habitant of extreme environments, but increasing
evidence reveals their widespread presence in various nonex-
treme environments, including soil, ocean, and freshwaters
[1]. Archaea is found having an important role in global bio-
geochemical processes, such asmethanogenesis andmethane
oxidation [2], sulphate reduction [3], and ammonia oxidation
[4, 5]. In freshwater environments, active archaea community
is responsible for methane release and nitrogen transfor-
mation, especially in benthonic water and sediments [6].
It is supposed that lacustrine ecosystems contribute nearly
6–16% of the total natural methane emission on a global
scale [7]. Consequently, the investigating of sediment archaea
community is vital to understand the metabolic processes in
freshwater lake ecosystems [8].

Lake sediment is an active place with a high abundance
of microorganisms, which is subjected to the changes of
organic matter degradation, resuspension, and redeposition
of various chemicals [9]. Compared to bacteria, the diver-
sity and community distribution of sediment archaea have
receivedmuch less attention in freshwater lake environments.
Few previous studies indicated the variation of archaea
community structure and diversity with several factors, such
as sediment depth, sampling sites, and contamination [10–
12]. Archaea community is less influenced by environmental
factors compared with bacteria [13]; several parameters are
found to affect the distribution of archaea in lake sedi-
ments. The salinity played an important role in controlling
diversity and distribution of archaea in estuarine sediments
[14, 15], particle sizes and water O2 saturation also shaped
the sediment archaea distribution [16]. However, subject
to the poor culturability and limited isolates of archaea
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Table 1: Physicochemical characteristic of sediment samples from Poyang Lake in this study.

Sites1,2 Longitude and
latitude

Water depth
(m)

AFDM (%) SM (%) pH TOC
(g⋅kg−1)

TN
(g⋅kg−1)

TP
(g⋅kg−1)

C : N N : P

NP 116∘11󸀠E, 29∘12󸀠N 5.5 3.4 ± 0.4b 27.7 ± 2.6a 6.2 ± 0.3a 9.3 ± 0.8a 0.9 ± 0.2a 0.6 ± 0.1a 11.3 ± 1.6a 1.4 ± 0.1a

XH 116∘00󸀠E, 29∘11󸀠N 1.5 4.8 ± 0.8b 37.1 ± 1.4ab 6.4 ± 0.2a 7.9 ± 0.5a 0.9 ± 0.1a 0.5 ± 0.0a 10.6 ± 1.5a 1.4 ± 0.1a

RH 116∘40󸀠E, 28∘59󸀠N 3.5 6.0 ± 0.2a 48.2 ± 2.4b 6.5 ± 0.1a 11.9 ± 0.5a 1.1 ± 0.1a 1.0 ± 0.0b 10.2 ± 1.8a 1.5 ± 0.3a

SP 116∘16󸀠E, 28∘55󸀠N 1.0 6.7 ± 0.6a 35.5 ± 4.8ab 6.5 ± 0.3a 11.2 ± 3.5a 1.0 ± 0.5a 0.5 ± 0.1a 9.5 ± 1.3a 1.6 ± 0.2a

FH 116∘09󸀠E, 28∘39󸀠N 4.5 4.8 ± 0.6b 33.0 ± 0.9ab 6.0 ± 0.1a 6.6 ± 1.2a 0.4 ± 0.1a 0.4 ± 0.1a 9.7 ± 1.3a 1.5 ± 0.3a

XJ 116∘24󸀠E, 28∘43󸀠N 1.0 6.5 ± 0.6a 48.1 ± 2.2b 6.3 ± 0.1a 12.3 ± 0.7a 0.9 ± 0.1a 1.0 ± 0.0b 11.1 ± 0.1a 1.2 ± 0.2a

GJ 116∘22󸀠E, 28∘48󸀠N 11.5 5.1 ± 0.1ab 52.6 ± 8.6b 6.4 ± 0.1a 9.9 ± 0.6a 0.8 ± 0.1a 0.7 ± 0.0a 10.9 ± 0.2a 1.1 ± 0.1a

AFDM: ash-free dry mass; SM: sediment moisture; TOC: total organic carbon; TN: total nitrogen; TP: total phosphorus; C : N means the ratio of total organic
carbon to nitrogen.
1All the data was shown in the mean ± SD format.
2The significantly different values among sites were marked with different letters (ANOVA based on Tukey test, 𝑝 < 0.05).

members, the taxonomy was obscured in many previous
studies. The conventional affiliation of some archaea groups
was named after their environmental characteristics or find-
ing orders and often scattered several different phylogenetic
taxa identified by molecular evolution methods. Moreover,
investigation on archaea communities in sediments from
a number of lakes has not been concerned, and fewer
studies have been carried out to elucidate the spatial dis-
tribution and environmental impact of sediment archaea
communities.

As one of the largest freshwater reservoirs of China,
Poyang Lake plays a vital role in the regional climate
regulation, ecological keeping, and economic development.
Poyang Lake is a typical throughput lake that mainly receives
water from five tributaries (Gan River, Fu River, Xiu River,
Xin River, and Rao River) and finally flows into Yangtze
River. However, the hydrological conditions of Poyang Lake
changed dramatically in recent years, and the overall water
areas also decreased. Meanwhile, the eutrophication and
pollution caused by agriculture, aquiculture, and industrial
activities threatened the water safety [17–19]. The inflow
river has made an important contribution to the eutrophi-
cation and contamination of Poyang Lake; among the five
tributaries, Gan, Xin, and Rao Rivers were polluted by
industrial plants discharges (copper and phosphate mines
in the upstream of Rao and Xin Rivers) and urban wastes
(Nanchang City in the upstream of Gan River) [20]. Many
studies have been conducted to investigate the hydrological
regime, water quality and biodiversity of fishes, birds, plants,
and bacterioplankton communities of Poyang Lake [21–25].
The distribution of archaea community and its ecological role
is not well concerned in Poyang Lake. The objective of the
present study is to characterize the archaea community struc-
ture in sediments of Poyang Lake and estimate the influence
of surface sediment properties on the spatial distribution of
archaea community. This study was the primary attempt to
unscramble the total archaea community in the Poyang Lake
sediment.

2. Materials and Methods

2.1. Description of Sampling Sites. Both central lake and
tributary estuaries are included in this study. Although the
water area of Poyang Lake is very huge, two parts could
be divided depending on the hydrographic conditions. The
north part is a water channel with deep and quick current,
while the south part has vast water area and slow current.
Seven sampling sites were selected for study (Figure 1): two
sites were from the north and south central district of Poyang
Lake, named NP (North Poyang Lake) and SP (South Poyang
Lake), and the other five sites were from tributary estuaries,
named XH (Xiu River), RH (Rao River), XJ (Xin River), FH
(Fu River), and GJ (Gan River), respectively. The coordinates
and water depth of these selected sampling sites are shown in
Table 1.

2.2. Sample Collection and Pretreatment. Surface sediment
samples (0–5 cm)were collected from selected sites of Poyang
Lake in May 2014. Three samples were collected at each
site under aseptic conditions and put on ice in a con-
tainer and transported to the lab immediately. For each
site, three samples were mixed together for homogenization.
Afterwards, samples were divided into two halves. One-half
was processed immediately for measurements of sediment
physicochemical parameters; and the other half was stored in
sterile polypropylene tubes at −80∘C for molecular analysis.

2.3. Physicochemical Analyses. The pH values were measured
using pH meter (Sartorius PB-10, Germany) with 1 : 2.5
(wt/vol) of sediment to water. Sediment moisture (SM) was
obtained as the weight loss of 30 g samples after 70∘C bake for
12–24 h to achieve a constant weight. Sediment ash-free dry
mass (AFDM)was calculated by theweight loss of 5 g samples
after 4 h at 550∘C in a BF51800 muffle furnace (Thermal
Fisher, USA). Sediment samples were timely freeze-dried
to detect geochemical characteristics. Total organic carbon
(TOC), total nitrogen (TN), and total phosphorus (TP)
contents were, respectively, analyzed by the Walkley-Black
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Figure 1: Location of sampling sites in Poyang Lake and its tributaries.

wet oxidation procedure, themicro-Kjeldahlmethod, and the
phosphomolybdic acid blue color method [26]. The concen-
trations of heavy metals including copper (Cu), zinc (Zn),
lead (Pb), and cadmium (Cd) were quantified by microwave
digestion method. Briefly, 0.5 g of sieved and dried sediment
was added in 9mL concentrated nitric acid plus 3mL concen-
trated hydrochloric acid at 175∘C for 10min (US EPA 2007).
After cooling, the extracts were centrifuged at 3,000 rpm for
5min; supernatant was analyzed using an AA800 atomic
absorption spectrophotometer (PerkinElmer).

2.4. Microbiological Analyses. Genomic DNA was extracted
from 0.5 g sediment (wet-weight) using a Power Soil� DNA

Isolation Kit (MoBio, USA) following the manufacturer’s
instructions. The obtained DNA was used as templates
to amplify archaeal 16S rRNA genes using a universal
primer set, that is, Arch109F (5󸀠-ACKGCTCAGTAACACGT-
3󸀠) and Arch915R (5󸀠-GTGCTCCCCCGCCAATTCCTT-3󸀠)
[27]. The PCR reaction mixture (25 𝜇L) consisted of 1 unit
of Taq polymerase (Tiangen Co., Beijing, China), 0.16mM
of dNTPs, 2.5 𝜇L of 10x PCR buffer, 3mM of MgCl2, 0.1 𝜇M
of each primer, and 2.5 𝜇L (approximately 10 ng) of DNA
template. The PCR amplification program included an initial
denaturation at 95∘C for 5min, 30 cycles of 95∘C for 1min,
annealing at 56∘C for 1min, extension at 72∘C for 1.5min,
and a final extension for 10min at 72∘C. PCR amplicons
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Table 2: Summary statistics of archaea phylogenetic diversity in this study.

Number of OTUs Number of clones Dominance Shannon index Simpson index Evenness Coverage Chao 1 ACE
NP 13 23 0.12 2.34 0.88 0.80 0.61 23.50 28.31
XH 30 56 0.06 3.15 0.94 0.77 0.66 62.67 100.76
RH 33 66 0.06 3.19 0.94 0.73 0.68 88.00 137.42
SP 46 66 0.04 3.59 0.96 0.78 0.44 179.00 402.13
FH 56 90 0.04 3.74 0.96 0.75 0.53 116.57 299.74
XJ 34 62 0.05 3.24 0.95 0.75 0.63 70.50 141.78
GJ 46 59 0.03 3.69 0.97 0.87 0.34 163.17 162.00

were checked by electrophoresis in 1% agarose gels and the
length of amplicons (about 800 bp) was confirmed. The PCR
amplicons were finally purified using a Gel Extraction Kit
(Tiangen Co., Beijing, China).

The purified PCR amplicons were used for clone library
construction using a pMD18-TVector System (Takara, Japan)
following the manufacturer’s protocol. The ligation products
were subsequently transformed into Escherichia coli DH5𝛼
cells, which allowed for blue–white screening. Transformants
were plated on LB medium containing ampicillin (100mg
mL−1), X-Gal (20mgmL−1) and IPTG (200mgmL−1).
Positive clones were confirmed by PCR amplification with
primers M13-47 (5󸀠-CGCCAGGGTTTTCCCAGTCAC-
GAC-3󸀠) and RV-M (5󸀠-GAGCGGATAACAATTTCA-
CACAGG-3󸀠). The screened positive clones were used for
sequencing by Beijing Genomics Institution (BGI).

The obtained raw sequences were analyzed using
Bellerophon (http://comp-bio.anu.edu.au/bellerophon/belle-
rophon.pl) to remove chimeric sequences. Then, the remain-
ing sequences were clustered into operational taxonomic
units (OTUs) at 3% divergence implemented in the Mothur
software package v1.36.1 [28]. Then, the representative
sequences were queried using Blast program (http://blast
.ncbi.nlm.nih.gov/Blast.cgi) in NCBI (National Center for
Biotechnology Information) and Classifier (http://rdp.cme
.msu.edu/classifier/classifier.jsp) in RDB (Ribosomal Data-
base Project). The most similar sequences were extracted
from the GeneBank database. The phylogenetic neighbor-
joining tree, including the obtained sequences and their
closest relatives, were constructed using the MEGA software
5.0 (http://www.megasoftware.net/) [29].

The recovered 16S rRNA sequences were deposited into
the EMBL (European Nucleotide Archive) database under
accession numbers LN896486–LN896691.

2.5. Statistical Analyses. Differences of sediment environ-
mental variables among sampling sites were assessed using
one-way ANOVA by SPSS 19.0 software package. The level
of statistical significance was reported when 𝑝 < 0.05. To
construct rarefaction curves and calculate diversity indices,
sequences were clustered into OTUs at 3% divergence using
the Mothur program. The LIBSHUFF comparisons of differ-
ent clone libraries were also conducted in Mothur. To inves-
tigate relationships between sediment archaea community
and environmental variables, redundancy analysis (RDA)
with Monte Carlo tests was carried out using the Canoco

program for Windows 5.0. A heatmap was produced in R
project (R-3.0.2) with the “heatmap” package. Furthermore,
Pearson coefficient correlations between the major archaea
taxa, diverse indices, and sediment variables were calculated
using SPSS 19.0.

3. Result

3.1. Sediment Physicochemical Characteristics. The physic-
ochemical properties of sediment samples from Poyang
Lake were heterogeneous among sites. The most obvious
difference was revealed by AFDM (ash-free dry mass), SM
(sediment moisture), and TP (total phosphorus) (ANOVA,
𝑝 < 0.05), while other parameters including TOC (total
organic carbon), TN (total nitrogen), pH, and C :N and N : P
were similar among sites (Table 1). Notably, site NP had the
lowest values of these parameters and differed obviously with
sites RH and XJ.

Compared with the regional background values of
Poyang Lake [30], higher contents of four metals were
revealed by this study. The content of Zn from all seven sites
remarkably exceeded the background value, and Pb content
from most sites also exceeded the background value except
for sites NP and GJ.The profile of Cu and Cd contents among
sites was similar, and the significantly higher values occurred
in sites RH, XJ, and GJ (Figure 2). These results suggested
potential metal pollution in the region of Poyang Lake.

3.2. Diversity of Archaea Community. In this study, seven
clone libraries of archaea 16S rRNA gene from sediments
of Poyang Lake were constructed and characterized. The
obtained 422 clones were conducted for sequencing, and then
the resulting sequences were clustered into 206OTUs using a
97% sequence similarity cutoff. The OTU numbers of each
clone library varied from 13 to 56, and positive clones varied
from 23 to 90. Shannon and Simpson index showed high
archaea diversity in all samples, except for Site 1 (Table 2).
The Coverage, Chao 1, and ACE values all demonstrated
the underestimated archaea diversity (Table 2). However,
both dominance and evenness showed diverse and stable
structures of archaea community from sediment samples.

AllOTUs could be affiliated to seven phyla and anUnclas-
sified Archaea. The seven phyla included Bathyarchaeota
(45.5%), Euryarchaeota (43.1%), Woesearchaeota (3.6%),
Pacearchaeota (1.7%), Thaumarchaeota (1.4%), suspended
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Figure 2: The metal contents of Zn, Cd, Cu, and Pb among different sites. The dotted lines stand for the environmental background values
of Poyang Lake. The different letters “a” and “b” in this figure mean significant difference (𝑝 < 0.05).

Table 3: ∫-LIBSHUFF comparisons of clone libraries constructed in this study.

NP XH RH SP FH XJ GJ
NP 0.0235 0.0071 0.0024 0.0406 0.0057 0.0074
XH 0.0625 0.0410 0.0137 0.0077 0.0364 0.0101
RH 0.0195 0.0247 0.0132 0.0238 0.0091 0.0084
SP 0.0096 0.0098 0.0082 0.0344 0.0063 0.0029
FH 0.0597 0.0123 0.0366 0.0146 0.0409 0.0157
XJ 0.0057 0.0251 0.0037 0.0019 0.0161 0.0016
GJ 0.0090 0.0061 0.0025 0.0019 0.0161 0.0014
With an experiment-wise error rate of 0.05, the libraries were considered significantly different (marked in bold) if either of the two 𝑝 values generated for an
individual pairwise comparison was lower than 0.007.

Lokiarchaeota (0.7%), and Aigarchaeota (0.2%). The Unclas-
sified Archaea still represented 3.8% of total clones (Figure 3).
The phylum Bathyarchaeota mainly had three topological
different clusters, including (Miscellaneous Crenarchaeotal
Group, MCG) MCG-1 (21.6%), MCG-2 (20.9%), and MCG-
3 (3.1%). Some previously described groups were included,
such as MCG group 5b, group 8, group 4, group 11, group
5a, and group 15 (Figure 3). The phylum Euryarchaeota

could be deeply divided into six orders, Methanomicro-
biales (20.4%), Methanosarcinales (16.6%), Thermoplas-
matales (3.1%), Methanocellales (1.7%), Methanobacteriales
(1.2%), and Halobacteriales (0.2%) were all included (Fig-
ure 3).

3.3. Distribution of Archaea Community. The sediment
archaea community showed diverse distribution patterns
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Figure 3: Neighbor-joining phylogenetic trees of archaeal 16S rRNA gene sequences derived from Poyang Lake sediments. Bootstrap
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affiliated to the branches (a detailed phylogenetic tree was available in supporting materials in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/9278929). The main composition of the whole archaeal community was also shown in the pie chart.
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Figure 4: The heatmap profile showing the sediment archaea
community compositions from seven sampling sites of Poyang Lake.

among seven sampling sites. Based on the analysis of ∫-
LIBSHUFF, all sites could be divided into two groups due to
their archaea community structures; XH and FH were one
group, and all other sites were another group (Table 3). Based
on the heatmap analysis of archaea community on order
level affiliation, all sampling sites could be divided into three
groups: sites XH and FH from Xiu River and Fu River were
one group; sites NP and SP from north and south central lake
constituted a group; sites RH, XJ, and GJ from Rao River, Xin
River, and Gan River were one group (Figure 4).

Sites XH and FHwere both dominated byMCG-2 (46.4%
and 51.1%) and MCG-1(16.1% and 25.6%) of Bathyarchaeota.
MCG-3 of Bathyarchaeota also had a quite large proportion
in site XH (10.7%), but only a small proportion in site
FH (3.3%). For sites NP and SP from the central lake, the
most abundant archaea both belonged to Methanosarcinales
(52.2% and 37.9%) andMethanomicrobiales of Euryarchaeota
(30.4% and 19.7%). Although the taxa MCG-1 and MCG-
2 also had considerable proportions in site SP (10.6% and
15.2%), only a small percentage was found in site NP (4.4%
and 0). The archaea community from sites RH, XJ, and GJ
were consistently dominated by MCG-1 (34.9%, 19.4%, and
27.6%), Methanomicrobiales (25.8%, 50.0%, and 18.6%), and
Methanosarcinales (15.2%, 14.5%, and 22.0%), and their total
coverage shifted between 68.3% and 83.9% (Figure 4).

3.4. Influential Factors on Archaea Communities. Pearson’s
correlation coefficients were used to investigate the correla-
tions between the lake sediment properties and the archaea
communities (Table 4).However, only a fewdata dramatically
correlated with others. The sediment archaea community
evenness was positively correlated to the water depth but
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61.69%

11.26%

Figure 5: The RDA ordination plots for the first two principal
dimensions of the archaea distribution (some rare groups were not
included (clones < 5)) and environmental factors among different
sites.

negatively correlated to the levels of metal Pb (𝑝 < 0.05).
The ACE values of archaea community showed remarkable
negative correlations to the ratio of C :N (𝑝 < 0.01).
The distribution of Bathyarchaeota was positively affected
by several factors, including AFDM, TOC, TP, and Cu.
The distribution of Methanomicrobiales illustrated highly
significant correlations with TOC, TP, Cu, and Cd, while
Pacearchaeota illustrated positive correlations with C :N.The
distribution pattern of Unclassified Archaea showed negative
correlation with TP, Cu, and Zn.

The confined influence was confirmed by the RDA
results, although the physicochemical factors in the first two
RDA axes, respectively, explained 61.69% and 11.26% of the
total variance in sediment archaea composition (Figure 5).
However, only TOC and Pb passed the significance tests (𝑝 <
0.05).The archaea community distribution inXHandFHwas
obviously different than other sites, and low content of TOC
was the main cause.The RDA results also exhibited extensive
influence of Pb on the archaea community distribution ofXH,
RH, and XJ.

4. Discussion

Aquatic sediments are important sites for matter transforma-
tion and energy metabolisms. Therefore, information on the
microbial community composition is of vital importance for
better understanding of the metabolic processes in aquatic
ecosystems. Up to now, the archaea community found in
freshwater lake sediments was not so diverse as bacterial
community. Phylogenetic analysis of the sediment archaea
16S rRNA gene libraries revealed high diversity in Poyang
Lake, and the majority of archaea community belonged
to common groups of river and lake sediments. Similar
to previous reports, the most frequently found archaea
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of this study was composed of Bathyarchaeota (MCG),
Thaumarchaeota, Methanosarcinales, Methanomicrobiales,
Methanobacteriales, and Thermoplasmatales [31]. The sed-
iment archaea community from 13 plateau freshwater lakes
comprised 16 classified phyla and classes; MCG andThermo-
plasmata were the most predominant groups [13]. Liu et al.
reported the sediment archaea community from Lake Taihu
with DGGE-sequencing method and found that most of
archaeal sequences were affiliated with Methanosarcinaceae
and Methanocorpusculaceae, while a small proportion was
affiliated with Crenarchaeota [32]. In sediments of Lake Kivu
and Lake Bled, Methanobacteriales, Methanosarcinales, and
Thermoplasmata all played a big part in the whole archaea
community; Crenarchaeota andThaumarchaeota collectively
take a small proportion compared with Euryarchaeota [33,
34].

Our study revealed spatial heterogeneity of archaea
community in the sediment of Poyang Lake. The archaea
community structure of XH and FH was different than
that from other sites, which were dominated by MCG-2
and MCG-1 of Bathyarchaeota (Figure 5). Bathyarchaeota
(MCG) comprised a large number of phylotypes from anoxic
environments and can be divided up to 17 subgroups [35].
The broad range of habitats was an obvious feature for
Bathyarchaeota members, and this point may be the reason
for their dominating in many environments. Bathyarchaeota
was believed to have an organic heterotrophic lifestyle and
can degrade buried organic carbon and detrital proteins
in subsurface sediments [36, 37]. This point was consistent
with the observation of this study that the distribution
of Bathyarchaeota was significantly correlated with AFDM
and TOC. Bathyarchaeota was also found having methyl-
coenzyme M reductase (MCR) complex and involved in
methanemetabolism recently and was the only group outside
the phylum Euryarchaeota for methane metabolism [38].
Other groups like Aigarchaeota, suspended Lokiarchaeota,
and Unclassified Archaea also have higher proportions in
sites XH and FH. As the most presently proposed phyla,
Aigarchaeota and suspended Lokiarchaeota may both be
involved in anaerobic carbon cycling [39]. Pacearchaeota
and Woesearchaeota were previously reported from saline
sediments, but in surface waters of some lakes they were also
detected [40].

The archaea community of NP and SP both from central
lakes showed similar structures; the most abundant clones
belonged to Methanosarcinales and Methanomicrobiales of
Euryarchaeota. Methanosarcinales and Methanomicrobiales
were the most abundant Euryarchaeota groups in freshwater
sediments, and bothmethanogenic andmethanotrophic phy-
lotypes (ANME-2a, 2b) were included [15]. The dominance
ofMethanomicrobiales andMethanosarcinales in sedimental
archaea community of this study was not a single event, and
similar results have also been reported in other freshwater
lakes, such as Lake Biwa [41], Lake Soyang [42], and Lake
Dagow [43]. Methanosarcinales and Methanomicrobiales
usually draw energy from anaerobic oxidation of methane
(AOM) and are coupled with bacterial sulphate reduction
[44]. Thus, the proportion of these orders often increased
with the necessary sulphate and organic carbon availability

[45, 46]. This point was also validated in this study where
the abundance of Methanomicrobiales was positively cor-
related with TOC content. Moreover, Methanomicrobiales
and Methanobacteriales can use H2/CO2 as a substrate for
methanogenesis, while Methanosarcinales can utilize a num-
ber of different substrates (e.g., H2/CO2, methyl compounds,
and acetate) [47]. Thus, the abundance of Methanosarcina,
Methanobacteriales, and Methanomicrobiales in this study
may suggest that their growth substrate was not limited,
and the elevation of organic carbon from eutrophication or
terrestrial organic carbon influx may change methanogen
abundance as well as CH4 production rates [48].

The sediment properties (AFDM, SM, TP, Cu, and Cd)
fromRH, XJ, andGJ were significantly higher than other sites
(Figure 4); meanwhile, the archaea community structures
from these three sites were similar. MCG-1, Methanomicro-
biales, and Methanosarcinales were the most predominant
archaea groups in these three sites, Thermoplasmatales also
showed preference in XJ, GJ, and RH, and Thaumarchaeota
was mainly distributed in GJ. MCG-1, Methanomicrobiales,
and Methanosarcinales all have a wide habitat in various
water environments. Thermoplasmatales was often related to
methanogenic activities [49, 50] and was timely found in
freshwater lake sediment [33, 51]. Thermoplasmatales has a
notable proportion in the Poyang Lake sediment of this study,
which might emphasis the active methanogenesis. The new
genome reading of Thermoplasmatales cells has revealed the
genes that encode extracellular protein-degrading enzymes
and which could enable them to survive on sedimentary
detrital proteins [37]. Other reports suggested that some
members of the Thermoplasmatales may represent a new
order of methanogens that can utilize methylamine [52,
53]. The recently proposed phylum Thaumarchaeota in lake
sediment archaea community has been sporadically reported
[54–56]. The presence of Thaumarchaeota in this study
mainly contained Nitrososphaerales (previously Thaumar-
chaea Soil Group I.1b) and Nitrosopumilales (previously
MGI, Thaumarchaea Marine Group I.1a), which demon-
strated the active ammoxidation in sediment of Poyang Lake,
and archaea community has an important role in the global
biogeochemical nitrogen cycle [57].

The sediment microbial community is often affected by
sediment properties, and the community composition is
structured by both nutrient availability and environmental
pressures from sediment. But many studies showed out that
sediment archaea community was less affected by environ-
mental factors in comparison to bacterial community [13].
Still some researchers also reported the variety of sediment
archaea community with environmental variables. The com-
munity structure of sediment archaea could be influenced
by pollution [58], sediment depth [34, 53], and salinity [59].
Archaea community distribution was remarkably affected by
sediment properties in this study. The community evenness
was affected by both water depth and Pb, while ACE was
affected by C :N. Water depth may influence the precip-
itation process of sediment and affected many sediment
parameters [34, 53], while the pressure of Pb selected special
archaea groups and reduced the evenness. The effect of C : N
reflected the shortage of nitrogen in sediment and restricted
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the archaeal diversity. The contents of TOC and Pb could
shape the distribution pattern of archaea community among
different sites of Poyang Lake. The effect of TOC on archaea
community could be explained by the notion that TOC
affected the abundance of predominant archaea groups, like
Methanomicrobiales andMethanocellales (Figure 5, Table 3).
The low content of Pb in sites NP and GJ may be also due
to the presence of Halobacteriales, which had the capacity
to reduce the concentration of Pb, Cr, Zn, and Ni ions from
media with high salinity [60].

In conclusion, high diverse archaea community was
found in sediments of Poyang Lake, and considerable influ-
ence was observed on archaea distribution patterns by
TOC and metal Pb. Bathyarchaeota (MCG) and Euryar-
chaeota (especially Methanomicrobiales and Methanosarci-
nales) were the most dominant phyla in Poyang Lake sedi-
ments, but their proportions differed among samples. Other
components of archaea community were Woesearchaeota,
Pacearchaeota, Thaumarchaeota, suspended Lokiarchaeota,
Aigarchaeota, and Unclassified Archaea.
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