
A Scalable, Distributed Algorithm
for Efficient Task Allocation
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Sander, Pedro V., Denis Peleshchuk, and Barbara J. Grosz. 2002.
A scalable, distributed algorithm for efficient task allocation.
In Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: July 15-19, 2002,
Plazzo re Enzo, Bologna, Italy, ed. International Joint Conference
on Autonomous Agents and Multiagent Systems, and Cristiano
Castelfranchi, 1191-1198. New York: ACM Press.

Published Version http://dx.doi.org/10.1145/545056.545098

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2562072

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192438951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Scalable,%20Distributed%20Algorithm%20for%20Efficient%20Task%20Allocation&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=8836274043a719b59a0b0540160e5d65&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2562072
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

A Scalable, Distributed Algorithm
for Efficient Task Allocation

Pedro V. Sander
Harvard University
33 Oxford Street

Cambridge, MA, USA

pvs@eecs.harvard.edu

Denis Peleshchuk
Harvard University
33 Oxford Street

Cambridge, MA, USA

dpeleshc@fas.harvard.edu

Barbara J. Grosz
Harvard University
33 Oxford Street

Cambridge, MA, USA

grosz@eecs.harvard.edu

ABSTRACT
We present a distributed algorithm for task allocation in multi-
agent systems for settings in which agents and tasks are geo-
graphically dispersed in two-dimensional space. We describe a
method that enables agents to determine individually how to move
so that they are, as a group, efficiently assigned to tasks. The
method comprises two algorithms and is especially useful in
environments with very large numbers of agent and task nodes.
One algorithm adapts computational geometry techniques to
determine adjacency information for the agent nodes given the
geographical positions of agents and tasks. This adjacency infor-
mation is used to determine the visible nodes that are most
relevant to an agent's decision making process and to eliminate
those that it should not consider. The second algorithm uses local
heuristics based solely on an agent's adjacent nodes to determine
its course of action. This method yields improved task allocations
compared to previous algorithms proposed for similar environ-
ments. We also present a modification to the second algorithm
that improves performance in environments in which multiple
agents are required to complete a single task.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems.

General Terms
Algorithms, Experimentation.

1. INTRODUCTION
Assigning agents to tasks in a non-centralized environment is a
fundamental problem in multi-agent systems (MAS). The problem
becomes even more challenging in settings in which a very large
number of agents and tasks are spread in space, making commu-
nication among agents difficult or costly.

We propose an algorithm for task allocation based on computa-
tional geometry techniques. The approach is applicable to
domains in which agents’ and tasks’ geographical positions are
known. In our experiments, the tasks are stationary, but agents are
allowed to move. Agents are aware of other agents and tasks only
within a proximity radius, which we refer to as the agent’s circle
of visibility. The objective is to maximize the number of fulfilled

a) Agents (gray), tasks (black) b) Delaunay triangulation

Figure 1: Agents and tasks as vertices on the 2D plane with the
Delaunay triangulation shown on the right.

tasks. We do not consider other costs associated with the agents,
such as distance traveled or awake time.

This algorithm is useful in numerous domains, including the
package delivery system of Shehory et al. [1998]; a taxi company,
where the drivers are the agents and the passengers are the tasks;
and the allocation of police forces with no central control. In this
last case, it is critical to have a good distribution of agents (po-
licemen) because a new task (a crime) can appear anywhere.

The algorithm is fully distributed. Each agent determines its
course of action with the objective of maximizing its own number
of fulfilled tasks. To reduce communication costs, each agent
bases its decision solely on a small set of adjacent task and agent
nodes. The expected number of adjacent nodes remains low even
if the density of agents and tasks is very high. Furthermore, the
adjacent nodes are evenly distributed in all directions. For in-
stance, it is undesirable to have all adjacent nodes of an agent be
in the east direction, as that could lead to missing an opportunity
to reach a nearby task to the west. Picking the n closest nodes
could cause an imbalance. The algorithm computes a planar
triangulation of the nodes at each time-step (Figure 1) and deter-
mine the adjacency of the nodes based on a subset of the edges of
the triangulation.

Section 2 presents an algorithm to efficiently compute a local set
of neighbors adhering to the properties outlined above. This set
provides each agent with a small set of desirable neighbors on
which to base its decisions.

Section 3 presents an algorithm for an agent to make decisions
based solely on its adjacent nodes, rather than on all the nodes
within its circle of visibility. This property of the algorithm
minimizes the amount of communication and computation re-
quired by the agents. The adjacent nodes also provide enough
information to allow the agents to spread themselves out evenly in
space. Since all computations are done locally by individual
agents, the algorithm scales very well.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007…$5.00.

The basic algorithm described in Section 3 is applicable to tasks
that can be completed by a single agent. In Section 4 we describe
a modification to the algorithm that is suitable for environments
with tasks that require the simultaneous presence of multiple
agents. The algorithm uses adjacency information to propagate
data about tasks to farther agents, as needed.

In Section 5 we describe the implementation and the results of our
experiments. We then place our system in the context of related
work in Section 6. Finally, we conclude and propose some direc-
tions for future work.

2. PLANAR TRIANGULATION
This section describes an algorithm that uses a planar triangula-
tion to allow each agent to identify and focus its task deliberation
on a small set of adjacent nodes. Agents only consider these
adjacent nodes when making their decisions. As a result, the
amount of deliberation and computation is significantly reduced
without compromising solution quality.

The planar triangulation problem seeks to join a set of points in
the plane by nonintersecting lines, such that every region within
the convex-hull of the set of points is a triangle. As a result, a
planar triangulation yields a connected graph with generally short
edges. A triangulation of the points in Figure 1a is given in Figure
1b. Planar triangulations is a well studied area within computa-
tional geometry and widely used in computer science.
Applications for planar triangulations range from surface interpo-
lation in graphics to routing algorithms in networking.

Each agent computes its own triangulation locally within its circle
of visibility. We require agents to generate triangulations that are
consistent with one another.

A set of points may be triangulated in many different ways. Our
algorithm is based on the Delaunay triangulation [Delaunay,
1934]. A triangulation is considered to be Delaunay if every
triangle’s circumcircle1 does not enclose any other point in the
triangulation (Figure 2). The Delaunay triangulation maximizes
the minimum angle of all triangles, so it has
the desirable property that points are only
adjacent to a generally small set of close
neighbors in all directions. The circled node
to the right, has many more close neighbors
to the east, yet its adjacent neighbors are
evenly spread in all directions.

Because agents are limited by their circles of visibility, each agent
computes a local Delaunay triangulation. The edges of the local
Delaunay triangulation form a superset of the edges of the global
Delaunay triangulation that are inside the agent’s circle of visibil-
ity. Some triangles in the local triangulation have large
circumcircles, and in many cases these circumcircles might span
outside the agent’s circle of visibility. In such cases the agent will
not be able to determine whether a given edge of the local triangu-
lation is also in the global triangulation. Furthermore, the
circumcircle test is not consistent between pairs of agents. If agent
A has agent B as an adjacent node, agent B will not necessarily
have agent A as an adjacent node; The circumcircles associated

1 A triangle’s circumcircle is the unique circle that passes through all of

the triangle’s vertices.

a) Delaunay triangulation b) Empty circumcircles

Figure 2: The Delaunay triangulation has the property that
every triangle’s circumcircle does not enclose any points.

Figure 3: Edges of the Delaunay triangulation. Edges in dark
gray passed the edge test, while edges in light gray failed.

with the edge might lie within the circle of visibility of B, but they
might not lie within the circle of visibility of A.

To address this consistency problem, instead of using the circum-
circle test, we perform the following simple test on an edge: An
edge is in the triangulation, if the circle passing through both of its
endpoints and with diameter equal to its length does
not contain any other points (as shown in the exam-
ple to the right). This simple edge test is stricter than
the triangle circumcircle test and yields a subset of
the edges of the Delaunay triangulation.

In practice, this method finds a high percentage of the Delaunay
edges if agents are well distributed in space. As shown in Figure
3, typically only one or two Delaunay edges adjacent to each node
failed the test. Every visible node can be tested for adjacency,
since for all the visible nodes, their respective edges’ circles will
be completely inside the agent’s circle of visibility. Furthermore,
this method is consistent among different agents since these
circles lie completely within the circle of visibility of both agents.

The final algorithm for an agent A to compute its neighbors is:

• Compute the Delaunay triangulation of nodes visible from A,
using a standard O(n log n) algorithm [Preparata and Shamos,
1985].

• For every edge adjacent to A, check whether the edge passes
the stricter edge test. The edge only has to be checked against
the two nodes opposite the edge in the two adjacent Delaunay
triangles. If the edge passes the test, then we keep it, otherwise
we discard it.

This Delaunay triangulation step can be considered a black box by
the agent. Adjacency can be computed very efficiently, and may

even be done in hardware. Once adjacency is established, agents
can now use either the single-agent task allocation algorithm of
Section 3 or the multi-agent one of Section 4.

3. BASIC ALGORITHM
The algorithm in Section 2 computes for each agent a set of
adjacent nodes. This section gives an algorithm that uses adja-
cency information to determine the direction an agent should
move. The objective is to move toward tasks and away from other
agents. If one or more task nodes are adjacent to the agent, it will
move in the direction of the nearest one in an attempt to reach it
and fulfill it. If the agent has no adjacent task nodes, then it will
repel its adjacent agent nodes to better cover empty spaces. To
prevent the agent from being too close to a peer, the agent should
repel nearby agents more than farther ones. Hence the repelling
force should be inversely proportional to distance. We set it to be
d-k, where d is the distance, and k is a specified constant. More
formally, given the adjacent agents j, the agent moves in the
direction given by

()

∑

∑

∑

∑
−

+−

−

−
⋅

=

⋅

j

k

j

k

j

k

j

k

jv

jvjv

jv

jv
jv
jv

)(

)()(

)(

)(
)(
)()1(

,

where v(j) is the vector from the geographical coordinates of the
adjacent agent j to the current agent’s coordinates.

We ran experiments to determine the best value for the k parame-
ter, and the results for using different values of k were all quite
similar, as long as k>0. We decided to use k=2, as it gave slightly
better results.

With a sufficiently low number of agents, the agents will repel
one another and end up at the boundaries. To prevent this, we
introduce “phantom nodes”, imaginary nodes evenly spaced along
the boundaries. In the absence of nearby tasks, agents will also
repel the phantom nodes. With this addition, agents “bounce” off
the boundary. The number of phantom nodes is set to n at each
boundary, where n is the number of agents.

Tasks only attract adjacent agents. Agents that are not adjacent to
a particular task have a very low probability of being able to reach
that task before other agents do. This algorithm ensures that non-
adjacent tasks do not influence where an agent moves. For in-
stance, if there is only one task to be satisfied, the adjacent agents
will all attempt to reach the task, while other agents will not even
try. Instead, they will try to evenly spread themselves in space in
the expectation that another task might appear in their vicinity.

The algorithm effectively shrinks and grows the agent’s circle of
visibility based on the density of nodes. If there are a lot of nodes,
the agents will only pursue nearby tasks, while if there are very
few nodes, the agents can try to reach tasks that are farther away.

Figure 4 shows two screenshots of our system with significantly
more agents than tasks. Using the simple algorithm outlined
above only nodes that are adjacent to tasks are attempting to reach
them; the others remain evenly spaced.

Figure 4: Two screenshots of our system. The agents (gray
points) are well spaced. The tasks (dark interior points) only
attract adjacent agents. Agents repel other agents and phan-
tom nodes (dark boundary points) in the absence of adjacent
tasks.

4. WEIGHT SYSTEM
In this section we describe an extension to the algorithm that
addresses scenarios in which tasks require multiple agents in order
to be completed. In this algorithm, each task is given a weight
equal to the number of agents that are needed to complete it.
Figure 5 shows a screenshot of our program using the weight
system.

With only a slight modification to the basic framework so that a
task node with weight w does not disappear until w agents reach
it, the basic algorithm performs well for low weight values since,
on average, a task is directly adjacent to enough agents. When the
weight is increased to values greater than 5, the performance
degrades substantially as only immediate neighbors are aware of a
task and move directly towards it. Agents a little farther away
have no information about the task until direct neighbors reach it
and are removed from the triangulation.

As a solution to this problem, we propose a weight propagation
mechanism based on local communication between adjacent
agents. The triangulation provides an ideal basis for this approach
as it introduces a connected graph while still limiting the number
of adjacent neighbors and thus the amount of communication.

The algorithm works as follows. Initially, all agent nodes are
assigned a weight of 0 and all task nodes are assigned a weight
equal to the number of agents needed to satisfy them. If an agent
is only adjacent to zero-weight nodes, it moves away from its
neighbors to achieve a more even distribution in space, as in
Section 3. Otherwise, it picks the neighboring node with the
highest weight, which we will now refer to as the parent node. In
case of a tie, it picks the closest node. If the parent node is a task,
it moves towards it. If it is an agent, it gets the destination task
information from that agent and moves towards that same task.
The weight of the agent is set to w(n)·2-k, where w(n) is the weight
of the parent and k is a constant that regulates the rate of weight
propagation. If the weight becomes less than 1, it is set to 0. Thus,
when all task weights are 1, this algorithm behaves identically to
the algorithm described in Section 3.

The example in Figure 6 illustrates the algorithm with the rate of
weight propagation set to 1. In this scenario, there are two tasks,
one with a weight of 8 and the other with a weight of 1. The
weights of tasks are propagated through agents and set to the
values shown. As a result, only the agent on the lower left will
move to the task with a weight of 1. The others will be attracted to
the task with a weight of 8. This example demonstrates the advan-
tages of weight propagation as farther agents become aware of the
task without waiting until agents that are in between reach it and
are removed from the triangulation. Furthermore, with weight
propagation, agents can become aware of a task even if the task is
outside of the their circles of visibility.

When using this algorithm, it is important to address the trade-off
between responsiveness and efficiency. We want the system to be
responsive so that when a new task appears, enough agents are
attracted to it. However we also want it to be efficient and avoid
redundancy, which is created when too many agents move into the
same area, potentially increasing response time for tasks appear-
ing somewhere else. To regulate this behavior, the maximum
number of levels of propagation as well as the k parameter can be
adjusted for a particular task-to-agent ratio.

Since this system involves only very minimal coordination be-
tween agents, if the ratio of tasks to agents is very high, agents
could move to different tasks and wait there for help indefinitely.
Two different approaches may be taken to address this problem.
The weight of a task node can be increased as agents get there to
effectively indicate that it becomes more important to satisfy that
task now because some agents are waiting there and cannot do
any other useful work. An alternative approach, which can be
used independently or in conjunction with the first one, is to
introduce a time-out value to represent the maximum amount of
time an agent waits for help. After that time elapses, the agent will
move away from the task. This second approach was implemented
in our system.

The issues described above are important, and they raise the
question of whether more comprehensive cooperation mecha-
nisms should be introduced into the system. With no
communication and computation constraints, it would be possible
to avoid conflicting and redundant efforts and the system would
be perfectly coordinated [Malone, 1987]. Under restrictions of
practical distributed systems, however, this is impossible to
achieve. When designing such systems, it is important to ensure
that agents spend most of their time solving the domain level
problems for which they were built, rather than in communication
and coordination activities [Jennings, 1996].

Figure 5: Screenshot with varying weight tasks. Larger points
represent tasks with higher weights.

Figure 6: Weight propagation of task nodes (double-circled)
through agent nodes (single-circled).

5. IMPLEMENTATION AND RESULTS
We implemented a system using the methods outlined above. For
computing Delaunay triangulations, we used the Qhull software
library [Barber and Huhdanpaa]. To compare our results to the
physics-based approach of Shehory et al. [1998], we use settings
similar to theirs. The domain is a 30-by-20km city and the streets
are arranged in a square lattice, such that each city block is 200m
long (150 streets by 100 streets). Like in Shehory et al.’s freight
delivery system, after each agent arrives at a task node, it must
deliver the freight to some random city destination. Once the
freight is delivered, the agent reappears at the delivery point and
resumes searching for tasks. Even though we used the freight
delivery example, the results are indicative of how the system
would perform in other similar settings, such as the police force or
taxi company. To compare our results to those of Shehory et al.
[1998], we used settings similar to theirs. We performed our runs
with 250 agents, 1,200 initial tasks, 600 new tasks per hour, and
agents traveling at 50km/h.

5.1 Equilibrium
The first experiment, shows how the system behaves during the
initial stages until it reaches equilibrium. We performed two runs.
In the first run, we set the radius of the circle of visibility to
0.5km, while in the second we set it to 2km. The results of the

experiment are shown in Figure 7. Searching agents represents
the number of agents that are currently looking for a task. The
agent searching time is how long an agent takes to find a task on
average. Waiting tasks represents the number of tasks that are
waiting for an agent to arrive. The task waiting time is how long a
task waits for an agent on average. The task fulfillment time is the
sum of the waiting time and the delivery time (the time that takes
to go to a random city destination on average). The delivery time
is only dependent on velocity, and the velocity remains un-
changed in this experiment. As a result the fulfillment time graph
is just a shifted waiting time graph, and is not shown here. It is
interesting that the number of searching agents oscillates quite
significantly. They do however satisfy all tasks, and keep the task
waiting time very low.

Both runs reached equilibrium, in that the agents were able to
handle all incoming tasks and keep the number of waiting tasks
relatively steady. The number of agents that are searching for
tasks and the average time for an agent to find a task are very
similar, since in both cases the agents are getting the same amount
of work done. However, the number of waiting tasks and the task
waiting time is significantly higher in the 0.5km visibility setting.
In this setting the agents cannot see very far away. As a result the
agents could not immediately find tasks, so the system reached
equilibrium with a higher number of waiting tasks.

5.2 Circle of visibility
We performed an experiment varying the radius of the circle of
visibility from 0.4 to 5 km. The results after 70 hours of simulated
time are shown in Figure 8. Again, all the systems reached equi-
librium, so the number of searching agents and the searching time
are very similar for all cases. The number of waiting tasks and the
task waiting time decrease as the radius increases. We were
concerned that the system would require a very large radius, but
these results indicate that with the default parameters and 250
agents or more, using a radius greater than 2 yields no significant
improvement. At that radius there are enough agents so that they
can almost always see their closest neighbors in all directions. We
also tested the algorithm on cases in which different agents have
circles of visibility with different radii, and the system performed
equally well.

5.3 Number of agents and velocity
We performed tests with default settings and a varying number of
agents and velocity. We set the circle of visibility to 2km. The
length of each run was 70 hours of simulated time. Figure 9
contains the same four standard measurements of the prior ex-
periments, while Figure 10 shows the task fulfillment time. For
the prior two experiments, the fulfillment time graph is a shifted
waiting time graph, but since we use different velocities in this
experiment, the delivery time varies.

As Figure 10 shows, as the number of agents increases, the
number of searching agents and the agent searching time both
increase, while the number of waiting tasks and the waiting time
both decrease. Once the number of agents falls below a threshold,
the agents cannot satisfy the tasks at the current incoming rate,
and the system does not reach equilibrium. Clearly, the higher the
velocity, the lower the threshold. In all cases where equilibrium is
reached, the same number of tasks are satisfied per hour. By
increasing the velocity, agents reach tasks faster, but there are
more agents looking for tasks.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000
Elapsed time

S
ea

rc
h

in
g

 a
g

en
ts

0.5km Visibility

2km Visibility

0

1

2

3

4

5

0 500 1000 1500 2000
Elapsed time

A
g

en
t

se
ar

ch
in

g
 t

im
e

(m
in

.)

0.5km Visibility

2km Visibility

0
100
200
300
400
500
600
700
800
900

1000

0 500 1000 1500 2000

Elapsed time

W
ai

ti
n

g
 t

as
ks

0.5km Visibility

2km Visibility

0

10

20

30

40

50

60

70

0 500 1000 1500 2000

Elapsed time

T
as

k
w

ai
ti

n
g

 t
im

e
(m

in
.)

0.5km Visibility

2km Visibility

Figure 7: Results of two runs of our system with varying circles
of visibility.

0

20

40

60

80

100

0 1 2 3 4 5

Radius of visibility

S
ea

rc
h

in
g

 a
g

en
ts

0

1

2

3

4

5

6

0 1 2 3 4 5
Radius of visibility

A
g

en
t

se
ar

ch
in

g
 t

im
e

(m
in

.)

0

50

100

150

200

250

300

350

0 1 2 3 4 5

Radius of visibility

W
ai

ti
n

g
 t

as
ks

0

5

10

15

20

25

30

35

0 1 2 3 4 5

Radius of visibility

T
as

k
w

ai
ti

n
g

 t
im

e
(m

in
.)

Figure 8: Results of our system as a function of the radius of
the circle of visibility.

0

100

200

300

400

500

600

0 200 400 600 800
Number of agents

S
ea

rc
hi

ng
 a

ge
nt

s

50km/h
40km/h
30km/h
20km/h
Shehory

0

10

20

30

40

50

60

0 200 400 600 800
Number of agents

A
g

en
t

se
ar

ch
in

g
 t

im
e

(m
in

.)

50km/h
40km/h
30km/h
20km/h
Shehory

0

100

200

300

400

500

600

700

0 200 400 600 800
Number of agents

W
ai

ti
n

g
 t

as
ks

50km/h
40km/h
30km/h
20km/h
Shehory

0

10

20

30

40

50

60

0 200 400 600 800
Number of agents

T
as

k
w

ai
ti

n
g

 t
im

e
(m

in
.)

50km/h
40km/h
30km/h
20km/h
Shehory

Figure 9: Results of our system varying the number of agents
and the velocity. Results from Shehory et al. with a speed limit
of 50km/h are also shown for comparison.

15

35

55

75

95

115

0 200 400 600 800
Number of agents

T
as

k
fu

lf
ill

m
en

t
ti

m
e 50km/h

40km/h
30km/h
20km/h
Shehory

Figure 10: Average task fulfillment time of our system varying
the number of agents and the velocity. Results from Shehory et
al. with a speed limit of 50km/h are also shown for comparison.

0

2

4

6

8

10

12

0 1 2 3 4
Weight propagation constant (k)

Ta
sk

 w
ai

tin
g

tim
e

600 agents
700 agents

800 agents
900 agents

Figure 11: Results varying the weight propagation constant for
different agent:task ratios.

These results demonstrate that our algorithm outperforms the
system of Shehory et al. Shehory et al.’s experiments were run
with a maximum velocity of 50km/h. As shown in Figure 10, our
system fulfills tasks in less than half an hour using 250 agents,
while their system requires approximately 600 agents to fulfill the
tasks in the same amount of time. Shehory et al. use a city grid in
which 10% of the city streets are closed, while we use a full grid.
Examining their delivery time (fulfillment time minus waiting
time), we noticed that they do not appear to be paying a signifi-
cant penalty for not having a completely full grid, so we omitted a
partial grid for our experiments. The agents in our system always
travel at the maximum velocity when going towards a task node.
In Shehory et al.’s system, even when the agent is approaching a
task node it repels other agents. Furthermore, if the agent is
farther from a task it will approach it at a lower speed. It will only
reach the speed limit when the attraction force becomes large
enough. As a result, there is a significant reduction in average
velocity, causing an increase in the waiting time. Note that, with
400 agents, our system with a velocity of 30km/h has a compara-
ble waiting time as theirs with a maximum velocity of 50km/h.

5.4 Weight system
We experimented to find the optimal weight propagation constant
k for different task-agent ratios. For the experiment, we used 150
tasks with weights ranging from 6 to 10 while varying the number
of agents from 600 to 900 and k from 0.6 to 4. Note that since the

maximum task weight is 10, using k=4 is equivalent to using no
weight propagation at all since the weight of agents immediately
adjacent to the task is 10/24, which is less than 1 and thus set to 0.
Figure 11 demonstrates that there is no substantial difference in
performance for k values ranging from 0.6 to 2. For values of k
that are greater than 2, the system slows down significantly for a
lower number of agents, but systems with a higher number of
agents still perform well since, on average, more agents are closer
to the tasks because of the higher density of agents. The optimal
value of k decreases as number of agent increases since systems
with a higher number of agents can afford more redundancy
(lower values of k mean that the weight is going to be decreased at
a slower rate and thus more agents will be attracted to a task).

6. RELATED WORK
Research in distributed systems has developed many algorithms
that can be done locally in a distributed network. Locality is
defined as a limit on time or distance, which is independent of the
size of the network. Since the network has graph structure, many
of these algorithms arise from graph theory. In such settings,
many distributed graph theory algorithms attempt to find global
solutions via local communication [Naor and Stockmeyer, 1993].
In contrast, our algorithm is purely local and does not require or
attempt to find the global maximum.

Computational geometry techniques similar to the one presented
in this paper have been used to solve problems in a wide range of
areas where geographical position is important. Voronoi diagrams
– the dual of Delaunay triangulations – have been used to place
supermarkets so that they are evenly spaced around town. In the
Networking field, several routing algorithms also make use of
Voronoi diagrams and Delaunay triangulations. Meguerdichian, et
al. [2001] uses Voronoi diagrams for optimal coverage calculation
in wireless networks. Gao et al. [2001] propose a new routing
graph for mobile ad hoc networks based on Delaunay triangula-
tions.

Traditional AI research on task allocation has concentrated either
on negotiation or on market strategies such as contracts [Sand-
holm and Lesser, 1995] or auctions that require substantial
amount of communication, thus limiting their usability in large
scale MAS. In a distributed system of reasonable complexity, the
computation and communication costs of determining the optimal
allocation far outweighs the improvement in the solution [Corkill
and Lesser, 1986].

Most of the research in MAS has focused on finding approaches
that impose a set of simple rules which individual agents have to
follow locally without the need for global coordination. In Ephrati
et al. [1995], the effects of introducing a filter-override mecha-
nism to reduce the amount of required communication are studied
by conducting a set of experiments in the Tileworld system.
Shehory and Kraus [1998], and Learman and Shehory [2000]
propose distributed algorithms of low complexity for the forma-
tion of coalitions, which is useful when a group of agents can be
more efficient when working together or when no single agent by
itself can satisfy a task. Shehory [2000] addresses the problem of
locating agents without traditional approaches that require “mid-
dle” agents and thus impose infrastructure, protocol and
communications overheads. The algorithm consists of an agent
contacting only its neighbors who, in turn, can contact their own
neighbors allowing information to propagate across the network.

Shehory et al. [1998] describe a Physics-based approach for
distributed task allocation in the geographical domains that we
address in this paper. Their solution is based on assumption that
these domains are modeled well by a particle system governed by
regular physics laws. While benefiting by being able to use many
already developed formulations, this approach suffers from some
limitations as well. In particular, only distance and not adjacency
information is used, and it is not always beneficial for agents to
repel each other. For example, they should not repel each other as
they approach nearby tasks, or as they approach a task that re-
quires multiple agents. In our system, we address this issue by
having agents repel each other only in the absence of adjacent
tasks. One limitation of our system is that in the presence of a
dense cluster of task nodes, the agents will not be aware of task
nodes that are only adjacent to other task nodes until those other
task nodes are satisfied.

7. SUMMARY AND FUTURE WORK
We have presented an algorithm for efficient task allocation in
distributed environments. Our approach uses computational
geometry techniques to efficiently determine adjacency informa-
tion for the agents. This adjacency information allows for agents
to use a set of local rules to determine their course of action as
they search for a nearby task to satisfy, therefore serving as an
efficient filter for determining which neighboring nodes should be
relevant in the decision making process.

The algorithms presented in this paper were implemented. We
experimented with different system settings to observe how the
system performed and to find optimal configurations. The algo-
rithms yield improved task allocations compared to previous
algorithms proposed for similar environments.

There are several interesting areas for future work:

• We only analyzed average results. One could analyze the
distribution of these values to see whether some tasks wait
much longer than others.

• One could experiment with heterogeneous agents (i.e., agents
with different velocities).

• In this paper, we attempted to maximize the number of tasks
fulfilled by agents. One could also consider other cost metrics,
such as maximizing agent idle time. If the system is in equilib-
rium, each agent fulfills the same number of tasks per hour. In
many cases all agents could considerably decrease their veloci-
ties while still maintaining equilibrium. In the extreme, every
agent could remain idle for a period of time, in order to con-
serve resources. While this would increase the fulfillment time,
it would not affect the average number of tasks fulfilled by the
agents. So from the agents’ point of view, this could be benefi-
cial. Perhaps a learning algorithm could be used for the agents
to determine when and for how long they should remain idle.

• Given this triangulation framework, agents can now easily
propagate information by communicating to their few select
neighbors. It would be interesting to try to develop a look-
ahead algorithm for determining which task to pursue based on
adjacency information.

• One could consider adopting some cooperation strategies aimed
at increasing the common utility, and analyze how well coop-
erative agents will perform in the presence of selfish agents.

ACKNOWLEDGEMENTS
We are very grateful to Liz Bradley and Sarit Kraus for their
suggestions and comments on earlier drafts. The research reported
in this paper was supported in part by the National Science
Foundation, grants IIS-9978343 and IRI-9618848 to Harvard
University and a Microsoft Research graduate fellowship.

REFERENCES
[1] Barber, C. B., Huhdanpaa, H. The Qhull software library.

URL: http://www.geom.umn.edu/software/qhull/
[2] Corkill, D. D., and Lesser, V. R. The use of meta-level

Control for coordination in a distributed problem dolving
network Proc. Int. Joint Conf. On AI, Karlsruhe, Germany,
pp 748-756, 1986.

[3] Delaunay, B. Sur la sphère vide. Bull. Acad. Sci. USSR(VII),
Classe Sci. Mat. Nat., 793-800, 1934.

[4] Ephrati, E., Pollack, M. E., Ur, S. Deriving multi-agent
coordination through filtering strategies. Proceedings of 14th
International Joint Conference on Artificial Intelligence,
1995.

[5] Gao, J., Guibas, L., Hershberger, J., Zhang, L., Zhu, A.
Geometric Spanner for Routing in Mobile Networks. Mobi-
hoc 2001.

[6] Jennings, N.R. Coordination Techniques for Distributed
Artificial Intelligence. Foundations of Distributed Artificial
Intelligence, 1996.

[7] Learman, K., Shehory, O. Coalition Formation for Large-
Scale Electronic Markets Proceedings of the Fourth Interna-
tional Conference on Multiagent Systems, 2000.

[8] Malone, T. W. Modeling Coordination in Organizations and
Markets. Management Science 33, pp 1317-1332, 1987.

[9] Meguerdichian, S., Koushanfar, F., Potkonjak, M.,
Srivastava, M. Coverage Problems in Wireless Ad-hoc Sen-
sor Networks. Proceedings of the Twentieth Annual Joint
Conference of the IEEE Computer and Communications So-
cieties, 2001.

[10] Naor, M., Stockmeyer, L. What can be computed locally?
25th ACM Symposium on Theory of Computing, pp 184-
193, 1993.

[11] Preparata, F., Shamos, M. I. Computational geometry: An
introduction. Springer-Verlag New York Inc., 1985.

[12] Sandholm, T., Lesser, V. Issues in automated negotiation and
electronic commerce: Extending the contract net framework.
Proceedings of the First International Conference on Multi-
agent Systems, 1995.

[13] Shehory, O., Kraus, S., Yadgar, O. Goal-satisfaction in large-
scale agent-systems: a transportation example. Proceedings
of the 5th International Workshop on Intelligent Agents V
(ATAL-98), 1998.

[14] Shehory, O. A scalable agent location mechanism. In N.R.
Jennings and Y. Lesperance, eds., Intelligent Agents VI -
Lecture Notes in Artificial Intelligence. Springer-Verlag,
Berlin, 2000.

[15] Shehory, O., Kraus, S. Methods for task allocation via agent
coalition formation. Artificial Intelligence, 1998.

