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Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their
wide applications formultiple purposes, including data cleaning, and near duplicate detection.This paper considers graph similarity
joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold.
Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification
framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising
candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to
reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a
MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are
demonstrated by extensive experimental results.

1. Introduction

As the most commonly used abstract data structure, graphs
have been widely used for modeling the data in the fields of
bioinformatics, multimedia, social networking, and the like.
As a consequence, efforts were dedicated to various problems
in managing and analyzing graph data, for example, frequent
subgraph mining [1], structure search and indexing [2, 3],
similarity search [4, 5], and so forth.

This paper focuses on graph similarity join, one basic
operation for processing graph data. Given two graph object
sets 𝑅 and 𝑆 and a distance threshold, a graph similarity
join returns all the pairs of graph objects, respectively,
from 𝑅 and 𝑆, the distances of which are no larger than
the threshold. Graph similarity join has a wide spectral of
applications, especially in preprocessing of graph mining, for
example, structural data cleaning and near replicate structure
detection.

The most widely applied measure for determining graph
similarity is graph edit distance (GED) [6, 7]. Compared with
alternative measures, GED has at least three advantages: (1) it
allows changes in both vertices and edges; (2) it reflects the
topological information of graphs; (3) it is a metric that can

be applied to any type of graphs. Consequently, we employ
GED to quantify graph similarity in this paper. It is shown
that exact computation of GED is NP-hard [8].

The state-of-the-art algorithm for graph similarity join
is GSimJoin [9], which adopts the filtering-verification
framework. In particular, signatures are generated for every
graph with path-based 𝑞-gram approach for count filtering
(cf. Section 2.2). In the phase of verification, GED com-
putation is invoked for candidate pairs via anA∗-based
algorithm. GSimJoin is an in-memory algorithm, the perfor-
mance and scalability of which are restricted to the available
memory of a machine. The dataset size presented in the
experimental study is limited in the thousands, since a graph
similarity join operation in the worst case needs 𝑂(|𝑅||𝑆|)

count filtering condition checks and similarity computations
thereafter. The era of big data calls for scalable algorithms to
support large-scale data processing. This paper attempts to
address the challenges on massive graph data.

MapReduce is a well-known programming framework
to facilitate processing large-scale data in parallel
[10]. MassJoin [11] is a MapReduce-based algorithm for
similarity join on strings. Nonetheless, there has been no
existing distributed algorithm for graph similarity joins.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 749028, 11 pages
http://dx.doi.org/10.1155/2014/749028

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192437831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

Inspired by [11], this paper investigates graph similarity joins
based on MapReduce.

We firstly propose MGSJoin, a MapReduce-based algo-
rithm following the filtering-verification framework. It
employs signatures of path-base 𝑞-grams as keys and the
corresponding graphs as values, forming key-value pairs.
Through filtering, the graph pairs, whose common signatures
are less than the threshold given by count filtering condition,
are filtered out. The remaining pairs constitute the candidate
set, sent to verification thereafter. Due to the potentially large
number of key-value pairs that may incur large communi-
cation cost, we incorporate the Bloom filter technique by
adding generated signatures to spectral Bloom filters. This
effectively reduces the number of intermediate key-value
pairs and, thus, the complexity of network transmission,
while the filtering capacity is mostly preserved. Furthermore,
we employmultiway join to improve the verification phase by
condensing two MapReduce rounds into one while devising
a MapReduce-based method to calculate GED.

To the best of our knowledge, it is among the first
attempts to present a MapReduce-based graph similarity join
algorithm. Our contribution can be summarized as follows.

(i) We redesign the current in-memory graph similarity
join algorithm and adapt it to the MapReduce frame-
work. The resulting baseline algorithm is capable of
processing large-scale graph datasets.

(ii) We propose to use Bloom filters to reduce inter-
mediate key-value pairs in the filtering phase while
sacrificing little filtering capacity. Besides, we present
a multiway join optimized verification strategy such
that the number of required MapReduce rounds is
reduced too. Moreover, a MapReduce-based method
is designed forGED calculation, which can handle the
calculation for large graphs.

(iii) We implement the proposed algorithm MGSJoin and
conduct a wide range of experiments on a real dataset.
The results show that both the efficiency and the
scalability of MGSJoin are superior to the current
solutions.

This paper is constructed as follows. In Section 2, prob-
lem definition and background are provided. We propose
the basic algorithm in Section 3, integrate Bloom filters
in Section 4, and optimize the verification in Section 5.
Section 6 lists the experimental results and analyses. Related
works are described in Section 7, followed by conclusion in
Section 8.

2. Preliminaries

2.1. Problem Definition. In this paper, we focus on simple
graph, namely, an undirected graph without self-loops or
multiple edges. A labeled graph can be represented as a
quadruple 𝑔 = ⟨𝑉, 𝐸, 𝑙

𝑉
, 𝑙
𝐸
⟩, where 𝑉 is a set of vertices, and

𝐸 ⊆ 𝑉 × 𝑉 is a set of edges. 𝑙
𝑉
and 𝑙
𝐸
are label functions

that assign labels to vertices and edges, respectively. 𝑉(𝑟)

denotes the vertex set of 𝑟, and𝐸(𝑟) denotes its edge set. |𝑉(𝑟)|

and |𝐸(𝑟)| represent the numbers of vertices and edges in 𝑟,

respectively. 𝑙
𝑉

(𝑢) denotes the label of 𝑢 ∈ 𝑉, and 𝑙
𝐸
(𝑒(𝑢, V))

denotes the label of the edge between 𝑢 and V, 𝑢, V ∈ 𝑉.
Additionally, we use |𝑔| = |𝑉| + |𝐸| to depict the size of graph
𝑔.

Definition 1 (graph pair). A graph pair is a tuple denoted by
⟨𝑟, 𝑠⟩, where 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,𝑅 and 𝑆 are two sets of graph objects,
respectively.

Definition 2 (graph isomorphism). A graph 𝑟 is isomorphic
to another graph 𝑠, denoted by 𝑟 = 𝑠, if there exists a bijection
𝑓 : 𝑉(𝑟) → 𝑉(𝑠) such that

(1) ∀𝑢 ∈ 𝑉(𝑟)(𝑓(𝑢) ∈ 𝑉(𝑠) ∧ 𝑙
𝑉

(𝑢) = 𝑙
𝑉

(𝑓(𝑢)));
(2) ∀𝑒(𝑢, V) ∈ 𝐸(𝑟)(𝑒(𝑓(𝑢), 𝑓(V)) ∈ 𝐸(𝑠) ∧ 𝑙

𝐸
(𝑒(𝑢, V)) =

𝑙
𝐸
(𝑒(𝑓(𝑢), 𝑓(V)))).

Definition 3 (graph edit operation). A graph edit operation is
an edit operation to transform one graph to another. It can be
one of the following six operations:

(i) insert an isolated vertex into the graph;
(ii) delete an isolated vertex from the graph;
(iii) change the label of a vertex;
(iv) insert an edge between two disconnected vertices;
(v) delete an edge from the graph;
(vi) change the label of an edge.

Definition 4 (graph edit distance). The graph edit distance
(GED) between graphs 𝑟 and 𝑠, denoted by GED(𝑟, 𝑠), is the
minimum number of edit operations that transform 𝑟 to a
graph isomorphic to 𝑠.

Example 5. Figure 1(a) illustrates the molecule named
cyclopropanone, while Figure 1(b) shows another molecule
which does not exist. When recording cyclopropanone into
database, errors may be made and the molecule can become
the one shown in Figure 1(b). Manual checking is required
to find the errors, which is very difficult. Seeing that the
two molecules are very similar, we can adapt the GED to
measure the similarity so that graph similarity join can be
applied to resolve the problem. Take the two molecules as
an example. First change the bond (𝐶1, 𝑂) from double to
single and then transform one of the atoms 𝐻 bonded with
𝐶3 into 𝑁, through which a molecule isomorphic to the one
in Figure 1(b) is obtained. So at least two edit operations
are required, namely, the graph edit distance. Given the
threshold 𝜏 = 4, the two graphs are regarded similar.

Problem 6 (graph similarity join). Given two sets of graph
objects 𝑅 and 𝑆 and a distance threshold 𝜏 as input, a graph
similarity join returns a result set {⟨𝑟, 𝑠⟩ | 𝑟 ∈ 𝑅 ∧ 𝑠 ∈

𝑆 ∧ GED(𝑟, 𝑠) ≤ 𝜏}.

2.2. Count Filtering

Definition 7 (path-based 𝑞-gram [9]). A path-based 𝑞-gram
in a graph is a simple path of length 𝑞. “Simple” means that
there is no repeated vertex in the path.
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Figure 1: Molecules.

The path-based 𝑞-grams of a graph constitute the graph
signatures, denoted by 𝑠𝑖𝑔 = ⟨𝑉, 𝐸, 𝑙

𝑉
, 𝑙
𝐸
⟩, where 𝑠𝑖𝑔 ⊆ 𝑟,|𝑉| =

𝑞+1, and |𝐸| = 𝑞. Let 𝑄
𝑟
be graph 𝑟’s signature set. We say 𝑠𝑖𝑔

and 𝑠𝑖𝑔
 are common if 𝑠𝑖𝑔 = 𝑠𝑖𝑔

. Note there can be multiple
𝑞-grams that correspond to one particular signature.

Lemma 8 (count filtering [9]). Graphs 𝑟 and 𝑠 satisfy the
distance constraints 𝜏 if the number of common signatures for
⟨𝑟, 𝑠⟩ is no less than 𝐿𝐵:

𝐿𝐵 = max (
𝑄𝑟

 − 𝜏 ⋅ 𝐷 (𝑟) ,
𝑄𝑠

 − 𝜏 ⋅ 𝐷 (𝑠)) , (1)

where 𝐷(𝑟) (resp., 𝐷(𝑠)) is the maximum number of affected
signatures in 𝑄

𝑟
(resp., 𝑄

𝑠
) when one edit operation is invoked

on 𝑟 (resp., 𝑠).

The count filtering condition check requires
𝑂(max(𝑑

𝑞

𝑟
|𝑉(𝑟)|, 𝑑

𝑞

𝑠
|𝑉(𝑠)|)), where 𝑑

𝑟
(resp., 𝑑

𝑠
) is the

average degree of 𝑟 (resp., 𝑠). A graph similarity join requires
pairwise count filtering condition checks, thus resulting in
a complexity of 𝑂(max(𝑑

𝑞

𝑟
|𝑉(𝑟)|, 𝑑

𝑞

𝑠
|𝑉(𝑠)|)|𝑅||𝑆|). This can

be intolerable on large-scale datasets. Next, we present a
scalable solution leveraging the MapReduce paradigm.

3. Framework

This section presents a MapReduce-based graph similarity
join algorithm, following the filtering-verification fashion.
The outline of the algorithm is listed below.

3.1. Filtering. Weallocate twoMapReduce jobs to the filtering
phase.

Job 1. Job 1 counts the same type of common signatures for
graph pairs. We use graphs as values and their correspond-
ing 𝑖𝑑s as keys to compose input key-value pairs. 𝑞-gram
signatures (denoted by 𝑠𝑖𝑔) are generated in the Map task.
We use the generated signatures as keys and 𝑖𝑑s of graphs as
values to form the output key-value pairs. As a consequence,
in the Reduce task, we can obtain graphs with common
signatures. For the same signature, a graph 𝑖𝑑 may appear

more than once, since there may exist several 𝑞-grams in a
graph corresponding to an identical signature. The function
for Map task is shown as follows.

Map:⟨𝑟𝑖𝑑, 𝑟⟩/⟨𝑠𝑖𝑑, 𝑠⟩ → ⟨𝑠𝑖𝑔, 𝑟𝑖𝑑/𝑠𝑖𝑑⟩

(1) input ⟨𝑟𝑖𝑑, 𝑟⟩ or ⟨𝑠𝑖𝑑, 𝑠⟩;
(2) generate 𝑞-gram signatures for each input

graph;
(3) emit ⟨𝑠𝑖𝑔, 𝑟𝑖𝑑⟩ or ⟨𝑠𝑖𝑔, 𝑠𝑖𝑑⟩ for each signature

with the 𝑖𝑑 of its corresponding graph.

The Reducer gets ⟨𝑠𝑖𝑔, 𝑙𝑖𝑠𝑡(𝑟𝑖𝑑/𝑠𝑖𝑑)⟩ in the Reduce task.
Wedefine𝑓

𝑟
(resp.,𝑓

𝑠
) to denote the occurrences of 𝑟𝑖𝑑 (resp.,

𝑠𝑖𝑑) in the 𝑙𝑖𝑠𝑡(V𝑎𝑙𝑢𝑒) of Reduce input and 𝑚
𝑓
to denote the

occurrences of graph pairs that share the input key (𝑠𝑖𝑔) of
Reduce, 𝑚

𝑓
= min(𝑓

𝑟
, 𝑓
𝑠
). 𝑚
𝑓
is calculated and output with

the corresponding graph pair. The function of Reduce task is
as follows.

Reduce:⟨𝑠𝑖𝑔, 𝑙𝑖𝑠𝑡(𝑟𝑖𝑑/𝑠𝑖𝑑)⟩ → ⟨𝑟𝑖𝑑, (𝑠𝑖𝑑, 𝑚
𝑓
)⟩

(1) get list of values consisting of 𝑟𝑖𝑑 and 𝑠𝑖𝑑 with
the specific key (𝑠𝑖𝑔);

(2) split the list of values into list of 𝑟𝑖𝑑 and list of
𝑠𝑖𝑑;

(3) for each pair ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩, where 𝑟𝑖𝑑 is from
𝑙𝑖𝑠𝑡(𝑟𝑖𝑑) and 𝑠𝑖𝑑 is from 𝑙𝑖𝑠𝑡(𝑠𝑖𝑑), calculate 𝑚

𝑓

and output ⟨𝑟𝑖𝑑, (𝑠𝑖𝑑, 𝑚
𝑓
)⟩.

Job 2. Job 2 counts the total common signatures for graph
pairs and checks the count filtering condition, after which the
set of candidate pairs is obtained. The Map function is listed
as follows.

Map:⟨𝑟𝑖𝑑, (𝑠𝑖𝑑, 𝑚
𝑓
)⟩ → ⟨𝑟𝑖𝑑, (𝑠𝑖𝑑, 𝑚

𝑓
)⟩

(1) read a ⟨𝑟𝑖𝑑, (𝑠𝑖𝑑, 𝑚
𝑓
)⟩ into Map task;

(2) emit ⟨𝑟𝑖𝑑, (𝑠𝑖𝑑, 𝑚
𝑓
)⟩, which is exactly the same

as it reads.
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We input ⟨𝑟𝑖𝑑, (𝑠𝑖𝑑, 𝑚
𝑓
)⟩ to theMap task and then output

exactly the same key-value pair. Therefore, the Reduce task
receives all the graph pairs generated in job 1 with the specific
𝑠𝑖𝑑. As the graph pair may have more than one type of
common signatures, 𝑚

𝑓
is summed with the same graph pair

for each identical signature, respectively. Subsequently, the
graph pairs with less than 𝐿𝐵 (1) common signatures will be
discarded. The remaining graph pairs are candidate pairs for
verification. The function for Reduce is as follows.

Reduce:⟨𝑟𝑖𝑑, 𝑙𝑖𝑠𝑡(𝑠𝑖𝑑 + 𝑚
𝑓
)⟩ → ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩

(1) receive output from Mappers, the specific 𝑟𝑖𝑑,
and a list of 𝑠𝑖𝑑 with 𝑚

𝑓
;

(2) sum 𝑚
𝑓
and calculate the number of common

signatures for each pair ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩;
(3) conduct the count filtering for each pair and

output pairs to DFS whose common signatures
are more than 𝐿𝐵.

3.2. Verification. In the verification phase, candidate pairs
⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ are to be verified, where the graphs 𝑟 and 𝑠 are
required; that is, join operations are necessary to retrieve
graphs 𝑟 and 𝑠 by their 𝑖𝑑’s. Hence, we allocate two MapRe-
duce jobs to join (𝑟𝑖𝑑, 𝑟), (𝑟𝑖𝑑, 𝑠𝑖𝑑), and (𝑠𝑖𝑑, 𝑠).

Job 1. Job 1 replaces 𝑠𝑖𝑑 with graph 𝑠. The map function takes
graph set 𝑆 and ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ as input and emits ⟨𝑟𝑖𝑑, 𝑠⟩, which is
listed as follows.

Map:⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩/⟨𝑠𝑖𝑑, 𝑠⟩ → ⟨𝑠𝑖𝑑, 𝑟𝑖𝑑/𝑠⟩

(1) input candidate pair ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ and graph set 𝑆;
(2) for ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩, emit ⟨𝑠𝑖𝑑, 𝑟𝑖𝑑⟩ and, for ⟨𝑠𝑖𝑑, 𝑠⟩,

emit it exactly, both of which take 𝑠𝑖𝑑 as the key.

TheReduce task gathers the list 𝑟𝑖𝑑 and graph 𝑠 for the key
𝑠𝑖𝑑 and then outputs the key-value pair ⟨𝑟𝑖𝑑, 𝑠⟩. The function
for Reducer is as follows.

Reduce:⟨𝑠𝑖𝑑, 𝑙𝑖𝑠𝑡(𝑟𝑖𝑑/𝑠)⟩ → ⟨𝑟𝑖𝑑, 𝑠⟩

(1) receive a list of 𝑟𝑖𝑑 and graph set 𝑆 with the
specific key 𝑠𝑖𝑑;

(2) for ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩, replace 𝑠𝑖𝑑 with 𝑠 and output pair
⟨𝑟𝑖𝑑, 𝑠⟩.

Job 2. Job 2 replaces 𝑟𝑖𝑑 with graph 𝑟, invokes label filtering
conditions, and calculates GED to find the similar graph
pairs.

The function for Map task is as follows.

Map:⟨𝑟𝑖𝑑, 𝑠⟩/⟨𝑟𝑖𝑑, 𝑟⟩ → ⟨𝑟𝑖𝑑, 𝑟/𝑠⟩

(1) input the candidate pair ⟨𝑟𝑖𝑑, 𝑠⟩ and graph set𝑅;
(2) emit the key-value pair it reads, where the group

key is 𝑟𝑖𝑑 for both cases.

The function for Reduce task is as follows.

Reduce:⟨𝑟𝑖𝑑, 𝑙𝑖𝑠𝑡(𝑟/𝑠)⟩ → ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩

(1) receive a list of values that consisted of graphs 𝑟

and 𝑠 corresponding to the key 𝑟𝑖𝑑;
(2) replace 𝑟𝑖𝑑 with graph 𝑟;
(3) calculate GED for pairs ⟨𝑟, 𝑠⟩ and output similar

pairs.

3.3. Correctness and Complexity Analysis. All graph pairs that
satisfy the edit distance constraints are returned error-free,
which justifies its correctness.

For algorithm complexity, we take all three phases—
Map, Reduce, and Shuffle—into consideration. I/O reading
overhead from distributed file system (DFS) is considered for
Map task, whereas I/O writing overhead into DFS is analyzed
for Reduce task. Both tasks also take time complexity into
consideration. Shuffle considers the network communication
cost.

Some parameters are defined preceding the analysis. |𝑔|

denotes the average size of a graph. 𝛼 means candidate ratio,
that is, the percentage of candidate pairs from all graph pairs,
and 𝛽 means the ratio of similar pairs from pairs that passed
count filtering. We assume that the size of key-value pair that
contains only graph IDs is 1.

In job 1 of filter phase, Map reads the data of graph sets
𝑅 and 𝑆 from DFS, the cost of which is 𝑂(|𝑔| ⋅ (|𝑅| + |𝑆|)).
Consider the worst case in Map task, where 𝑞-grams are
generated for each graph 𝑟(𝑠), and the number of signatures
generated is |𝑉|

𝑞

, so the time complexity for generating
𝑞-grams can be estimated as 𝑂(|𝑉|

𝑞

). Therefore, the time
complexity for Map task is 𝑂(|𝑉|

𝑞

⋅ (|𝑅| + |𝑆|)). As each
generated 𝑞-gram signature forms an output key-value pair
(the size for the pair is 1), the communication cost for Shuffle
is𝑂(|𝑉|

𝑞

⋅(|𝑅|+|𝑆|)). In theReduce task, all graphs represented
by 𝑖𝑑 containing the same signature are acquired and paired.
Thus, the I/O cost is 𝑂(|𝑅||𝑆|). Then, the occurrences of
𝑟𝑖𝑑 and 𝑠𝑖𝑑 are counted. In other words, all the key-value
pairs generated from the Map task are counted, so the time
complexity for Reduce is 𝑂(|𝑉|

𝑞

⋅ (|𝑅| + |𝑆|)).
Consider job 2 in filter phase, where all the output key-

value pairs from job 1 are read intoMap task of job 2, so the IO
cost is 𝑂(|𝑅||𝑆|). Map outputs the key-value pairs it reads, so
the time complexity forMap task and communication cost for
Shuffle are𝑂(|𝑅||𝑆|). In Reduce task, all pairs are traversed, so
the time complexity is𝑂(|𝑅||𝑆|). As we have 𝛼|𝑅||𝑆| candidate
key-value pairs, the IO cost for Reduce task is 𝑂(𝛼|𝑅||𝑆|).

In verification phase of job 1, Map reads the candidate
pairs represented by ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ and graph set 𝑆 from DFS,
where the IO overhead requires 𝑂(𝛼|𝑅||𝑆| + |𝑔||𝑆|). The time
complexity of Map task and communication cost of Shuffle
are also 𝑂(𝛼|𝑅||𝑆| + |𝑔||𝑆|), because in Map function we just
emit what has been exactly input into. Then, in Reduce task,
we replace 𝑠𝑖𝑑with graph 𝑠, the time complexity is𝑂(𝛼|𝑅||𝑆|),
and the IO overhead is 𝑂(𝛼|𝑔||𝑅||𝑆|).

In verification phase of job 2, Map reads the candidate
pairs represented by ⟨𝑟𝑖𝑑, 𝑠⟩ and graph set 𝑅 from DFS,
where the IO overhead requires 𝑂(|𝑔||𝑅|(𝛼|𝑆| + 1)). The
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Input: graph object sets 𝑅 and 𝑆; GED threshold 𝜏

Output: similar graph pairs ⟨𝑟, 𝑠⟩

(1) Filter
(2) Job 1: count the same type of common signatures for graph pairs;
(3) Job 2: count the total common signatures and check the count filtering fir graph pairs;
(4) Verification
(5) Job 1: replace sid with graph 𝑠;
(6) Job 2: replace rid with graph 𝑟 and calculate GED for candidate pairs;

Algorithm 1:MGSJoin.

(1)Map ⟨𝑟𝑖𝑑, 𝑟⟩ / ⟨𝑠𝑖𝑑, 𝑠⟩ → ⟨𝑟𝑖𝑑, 𝑠𝑏𝑓
𝑟
⟩ / ⟨𝑠𝑖𝑑, 𝑠𝑏𝑓

𝑠
⟩

(2) create SBF for each graph and insert the generated 𝑞-gram signatures into it;
(3) output ⟨𝑟𝑖𝑑, 𝑠𝑏𝑓

𝑟
⟩ or ⟨𝑠𝑖𝑑, 𝑠𝑏𝑓

𝑠
⟩;

(4) Shuffle conduct Cartesian product between pairs ⟨𝑟𝑖𝑑, 𝑠𝑏𝑓
𝑟
⟩ and pairs ⟨𝑠𝑖𝑑, 𝑠𝑏𝑓

𝑠
⟩;

(5) Reduce ⟨⟨𝑟𝑖𝑑, 𝑠𝑏𝑓
𝑟
⟩ , 𝑙𝑖𝑠𝑡 (⟨𝑠𝑖𝑑, 𝑠𝑏𝑓

𝑠
⟩)⟩ → ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩

(6) for any ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩, calculate the intersection of 𝑠𝑏𝑓
𝑟
and 𝑠𝑏𝑓

𝑠
and estimate

the number of common signatures;
(7) invoke the count filtering for each pair ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ and output it if it passes the condition;

Algorithm 2: Replacement of filter of Algorithm 1.

time complexity of Map task and communication cost of
Shuffle are also 𝑂(|𝑔||𝑅|(𝛼|𝑆| + 1)) for the same reason above.
Then, in Reduce task, we first replace 𝑟𝑖𝑑 with graph 𝑟 and
then calculate GED for graph pairs. The GED calculation by

theA∗-based algorithm requires 𝑂(|𝑉|
|𝑉|

). In the worst case,

the time complexity of Reduce is 𝑂(𝛼|𝑅||𝑆||𝑉|
|𝑉|

). Finally,
similar graph pairs are emitted into DFS, which requires
𝑂(𝛼𝛽|𝑅||𝑆|).

4. Incorporating Bloom Filters

In the filtering phase of Algorithm 1, twoMapReduce jobs are
required, with many intermediate key-value pairs generated
and transmitted. These increase the I/O and communication
cost, which can be fairly time-consuming. This section
introduces the Bloom filter technique to reduce such cost.
Next, we first recall the concept of spectral Bloom filters.

4.1. Spectral Bloom Filter. Bloom filters [12] are space efficient
data structures which allow fast membership queries over a
given set. A Bloom filter uses 𝑘 hash functions ℎ

1
, ℎ
2
, . . . , ℎ

𝑘

to hash elements into an array of size 𝑚. For an element 𝑒 in
the set, the bit at positions ℎ

1
(𝑒), ℎ
2
(𝑒), . . . , ℎ

𝑘
(𝑒) in the array is

set to 1. Given a query item 𝑞, we check its membership in the
set by examining the bits at positions ℎ

1
(𝑞), ℎ
2
(𝑞), . . . , ℎ

𝑘
(𝑞)

of the array. The item 𝑞 is reported to be contained in the
set if (and only if) all the aforementioned bits are 1. This
method brings a small probability of false-positive; that is,
it may return a positive result for an item which actually is
not contained in the set but no false-negative while gaining
substantial space savings [13].

Spectral Bloom filter (SBF) [14] generalized the basic
Bloom filter to be able to record the element frequency,

which is thus adopted in this paper. SBF is represented by
⟨𝐴, 𝑓⟩, where 𝐴 is a set and 𝑓 is a map from 𝐴 to natural
numbers; that is, 𝑓 : 𝐴 → 𝑁, where 𝑁 is the universe of
natural numbers. SBF replaces the bit vector with a vector
of 𝑚 counters. For insertion of item 𝑒, the counters 𝐶 =

{𝐶
ℎ
1
(𝑒)

, 𝐶
ℎ
2
(𝑒)

, . . . , 𝐶
ℎ
𝑘
(𝑒)

} are increased by 1 for insertion and
decreased by 1 for deletion. Let 𝑓(𝑞) denote the frequency of
𝑞. A basic query for SBF on an item 𝑞 returns an estimation
on 𝑓(𝑞); that is, 𝑓(𝑞) = min

𝑖∈{1,...,𝑘}
{𝐶
ℎ
𝑖
(𝑞)

}. Note that, similar
to Bloom filters, SBF also never underestimate 𝑓(𝑞).

4.2. Algorithm. Incorporating SBF not only reduces the num-
ber of key-value pairs but also contracts the two MapReduce
jobs into one in the filtering phase. In particular, the Map
task takes graph sets 𝑅 and 𝑆 as input. Then, we create
a SBF for each graph by adding the 𝑞-gram signatures.
Cartesian product is conducted for the output key-value
pairs ⟨𝑟𝑖𝑑, 𝑠𝑏𝑓

𝑟
⟩ and ⟨𝑠𝑖𝑑, 𝑠𝑏𝑓

𝑠
⟩. In the Reduce task, for

each graph pair, their SBFs are intersected to estimate the
number of common signatures. By intersecting two SBFswith
counters 𝐶

(1) and 𝐶
(2), respectively, it returns another SBF

with counters𝐶
∗,𝐶∗
𝑖

= min{𝐶
(1)

𝑖
, 𝐶
(2)

𝑖
}, 𝑖 ∈ {1, . . . , 𝑚}. Hence,

the number of common signatures could be estimated by
⌊(1/𝑘) ∑

𝑚

𝑖=1
𝐶
∗

𝑖
⌋. Subsequently, the graph pairs, which have

less than 𝐿𝐵 common signatures given by count filtering
condition, will be discarded, and the remaining pairs form
the candidate set.

We provide the pseudocode of the aforementioned pro-
cess in Algorithm 2.

4.3. Correctness and Complexity Analysis. There is small
probability that the false positive case happens with SBF.
Specifically, a query for an item 𝑞 in SBF on 𝑓(𝑞), 𝑓(𝑞)
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Table 1: Complexity analysis of filtering.

Phase Job 1 Job 2 +SBF

Map I/O 𝑂 (
𝑔

 ⋅ (|𝑅| + |𝑆|)) 𝑂 (|𝑅| |𝑆|) 𝑂 (
𝑔

 ⋅ (|𝑅| + |𝑆|))

Time 𝑂 ((|𝑉|
𝑞

⋅ (|𝑅| + |𝑆|)) 𝑂 (|𝑅| |𝑆|) 𝑂 (𝑘|𝑉|
𝑞

⋅ (|𝑅| + |𝑆|))

Shuffle 𝑂 ((|𝑉|
𝑞

⋅ (|𝑅| + |𝑆|)) 𝑂 (|𝑅| |𝑆|) 𝑂 (𝑚 |𝑅| |𝑆|)

Reduce I/O 𝑂(|𝑅||𝑆|) 𝑂 (𝛼 |𝑅| |𝑆|) 𝑂 (𝛼 |𝑅| |𝑆|)

Time 𝑂 ((|𝑉|
𝑞

⋅ (|𝑅| + |𝑆|)) 𝑂 (|𝑅| |𝑆|) 𝑂 (|𝑅| |𝑆|)

may be larger than 𝑓(𝑞). Therefore, the number of common
signatures estimated this way may be larger than the actual
value. Nonetheless, false-negative will never happen, which
ensures the correctness of the algorithm; in a certain case, the
pruning power of count filtering will be impaired. Besides,
false-positive will be less likely to happen if one carefully
chooses the hash functions and configures the sizes of
counters.

Then, we analyze the complexity. Let 𝑚 be the size of
a SBF. The Map task reads the entire sets 𝑅 and 𝑆, so its
I/O cost is 𝑂(|𝑔|(|𝑅| + |𝑆|)). Then, signatures are generated
and added to SBF, and 𝑘 hash values are calculated for each
signature.Thus, the time complexity forMap is𝑂(𝑘|𝑉|

𝑞

(|𝑅|+

|𝑆|)). Map emits the SBF for each input graph, and then
Cartesian product is conducted.The communication cost for
Shuffle is𝑂(𝑚

2

|𝑅||𝑆|). In the Reduce task, for each graph pair,
the number of common signatures is calculated and count
filtering condition is checked. Thus, the time complexity is
𝑂(|𝑅||𝑆|). Regardless of false-positive cases, the I/O cost is the
same as before. Denoting the improved algorithm by “+SBF,”
we summarize the complexity results in Table 1.

5. Optimizing Verification Phase

In verification phase, we need to calculate the GED of
candidate pairs. Nevertheless, it is not capable of finishing
the calculation with large graphs and threshold 𝜏. Therefore,
we devise a MapReduce-based method for GED calculation,
which is able of handling large-scale graphs. Besides, join
operations are required preceding the GED calculation to get
the entire graph.Thus, three relations 𝑅(𝑟𝑖𝑑, 𝑟)⋈𝐶(𝑟𝑖𝑑, 𝑠𝑖𝑑)⋈

𝑆(𝑠𝑖𝑑, 𝑠) are joined to obtain the input of the GED algorithm,
where 𝐶(𝑟𝑖𝑑, 𝑠𝑖𝑑) is the output of the filtering phase. Inspired
by the idea of multiway join, we can reduce the number of
required MapReduce jobs from two to one.

5.1. MapReduce for GED Calculation. TheGED calculation is
based onA∗ algorithm.A∗ constructs a search-tree, the node
of which represents a mapping status. A mapping status is
stored in an array (denoted by 𝑥), the index of which stands
for different vertices in graph 𝑟 and the corresponding value
stands for the vertices of graph 𝑠.A∗ explores the space of all
possible vertex mappings between two graphs in a best-first
search fashion with function (denoted by 𝑓(𝑥)) established
to determine the order in which the search visits vertex
mappings. 𝑓(𝑥) is a sum of two functions: (1) the distance
from the initial state to the current state (denoted by 𝑔(𝑥));

(2) a heuristic estimate of the distance from the current state
to the goal (denoted by ℎ(𝑥)). 𝑔(𝑥) and ℎ(𝑥) are calculated by
the following equations:

𝑔 (𝑥) = GED (𝑟
𝑝
, 𝑠
𝑝
) ;

ℎ (𝑥) = Γ (𝐿
𝑉

(𝑟
𝑝
) 𝐿
𝑉

(𝑠
𝑞
)) + Γ (𝐿

𝐸
(𝑟
𝑞
) , 𝐿
𝐸

(𝑠
𝑞
)) .

(2)

𝑟
𝑝
consists of the vertices that have been mapped and edges

connecting them, while 𝑟
𝑞
consists of the vertices unmapped

yet as well as their resident edges. The equation for ℎ(𝑥)

represents the label difference of two graphs.
The search space forA∗-based approach is very large,

requiring 𝑂(|𝑉|
|𝑉|

). In order to boost up the searching
procedure, parallelization is a common way to think about.
The naive way is to allocate different branches of search-
tree to different workers so that the searching procedure can
proceed in parallel. However the load is not balanced this way
so that the final runtime is determined on the worker with
the heaviest load. As a consequence, we devise aMapReduce-
based method to calculate GED, denoted by MRGED, which
reallocates the works after each MapReduce round.

The format of the key-value pairs to be manipulated by
MapReduce is ⟨𝑥, 𝑓(𝑥)⟩. The procedure of searching for the
result is through iterations that each iterationwalks down one
layer of the search-tree.

5.2. Multiway Join. In relational database, a multiway join
can process 𝑇

1
(𝐴, 𝐵) ⋈ 𝑇

2
(𝐵, 𝐶) ⋈ 𝑇

3
(𝐶, 𝐷) together in one

round, where 𝑇
𝑖
(𝑋, 𝑌) is a relational table with attributes

𝑋 and 𝑌 (Algorithm 3). Following the same idea, we can
consolidate the twoMapReduce jobs required for verification
in Algorithm 1. Specifically, let ℎ be a hash function with
range 1, 2, . . . , 𝑛, where 𝑛

2 is the number of Reducers. We
associate eachReduce taskwith a pair (𝑖, 𝑗), where 𝑖, 𝑗 ∈ [1, 𝑛].
Each tuple 𝑡

2
(𝑏, 𝑐) ∈ 𝑇

2
(𝐵, 𝐶) is sent to theReducer numbered

(ℎ(𝑏), ℎ(𝑐)), while each tuple in𝑇
1
(𝑎, 𝑏) (resp.,𝑇

3
(𝑐, 𝑑)) is sent

to Reducers numbered (ℎ(𝑏), 𝑥) (resp., (𝑦, ℎ(𝑐))), for any 𝑥

(resp., 𝑦). Each Reduce task computes the join of the tuples
it receives. It is shown that multiway join is more efficient in
practice than two simple joins [15].

We encapsulate the improved verification procedure in
Algorithm 4.

5.3. Correctness and Complexity Analysis. One may immedi-
ately verify that Algorithm 4 correctly conducts the verifica-
tion.
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Input: 𝑟, 𝑠 are graphs from candidate pair ⟨𝑟, 𝑠⟩

Output: Graph edit distance of 𝑟 and 𝑠

(1) construct the search tree with the root node ⟨{0, 0, . . . , 0}, 0⟩;
(2) read nodes into Mapper. if the node read in is fully mapped, namely, 𝑟

𝑞
is empty, go to line (8);

(3)Map ⟨𝑥, 𝑓(𝑥)⟩ → ⟨𝑥, 𝑓(𝑥)⟩

(4) calculate 𝑓(𝑥) for node 𝑥 and check whether 𝑓(𝑥) > 𝜏. if it is, continue;
(5) create new nodes by mapping a vertex V

1
∈ 𝑟
𝑞
(𝑥) to a vertex V

2
∈ 𝑠
𝑞
(𝑥), for any V

1
and V

2
;

(6) output all the newly created nodes;
(7) back to line (2);
(8) gather the nodes, calculate the minimum 𝑓(𝑥) and return it;

Algorithm 3: MRGED (𝑟, 𝑠).

(1)Map ⟨𝑟𝑖𝑑, 𝑟⟩ / ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ ⟨𝑠𝑖𝑑, 𝑠⟩

(2) if ⟨𝑟𝑖𝑑, 𝑟⟩ then emit(⟨(ℎ(𝑟𝑖𝑑), 𝑥), ⟨𝑟𝑖𝑑, 𝑟⟩⟩) for any 𝑥 if ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ then
emit(⟨(ℎ (𝑟𝑖𝑑) , ℎ (𝑠𝑖𝑑)) , ⟨𝑟𝑖𝑑, 𝑠⟩⟩), for any 𝑦 else emit(⟨(𝑦, ℎ(𝑠𝑖𝑑)) , ⟨𝑠𝑖𝑑, 𝑠⟩⟩)

(3) Reduce ⟨(ℎ(𝑟𝑖𝑑), ℎ(𝑠𝑖𝑑)) , 𝑙𝑖𝑠𝑡(V𝑎𝑙𝑢𝑒)⟩ → ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩

(4) split 𝑙𝑖𝑠𝑡(V𝑎𝑙𝑢𝑒) into 𝑙𝑖𝑠𝑡 (⟨𝑟𝑖𝑑, 𝑟⟩) , 𝑙𝑖𝑠𝑡 (⟨𝑠𝑖𝑑, 𝑠⟩) and 𝑙𝑖𝑠𝑡 (⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩);
(5) denote 𝑙𝑖𝑠𝑡 (⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩) as joinkey;
(6) for ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ ∈ 𝑗𝑜𝑖𝑛𝑘𝑒𝑦𝑠, 𝑤ℎ𝑒𝑟𝑒 ⟨𝑟𝑖𝑑, 𝑟⟩ ∈ 𝑙𝑖𝑠𝑡 (⟨𝑟𝑖𝑑, 𝑟⟩) 𝑎𝑛𝑑 ⟨𝑠𝑖𝑑, 𝑠⟩ ∈ 𝑙𝑖𝑠𝑡 (⟨𝑠𝑖𝑑, 𝑠⟩) do
(7) if 𝑔𝑟𝑎𝑝ℎ𝑠 𝑟 𝑎𝑛𝑑 𝑠 𝑖𝑛 ⟨𝑟, 𝑠⟩ 𝑎𝑟𝑒 V𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒 then invoke MRGED

calculation else invoke the A∗-based in-memory algorithm

Algorithm 4: Replacement of verification of Algorithm 1.

In the multiway join based verification phase, the Map
task takes graph sets 𝑅 and 𝑆 and the candidate pairs repre-
sented by their 𝑖𝑑s as input. The input I/O cost is 𝑂(|𝑔|(|𝑅| +

|𝑆|) + 𝛼|𝑅||𝑆|). The key-value pair ⟨𝑟𝑖𝑑, 𝑟⟩ (resp., ⟨𝑠𝑖𝑑, 𝑠⟩) is
sent to 𝑛 Reduce tasks numbered (𝑟𝑖𝑑, 𝑥) (resp., (𝑦, 𝑠𝑖𝑑)) for
any𝑥 (resp.,𝑦), whereas the key-value pair ⟨𝑟𝑖𝑑, 𝑠𝑖𝑑⟩ is sent to
the only Reduce task numbered (ℎ(𝑟𝑖𝑑), ℎ(𝑠𝑖𝑑)). As a result,
the communication cost for Shuffle is 𝑂(𝑛|𝑔|(|𝑅| + |𝑆|) +

𝛼|𝑅||𝑆|), where 𝑛
2 is the number of Reducers. In the Reduce

task, all candidate graph pairs go through edit distance
computation. Pairs with larger size go through MRGED,
while pairs with smaller size go throughA∗. For simplicity,
the complexity of GED calculation is regarded the same as
the baseline algorithm. Labelling the resulting algorithmwith
“+MJ,” we summarize the complexity results in Table 2.

6. Experiments

6.1. Experiment Setup. We conducted experiments on several
publicly available real datasets but only present the results
on Pubchem (http://pubchem.ncbi.nlm.nih.gov) due to the
interest of space. The dataset is constructed by sampling
1,000,000 graphs from Pubchem.

Amazon cloud services were used as our experiment
platform. Specifically, we used Elastic Compute Cloud (EC2),
in which the computing nodes are called instances. In the
experiment 31 instances were used by default—one set as
master node and others as worker nodes. The standard
configuration of all EC2 instances is m1.small, one CPU
of single core with 1.7 GB memory running Hadoop 1.1.2
(Table 3).

6.2. Evaluating Filters. In order to evaluate the effectiveness
of our filtering techniques, we use the term “Basic” for the
baseline algorithm for processing graph similarity joins based
onMapReduce. “+SBF” denotes filtering improved algorithm
of Basic by incorporating SBF.

The algorithm efficiency has been studied and shown
in Figure 2(a). However, the pruning power is somewhat
impaired, so we conducted the experiment to record the
increase of candidate pairs through “+SBF” (cf. Figure 2(b)).
It can be revealed that “+SBF” outweigh “Basic” in efficiency
by sacrificing little pruning power. When 𝜏 = 5, less than 300
more candidate pairs are generatedwhile about 5,000 seconds
are reserved.

6.3. Evaluating Verification. The verification was evaluated
with candidate pairs generated by Basic. Term “+MJ”
denotes applying multiway join in verification, while
“+MRGED” denotes adapting alternative MapReduce-based
GED calculation. We use term “MGSJoin” to indicate the
basic algorithm incorporating both techniques. Figure 3(a)
shows the runtime comparison between +MRGED

and MGSJoin. The result illustrates the superiority of
applying multiway join. When 𝜏 = 5, algorithm with
multiway join is about 6,000 seconds faster than with
ordinary joins. Figure 3(b) presents the result of evaluating
MRGED, where Basic and +MRGED are compared. It can
be observed that the runtime of both algorithms grows
exponentially. When 𝜏 equals 1, the Basic finishes quicker
than +MRGED (162 s and 204 s, resp.), while 𝜏 equals 2; the
+MRGED outweighs Basic (the runtime is 712 s and 580 s,
resp.). This is because the calculation required for 𝜏 = 1
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Table 2: Complexity analysis of verification.

Phase Job 1 Job 2 +MJ

Map I/O 𝑂 (𝛼 |𝑅| |𝑆| +
𝑔

 |𝑆|) 𝑂 (
𝑔

 |𝑅| ⋅ (𝛼 |𝑆| + 1)) 𝑂 (
𝑔

 (|𝑅| + |𝑆|) + 𝛼 |𝑅| |𝑆|)

Time 𝑂 (𝛼 |𝑅| |𝑆| +
𝑔

 |𝑆|) 𝑂 (
𝑔

 |𝑅| ⋅ (𝛼 |𝑆| + 1)) 𝑂 (𝑛 (|𝑅| + |𝑆|) + 𝛼 |𝑅| |𝑆|)

Shuffle 𝑂 (𝛼 |𝑅| |𝑆| +
𝑔

 |𝑆|) 𝑂 (
𝑔

 |𝑅| ⋅ (𝛼 |𝑆| + 1)) 𝑂 (𝑛
𝑔

 (|𝑅| + |𝑆|) + 𝛼 |𝑅| |𝑆|)

Reduce I/O 𝑂 (𝛼
𝑔

 ⋅ |𝑅| |𝑆|) 𝑂 (𝛼𝛽 |𝑅| |𝑆|) 𝑂 (𝛼𝛽 |𝑅| |𝑆|)
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Figure 2: Evaluating filtering.

Table 3: Dataset statistics.

Dataset |𝑅| |𝑉| |𝐸| Disk size (GB)
Enamine 1,000,000 52.32 50.37 0.7

is small, where the MRGED is clumsy compared withA∗,
whereas when 𝜏 = 2 more calculation is required so that the
advantage of MRGED comes out. When 𝜏 is within the range
of 3–5 Basic is unable to finish because the large calculation
drives Basic out of memory.

6.4. Comparing with State-of-the-Art Method. We compared
our algorithm with the state-of-the-art method, GSimJoin.
In Figure 4(a), we chose 10,000 graphs in order to compare
with GSimJoin and the result witnesses the obvious supe-
riority of MGSJoin over GSimJoin. Figure 4(b) is drawn in
log scale, which varies the number of graphs and records the
elapsed time. Both algorithms grow linear in the figure, which
reflect their exponential growth. MGSJoin rises mush slower
than GSimJoin. The runtime of GSimJoin is about 10 times
longer than MGSJoinwhen joining 100 graphs and 100 times
longer than MGSJoinwhen joining 10,000 graphs.Moreover,
when we have to join 100,000 graphs, GSimJoin is running
out of memory so that no result is recorded.

6.5. Speedup. We evaluated the speedup of our algorithm by
varying the number of instances from 10 to 50. The exper-
imental results are shown in Figure 5(a). We can see that,

with the increase of instances in the cluster, the performance
of MGSJoin significantly improved. The improvement is
significantly shown when threshold 𝜏 equals 4. With more
instances running, the count filtering is getting faster by
counting for the common signatures simultaneously and
the verification is getting quicker by joining relations and
calculating GED in parallel.

6.6. Scale-Up. We evaluated the scale-up of our algorithm
by increasing both dataset sizes and number of nodes in the
cluster. The result is shown in Figure 5(b). It is worth noting
that as the dataset increased the results for different values of
𝜏 get similar in the trend of increase. All lines rise smoothly,
which reveals good scalability of MGSJoin.

7. Related Work

Graph SimilarityQueries. Similarity joins retrieve similar data
object pairs, which can be strings, sets, trees, and graphs [16].
As to GED-based graph similarity search, [17] proposed 𝜅-
AT, a tree-based 𝑞-gram approach. However, it is associated
with the drawback of usually loose lower bound for count
filtering. Seeing the drawback, [9] presented a path-based 𝑞-
gram approach. In comparison with 𝜅-AT, GSimJoin is more
efficient by leveraging more advanced filtering techniques.
Thus, we adopt the path-based 𝑞-gram approach in this paper.

MapReduce-Based Graph Algorithms. MapReduce is a dis-
tributed programming framework [10], which has been
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applied in processing large graphs. Many graph algorithms
using MapReduce were discussed in [18], including tri-
angles/rectangles enumeration and 𝑘-cliques computation.
In [19], several techniques were proposed to reduce the
input size of MapReduce, and the techniques are applied
for minimum spanning trees, approximate maximal match-
ings, approximate node/edge covers, and minimum cuts.
Personalized PageRank computation inMapReduce was dis-
cussed in [20]. Matrix multiplication based graph min-
ing algorithms in MapReduce were investigated in [21].
More recently, densest subgraph computation [22], subgraph
instances enumeration [23], and connected components
computation in logarithmic rounds [24] were researched in
MapReduce.

Graph Processing Systems in Cloud. Many systems were
developed in order to deal with big graphs. Such a one repre-
sentative system is Pregel [25], which takes a vertex-centric
approach and implements a bulk synchronous parallel (BSP)
computation model. HipG [26] improves BSP by using asyn-
chronous messages to avoid synchronization. PowerGraph
[27] is a distributed graph processing system that is optimized
to process power-law graphs. Giraph++ was proposed in
[28] to take graph partitioning into consideration when
processing graphs. Workload balancing for graph processing
in cloud was discussed in [29].

8. Conclusion

In this paper, we have investigated the problem of scalable
graph similarity joins. We firstly present a MapReduce-
based graph similarity join algorithm MGSJoin following the
filtering-verification framework. To reduce the communica-
tion cost in the filtering phase, it incorporates the Bloom
filter technique to reduce the number of intermediate key-
value pairs. In addition, we devise a multiway join optimized
verification procedure for further speedup. Extensive experi-
ments are conducted on real datasets to confirm the efficiency
and scalability of the proposed solution. Furthermore, the
verification phase is further optimized with MapReduce,
which enables the test on larger and denser graphs.

As a future direction, we plan to explore the possibility of
optimizing the verificationwithmultithreaded programming
paradigm. Additionally, it is also of interest to test the
efficiency and scalability of proposed algorithms on even
larger and/or denser graphs.
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