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Abstract. The ion Drift Kinetic Equation (DKE) which describes the ion coUisional transport is 
solved for the TJ-II device plasmas. This non-linear equation is computed by peribrming a mean 

field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by 
means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic 
configuration, taking into account collisions and electric field. This allows to avoid the assumptions 
made in the usual neoclassical approach, namely considering radially narrow particle trajectories, 
diffusive transport, energy conservation and infinite parallel transport. As a consequence, global fea­
tures of transport, not present in the customary neoclassical models, appear: non-diffusive transport 
and asymmetries on the magnetic surfaces. 
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INTRODUCTION 

The colhsional transport in magnetic fusion devices, when properly taken into account, 
is a lower limit of the full transport that appears in these devices (the actual transport is 
given by the colhsional plus the turbulent fluxes). The colhsional fluxes are customarily 
estimated by using the standard neoclassical techniques. They consist of solving the 
Drift Kinetic Equation (DKE) under several hypothesis, the main of which are: 1) the 
radial excursion of particles in a single colhsion time must be smaUer than the typical 
scale lengths of the magnitudes relevant for transport; 2) the parallel transport (along 
the magnetic field lines) is able to overcome the inhomogeneities that appear on every 
magnetic surface (this is equivalent to consider that the transport equations are only 
one-dimensional in real space); 3) the transport is diffusive, i. e., the fluxes can be writ­
ten as transport coefficients times the thermodynamical forces, which are the gradients 
of the macroscopic plasma magnitudes; 4) the particle kinetic energy is conserved in the 
colhsion time scale; 5) the velocity distribution function is very close to the Maxwellian. 

In the present work, we present a method to solve the DKE without the standard 
neoclassical assumptions, which allows us to explore effects that cannot be described 
or predicted using such approximations. ISDEP (Integrator of Stochastic Differential 
Equations in Plasmas), which is a non-hnear full-/ Monte Carlo code, has been de­
veloped and apphed to the complex geometry of the TJ-II stellarator, a medium size 
flexible heliac (i? = 1.5 m, a < 0.22 m) [I]. This device is characterized by the difficulty 
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of estimating the transport by using standard techniques [2]. Moreover, the assumptions 
on which those techniques are based are not fulfilled in the long mean free path regime 
of TJ-II plasmas. A way of overcoming these difficulties is to estimate the coUisional 
transport by calculating complete ion trajectories in the guiding centre approximation, 
taking into account the electric field and the collisions with thermal electrons and ions. 
The definition of a fixed background plasma is also a customary approach in neoclas­
sical models. Nevertheless, a background plasma acts as an infinite thermal bath, as 
will be discussed below, and affects the ion trajectories in a way that precludes the 
simulation of non-linear effects, such as plasma heating. In these cases, it is necessary 
to let the background plasma evolve, in a way consistent with the calculated trajectories. 

Important transport consequences can be extracted from the properties of particle 
trajectories calculated with ISDEP: the particle radial excursions are shown to be wider 
than the characteristic lengths of the plasma in a single collision time, thus contradicting 
the local ansatz. As a consequence of this, the flux is shown to be non-diffusive. Non-
negligible asymmetries can be observed as a consequence of this non-local transport. 
In particular, an inhomogeneous distribution of particles along the poloidal angles is 
observed on every magnetic surface. 

Besides the estimates presented in this work, the study of ion trajectories in low col-
lisionality plasmas is very important both for tokamaks and stellarators. Several issues 
make this study useful to understand the confinement in these devices: the behaviour of 
particles in a given magnetic configuration, the confinement of fast ions and alpha par­
ticles (see e.g. [3, 4]), the evaluation of direct losses, and the effect of magnetic ripple 
on particle confinement. This is also important in tokamaks [5, 6]: it has been recently 
claimed [7] that the ITER magnetic field will have a clearly three-dimensional structure, 
with important implications in alpha-particle confinement. 

MOTIVATION 

The violation of neoclassical assumptions 

The customary neoclassical transport estimates consider that the fluxes can be written 
as the thermodynamical forces times the transport coefficients. The latter are estimated 
by solving the DKE under the hypothesis that they depend only on local plasma char­
acteristics, namely the magnetic structure, the local electric field and the collisionality. 
It is also assumed that the kinetic energy of the particles is conserved. The first of 
these hypothesis is equivalent to the assumption that the typical size of the trajectories 
performed in a collision time is smaU; the second imphes that the particles do not gain 
or lose energy during their trajectories in the absence of collisions. 

However, due to the complexity of the TJ-II magnetic configuration and the presence 
of electrostatic potential, some ion orbits include large radial excursions and their kinetic 
energy changes substantially in a single coUisiontime. Indeed, the typical excursions are 
wider than the characteristic gradient lengths of density, temperature and electrostatic 
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FIGURE 1. (Left) Orbit sizes, with and without electric field, for trajectories starting at several radial 
positions. The selected times, t = 2x 10^''s and / = 10^^ s, are approximately the colhsion times in 
the centre and in the edge of the plasma respectively. (Right) Characteristic length-scales of the plasma 
obtained from the gradients of the density and the potential profiles. 

potential, so that the ions visit plasma regions of widely differing conditions, which 
invalidates the local ansatz. 

This was calculated in a previous work [8], where transport properties were estimated 
by launching a large number of ions and following their trajectories during approxi­
mately two colhsion times. Although collisions were not included, it could be concluded 
that, under the influence of reahstic TJ-II magnetic and electric fields, the typical radial 
width of orbits in a single collision time is comparable with the relevant spacial scales 
of the plasma. 

This assertion can be made more precise for a typical TJ-II ECRH (Electron Cy­
clotron Resonance Heating) plasma: we compare in Fig. I the typical size of the radial 
excursions with the relevant length scales of our plasma (which are calculated, included 
colhsions, as shown in the following section). The profiles, corresponding to a typical 
ECRH plasma, are taken from [9], and are qualitatively similar to those shown in Fig. 2. 
The calculated orbit sizes are defined as: 

Ap(0^((p(0-P(0)) 2 \ l / 2 :vW0o (1) 

Here, p is the normalized radial coordinate, while (j) and 00 are the magnetic fluxes 
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through the local and the last closed magnetic surfaces. The trajectories start at several 
(uniformly distributed) radial radial positions with velocities distributed according to 
a Maxwellian. In a collision time, the calculated sizes reach 20% of the plasma minor 
radius in the case without field. In the presence of electric field, the width of the orbits 
is smaller: in the centre of the plasma lays between 5% and 10% of the minor radius 
for t r^ 10 '̂* s, and between 10 and 15% for t r^ 10^^ s. This is to be compared (see 
Fig. 1-right) with the characteristics lengths of the relevant magnitudes of the plasma: 
for the density, we have L„ = \n/Vp | « 0.2 in a wide region (p between 0.4 and 0.7) of 
the plasma. The same happens with the electric potential, whose characteristic length 
is described by L^ = \{(j) — (/)mm)/V(/)|. The quantity LB = \B/VB\, although highly 
non-uniform, is of the order of the macroscopic size of the device. Therefore the orbits 
can be wider or of the order of the gradient lengths of density and electric potential in 
the zones of strongly varying density (p between 0.4 and 0.7) and electric potential (p 
between 0.4 and 0.8). 
Very recently, other efforts have been done in order to include, for instance, finite-orbit-
width in simulations in 5 / M C models devices [10] and in gyrokinetic codes [II]. The 
results in these calculations have stressed the importance of a non-local treatment of 
neoclassical transport. 

Moreover, the potential profile in typical ECH plasmas (see Fig. 2) can vary several 
hundreds of volts from the centre to the edge. Therefore the change in potential energy 
is far from being negligible in comparison with the typical ion temperatures ('-̂  100 eV). 

Finally, the standard neoclassical transport assumes that all the relevant magnitudes 
are constant on every magnetic surface and, consequently, transport equations can be 
written in one dimension. Nevertheless, up-down asymmetries due mainly to the effect 
of the i ? x 5 drifts are observed experimentally [12], as well as toroidal asymmetries, 
due to the effect of trapped particles [9]. 

Non-linear phenomena 

The DKE equation is usually solved by means of linearization, i.e. defining a back­
ground ion distribution. Then, the evolution of the distribution function of test ions in the 
presence of a fixed distribution of field ions is described by a Fokker-Planck equation. 
This is what we call a linear calculation, and it is a reasonable approach when the test 
ion distribution does not separate too much from that of the field ions. Nevertheless, it 
cannot be used as such to calculate a variety of non-linear phenomena, such as plasma 
heating, either by interaction with the waves or by confinement improvement: the 
background distribution acts as an infinite thermal bath retaining all the extra energy 
received by the test ions. The background ion distribution must be therefore modified, 
according to the variations in that of the test ions. This kind of computation, which we 
will call in the text non-linear calculation, can be also implemented for the Langevin 
approach of ISDEP. 
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An example of application of a full-/ method is the study of the ion heating during 
the transitions to CERC (Core Electron Root Confinement) [13]. In stellarator devices, 
transitions to improved core electron-root confinement (CERC) are established in 
conditions of high Electron Cyclotron Heating (ECH) absorbed power density (see the 
review [14] and references therein). These regimes have been found in different hehcal 
devices: the Compact Hehcal System [15], Wendelstein 7-AS [16], the Large Hehcal 
Device [17] andTJ-II [18] (in the latter, provokedby the introduction of a rational value 
of rotational transform [19]). These transitions are characterized by the appearance of a 
peaked electron temperature profile and a large positive electric field in the core plasma 
region. The electron temperature increase in the core plasma, caused by ECH heating, 
enhances the outward electron flux. The ambipolar condition is then fulfilled by the 
existence of a positive electric field, which reduces the V5 drift of the ripple-trapped 
electrons [14]. 

The relevant phenomena observed in TJ-II, that makes mandatory to use a non-hnear 
calculation, is the increase of the ion temperature (about a 10 — 15%) observed during 
the transition [19], synchronized with that of the electron temperature. In a previous 
work [13], it is checked that only two ingredients, electron-ion energy exchange and 
enhanced confinement by the electric field are enough to reproduce the experimental 
findings. The electric field also contribute to the ion heating by communicating energy 
to the ions that drift outwards. 
The delay between the change in the ion temperature and that of the electron temperature 
is about 2 — 3 ms, of the order of the time scale that the ions take to react to changes 
in the electric field [9]. The electron-ion collision time is 10^^ s — 10^^ s. Since both 
characteristic times are much longer than the ion-ion collision time (10^'* — 10^^ s), 
a linear Fokker-Planck calculation cannot properly reproduce any ion temperature 
increase caused by the electrons or the electric field. 
In [13], the ion heating in the transition to CERC is estimated, by solving the DKE 
equation in the plasma conditions before and after the transitions. The results show 
quantitative agreement with the experiment, and support the hypothesis of ion heating 
via electron-ion transfer and enhanced ion confinement in our plasma conditions. 

THE ISDEP CODE 

Following the well-known guiding-centre approximation (see e.g. [20]), our five-
dimensional space consists of the position of the guiding center of the Larmor preces­
sion, roc, the pitch A and the normalized particle kinetic energy x^: 

2 v2 PM] , Vll 
X = —2 ' "̂ th,- = \ , A = —/=, (2) Vth/ V nii Vv2 

where nit is the mass of the ions, Tt the ion temperature and k the Boltzmann constant. 
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The problem addressed here is to solve for the evolution of the five dimensional 
full distribution function f{t,rQc,?^,x^) of the ions in the plasma. Under several non-
restrictive hypothesis (guiding-center approximation, long range colhsions), it can be 
modeled with a Fokker-Planck-like equation: 

^ + Vroc • («roc/) + ^ ( « l / ) + ^ ( « x ^ / ) = ^f- (3) 

This is a highly non-linear equation, since the coefficients 0^00' ^ l ' x̂̂  ^^d - ^ do 
depend on the ion distribution function / . The collision operator includes collisions 
with electrons and ions. It is and extended form of that of Boozer and Kuo-Petravic [22] 
developed following [21]. The former is based on previous results by Rosenbluth et 
al. [23]. The basic assumption is that each collision involves only two particles and 
produces mainly small angle scattering. The rest of coefficients follow from the usual 
guiding center approximation. Their explicit form is shown in [9] and [13]. 

Our approach to this non-linear problem is to undertake a mean field calculation of 
the non-linear (NL) equation. At each iteration of the mean field calculation, the NL 
equation is hnearized, thus becoming a Fokker-Planck (FP) equation, and solved. The 
solution is then used to construct a new FP for the next iteration. 

Linearization is accomplished by splitting the distribution function in two terms, 
describing separately field and test ions: 

The only assumption made on the shape of/*'̂ *'' is that it equals /*'^''' at the initial instant 
/ = 0 s. It is also assumed that the ions represented by f^'^^ have little weight on the full 
ion distribution / . As a consequence of this, their behaviour does not affect the value 
of 

'̂ ''GC' '^/i' '^x^ ^^^ ^ ' which are only determined by f^^^^. Therefore, once f^^^^ is 
defined, this procedure yields the following FP equation for f^'^^: 

Let us now make a more detailed sketch of how the mean field calculation is accom­
plished: we define a field ion distribution J^^^'^, which is taken from the experiment 
(see below). This definition allows us to construct a FP equation for yj*̂ **', with the 
initial condition J^^^ (/ = 0 s) = J^^^^ (/ = 0 s) . The solution of this equation, which yields 
yj*̂ **' for all t, is the point where usual calculations stop. On the contrary, in our full-/ 
calculation, we use this solution to define a new field ion distribution /f'=''' = f^^ and 
construct a new FP equation. This scheme is iterated until we find a stationary solution, 
in which the test ion distribution function evolves "in equilibrium" with that of the 
thermal bath (i.e. / y **' = /^'^''' = /^i ' j when TV -^ 00)̂  under the influence of the external 
sources (namely the electric field and the background electrons). 
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Several points from the former scheme must be detailed. First of all, the field ion 
distribution is chosen to be, at each iteration, of the form: 

xe 
f^'\t,roc^.^)=n{rGc)^^. (6) 

where n{rQc) is the number density of the physical ions. Therefore, our field plasma 
profiles depend only on the radial coordinate, and the momentum distributions are 
Maxwellian. The latter assumption is required by the collision operator The former is 
taken for computational reasons: a three-dimensional precise measurement of the ion 
density and temperature is out of reach for this NL calculation. Nevertheless, although 
non exact, both simplifications are reasonable: non-zero but small asymmetries and 
non-Maxwelhanities were measured in [9]. Therefore, in our scheme, /^^^'^ = /J^^\ 
means that we measure the radial density and average kinetic energy profiles of the 
plasma from the function y^l'j and construct, following Eq. (6), the field distribution 
y^'^'''. This is a fully self-consistent calculation of the full ion distribution function as 
long as the corrections to Maxwelhanity and to the averages on magnetic surfaces are 
neghgible. This will be further discussed below. 

The second point regards the way that the hnearized FP equation is solved. In a previ­
ous work (see [9] and references therein), a previous version of ISDEP was developed, 
which solves the guiding-centre equations of test ions in the presence of colhsions with 
background ions. The ion dynamics are represented by a closed set of five coupled (Ito) 
stochastic differential equations (SDE): 

(7) 

(8) 

(9) 

where ^x and ^^2 are independent white noises. Ito calculus guarantees that if the 
starting positions and velocities of the test ions are chosen according to /j^^{t = Os), 
then their positions and velocities at an arbitrary time will be distributed according to 
the solution of the 7V-th FP equation, yĵ **'. Therefore, in each step N of our procedure, a 
great number of test ion trajectories are calculated untiU=0.1 s. From the measurements 
over this ensemble, we obtain the test ion distribution ŷ **'. 
More concretely, the ion temperature and density are calculated at several radial coronas 
(10, according to the smoothness of the profiles) at several times (17, logarithmically 
distributed, a natural choice according to the time evolution of the system, note the 
logarithmic scale of Fig. 4). In the next iteration, the temperature at any time and radial 
position will be obtained by linear interpolation of these values. 
The scheme is considered to have converged (i.e. /^^^'^ = /J^^^) when the density and 
temperature profiles are independent of N within the error bars. Since our test distri­
bution functions (and therefore our field distribution functions) can be time-dependent. 

115 

droc 

dA 
dF 

dx2 

- flroc J 

= [ax+af]+bx^x, 

= [«x^+«x°]+*x^^x^' 



convergence must be checked for all times. 

The colhsion operator J^ includes also collisions with background electrons, as 
discussed in [13]. These electrons also determine, via the ambipolarity condition, 
the electrostatic potential. Therefore, a self-consistent estimation of the electrostatic 
potential and the electron distribution function is to be included in future versions of the 
code. For the time being, we consider the electrons to be distributed according to a local 
Maxwellian and consider fixed the electric field, see Fig. 2. 

The calculated density profiles are expected to be more hoUow than the experimental 
ones (see Fig. 3) as a consequence of the lack of sources in the simulation. Therefore, 
for this low ion temperature plasma, the radial electric field represents a strong thermo­
dynamic force that must be counteracted by such a hollow density profile. 

For the integration of long trajectories in the complex TJ-II magnetic configuration, 
we use the algorithm developed by Kloeden and Pearson [24]. It is of the second order 
convergence in the deterministic part and of the first order of weak convergence in 
the presence of multiplicative Gaussian noises. For this algorithm to be employed, the 
former SDEs, which are of Ito type, must be written in their Stratonovich version (see 
[9] for details). A careful control of the errors induced by the time and space (see below) 
discretization, has been accomphshed, as in the appendix of [9]. 

RESULTS OF LARGE SCALE RUNS 

Non-linear effects 

This calculation has been carried for a plasma representing the situation after the 
transition to CERC. We show its experimentally measured profiles in Fig. 2: it is char­
acterized by a peaked electron temperature profile and a high positive electric field in 
the core region. The potential profile, taken similar to those obtained by HIBP measure­
ments, presents a minimum around p =0.6. The initial ion temperature profile, taken 
from CX measurements, is almost flat and the distribution function is a Maxwellian with 
temperature Ti= 100eV. The density profiles are hoUow. The actual 3D magnetic config­
uration is considered by using a grid fitted to the magnetic surfaces in the real space [25]. 

In Fig. 3, we show the convergence of the plasma profiles. We have simulated about 
10^ orbits in each iteration, in order to keep the errors in the profiles above 5%, so that 
numerical inaccuracy does not hide the evolution of the profiles with TV. We find the 
final solution for the ion distribution after TV = 30 iterations. This is the number of steps 
for the temperature profile to converge at the longer time needed, / = lO^^s, which is 
the toughest case; shorter times and the density profiles converge much faster The latter 
is essentially governed by the electric field, which is fixed during the simulation, and 
therefore the non-linear effects are much less important. 
At time t= 10^^ s, the temperature in the core region has increased about 15%. It is 
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FIGURE 2. Plasma profiles: electron temperature, electrostatic potential and density as function of the 
radial coordinate. 
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FIGURE 4. Average temperature of the ions as a function of time. 

clear from Fig. 3 that ion heating could not be simulated by means of the linearized 
approach (TV=0 in our mean field calculation). 

In Fig. 4, we show the time evolution of the average temperature of the ions. The final 
temperature is about 25% higher than the initial. It rises on a time scale of/'-^5 x 10^^ s. 
In [9], it was shown that this is the characteristic time for the action of the electric field, 
which might be mainly responsible for this plasma heating. 
Fig. 4 shows the adequacy of our full-/ approach, since the linear approach has a 
major drawback: one imposes a time-independent ion temperature profile for the field 
particles. The ion-ion collision time (10^'* — 10^^ s) is lower than the other time scales 
relevant for the ion temperature, namely that of the ion-electron colhsion and that of the 
action of the electric field. In that time-scale, in TV=0, the field ions retain great part of 
the extra energy absorbed by the test ions from other sources, precluding the physical 
effect of electron-ion heating. 
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Non-diffusive transport 

In Fig. 5 we show, for several selected times, the radial distribution of ions launched 
from a fixed radial position p = 0.4, and with a Maxwelhan velocity distribution. Since 
(p) does not separate significantly from p = 0.4 for the times selected, this is equivalent 
to show to the probability density function (pdf) of the radial displacements of ions. For 
a time of the order of the collision time, a long tail has developed. Since p takes values 
between 0 and I, Fig. 5 shows how, in a single collision time, there are particles that 
arrive to the edge of the plasma. The asymmetry in the pdf should be attributed to the 
asymmetry in the electrostatic potential well, see Fig. 2. At long times, the pdf is clearly 
non-Gaussian, as it would if transport were diffusive. Gaussianity of the pdf is the usual 
assumption for estimating neoclassical transport coefficients by Monte Carlo techniques. 

We show in Fig. 6, the poloidal distribution of particles. We normalize it by the dis­
tribution at / = 0s. In that way, particles accumulate in regions where ^ > 1. A slight 
asymmetry starts to develop at very short times and remains during all the simulated 
time. This time scale points at the magnetic stmcture as the origin of the asymmetry. 
On the one hand, this effect is an asymmetry due to the complex magnetic configuration 
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FIGURE 6. Poloidal distribution of particles at / = 10 ^ s for both plasmas. It must be 1 if the ions are 
uniformly distributed. 

of TJ-11 which cannot be calculated by the usual neoclassical calculations, which aver­
age on the magnetic surfaces. On the other hand, it is a measure of how self-consistent is 
our mean field method. Some points in the profiles are at two standard deviations from 
^ = 1. This is an estimate of how accurate is to construct our field distribution function 
by averaging on the magnetic surfaces the calculated test ion distribution function. 
At first sight these two assertions may seem contradictory, but one may find a balance be­
tween them: the iterative scheme may be interpreted as a way of obtaining the FP equa­
tion that, under several simplifications (Maxwellianity and symmetry on the magnetic 
surfaces) better describes the physical system {N -^ oo). Then, the Langevin approach 
allows to solve it without these simplifications. 

CONCLUSIONS 

A full-/ Montercarlo code has been developed and applied to the study of the colh-
sional ion transport properties of the TJ-11 plasmas. We have gone beyond the hnear 
approximation used in a previous work [9] by introducing an iterative scheme more 
suited for the cases in which non-linear effects appear, such as plasma heating. The 
present approach is equivalent to performing a quasi-linear calculation, in the sense that 
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the background distribution function is a slowly varying function of a fast changing test 
distribution function, and the background electrostatic potential is unchanged. More 
precisely, the ion radial density and temperature profiles are calculated in a self consis­
tent way. In the limit where the distribution function remains Maxwellian and there are 
not relevant asymmetries on the magnetic surfaces, this is a fully self-consistent calcu­
lation of the ion distribution function. The reason is that our collision operator is valid 
for Maxwellian distribution functions and, for computational reasons, the background 
distribution function after every iteration is obtained by averaging the ion distribution at 
every magnetic surface. 

The novelty of these calculations is that they allow us to avoid the approximations 
that are used in the standard neoclassical theory, thus having a much better estimation 
of the ion collisional transport. Differently to the neoclassical theory no assumptions 
are made on the diffusive nature of transport. This allows us to estimate the exact fluxes 
and the plasma evolution, and actually to show that these fluxes are not diffusive in the 
TJ-II plasmas regime. Moreover, the estimation of the propagator in the effective radius 
p , shows clear non-Gaussian features in contradiction with the standard neoclassical 
calculations based on Monte Carlo methods. Our method considers the global rather 
than the local plasma properties on the particle trajectories properties, aUowing us to 
perform estimations without the limitation of considering only small radial excursions 
in a collision time. The effect of these large excursion has been observed experimentally 
as an almost flat ion temperature profile [26] 

No average on the magnetic surfaces is considered, differently to the standard 
neoclassical codes, which assume that the parallel transport is large enough to avoid 
any inhomogeneity on the magnetic surface. This fact permits us to obtain poloidal 
asymmetries due mainly to the effect of the complex magnetic structure of TJ-II. 
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