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It has been believed that even an imperfect inspector with nonzero inspection errors could either overestimate or underestimate
a given FD (fraction defective) with a 50 : 50 chance. What happens to the existing inspection plans, if an imperfect inspector
overestimates a known FD, when it is very low? We deal with this fundamental question, by constructing four mathematical
models, under the assumptions that an infinite sequence of items with a known FD is given to an imperfect inspector with nonzero
inspection errors, which can be constant and/or randomly distributed with a uniform distribution. We derive four analytical
formulas for computing the probability of overestimation (POE) and prove that an imperfect inspector overestimates a given FD
withmore than 50%, if the FD is less than a value termed as a critical FD.Ourmathematical proof indicates that the POE approaches
one when FD approaches zero under our assumptions. Hence, if a given FD is very low, commercial inspection plans should be
revised with the POE concept in the near future, for the fairness of commercial trades.

1. Introduction

Our research started from a BLU (backlight unit) company
in Korea. Inspections of a BLU, which is one of the major
components attached to the back of a thin film transistor
liquid crystal display unit, can be divided into several func-
tional inspections and external appearance inspections. In the
Korean BLU industry, inspection operation is usually done,
like other production lines, at the end of a line, due to related
costs, and the reworkability of a BLU.The inspection decision
is made only by a single attribute: conforming (or C) or non-
conforming (or NC). In reality, items will be misclassified,
even if only a few. A C (or NC) item may be classified as NC
(or C), and this probability is typically termed as type I (or
type II) error. Correctly or falsely accepted items at the end
of each BLU line are packaged into lots and transported to
a clean storage area, where an acceptance sampling plan by
attribute is performed, by a source inspector affiliated to a
buyer. Even if only one NC item is found in a lot, the lot is
rejected by the source inspector. The rejected items, even if

there are very few NC items, must be 100% reinspected later,
in another clean room (Yang and Cho [1]).

As the fraction defective (FD) of BLU items waiting for
source inspections has been gradually lowered to either the
thousands or hundreds PPM level, most of the quality control
managers have continually raised the possibility that the FD
judged by a source inspector has “always” been overestimated,
because his inspection could not be perfect, but also his
inspection severity would be advantageous to his company.
In addition, various questions about unknown dependencies
between FD and inspection errors have been raised. In fact,
the FD judged by an inspector should be underestimated
or overestimated with a 50 : 50 chance, regardless of a given
FD and/or inspections errors. In order to verify their pre-
sumptions, after having formed lots with a very low FD
comprised of hundreds of BLU items randomly mixed up
with C and NC items, they carried out significant field exper-
iments controlled by an expert, where the lots were tested
by an inspector, with type I error 0.86% and type II error
4.50%, as estimated. They concluded that the possibility of
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overestimation by the source inspector seemed to be at least
significantly larger than 50% but they could not prove it
mathematically and that there might exist some relationships
between overestimation, very low FD, and inspection errors.
From the above facts, many basic questions may be raised,
but above all, here we are interested only in the following
fundamental and theoretical questions:

“Does an imperfect inspector overestimate a given
fraction defective, when it is very low?”

In other words, “Could the FDA (fraction defective after
inspection) always be larger than the FDB (fraction defective
before inspection), if the FDB is very or extremely low?” In
order to answer the above question, we need to find a way to
compute the probability of overestimation (POE), when an
FD and inspection errors are given.

As far as we know, there have been no papers directly
related to our problem. However, some studies dealing with
nonzero inspection errors have appeared in the literature,
since the 1970s. Collins et al. [2] considered the effects of
inspection error on the probability of a lot of acceptance,
average outgoing quality, and average total inspection, under
both replacement and nonreplacement assumptions, and
suggested that an acceptance sampling planmay be designed,
based on inspection error. Dorris and Foote [3] surveyed the
state of knowledge on inspection and measurement errors
and suggested future lines of investigation about inspection
errors. Raz and Thomas [4] presented a branch-and-bound
method for determining an optimum sequencing inspection
plan, for a group of inspectors operating at different skill
and cost levels. Tang [5] provided a rule for determining
the optimal sequence of multiple quality characteristics, for
minimizing the cost of inspection within each inspection
stage. Lee [6] developed the stop rule, for seeking the optimal
number of inspection stages. Sylla and Drury [7] dealt with
the apparent fraction nonconforming 𝑞

𝑒
= (1 − 𝑞)𝛼 + 𝑞(1 −

𝛽), where 𝑞 is an FD, 𝛼 is the probability of rejecting a
C item, and 𝛽 is the probability of accepting an NC item.
They found 𝑛

󸀠, the sample size and 𝑐
󸀠, the cut-off value for

single sampling by attributes, considering fraction defective,
types I and II errors, and error-related payoffs, and proposed
the concept of liability which is an inspector’s ability to
respond to information, like payoffs, fraction defectives, and
discriminability between noise and signal distributions. Burk
et al. [8] derived a relation 𝑞 = (𝑞

𝑒
− 𝛼)(1 − 𝛼 − 𝛽)

−1 and
showed a table about the relation.They noted that as the type
I error approaches 𝑞

𝑒
, 𝑞 approaches zero and that for very

good process, 𝑞
𝑒
is actually a type I error. They suggested a

procedure for estimating the types I and II errors and gave an
industrial example. These were shown as major variables, in
the last contribution related to our current research.

Several models that are partially related to our problem
have appeared in the literature. In order to attain a prespec-
ified quality rate at the end of an assembly line, Yang [9]
suggested a K-stage inspection-rework (K-IR) system, which
was composed of a series of K stages, each of which included
an inspection process and a rework process. He suspected the
effectiveness of the K-IR system and proved mathematically
that FDA is always larger than FDB if FDB is less than a value

that depends on a FD of rework and inspection errors. Based
on his assumptions, he suggested a necessary condition for
inspection effectiveness that the sum of two errors must be
less than one. However, the necessary condition is so rough
that it cannot be used practically.

In this paper, we deal with the above fundamental ques-
tion. In Section 2, we describe our problem in detail. Assum-
ing that an imperfect inspector classifies an infinite sequence
of items with a known FD and that each inspection error of
type I or type II is either a constant or a uniform random
variable on an interval, we provide fourmathematicalmodels:
Model I (C, C) with both type I error and type II error being
constant, Model II (R, C) with type I error and type II error
being random and constant, respectively, Model III (C, R)
with type I error and type II error being constant and random,
respectively, and Model IV (R, R) with type I error and type
II error being random and random, respectively. In Sections 3
through 6, for each model, we derive formulas for computing
the probability of overestimation (POE) and a critical FD
satisfying POE = 50%. In Section 7, in order to extract some
relation between the results of the previous sections, wemake
a reasonable assumption and prove a theorem that answers
our question.

2. Problem Statement

Suppose that an imperfect inspector with nonzero inspection
errors classifies one-by-one an infinite sequence of items with
a known fraction defective 𝑞, but which is unknown to the
inspector. Then the sequence can be considered as an infinite
Bernoulli process {𝑋

𝑖
, 𝑖 = 1, 2, 3, . . .} such that, for each 𝑖,

the value of 𝑋
𝑖
is either zero, representing a C item, or one,

representing an NC item; for all values of 𝑖, the probability
that 𝑋

𝑖
= 1, Pr{𝑋

𝑖
= 1}, is the same number 𝑞. Let 𝐴

𝑖

be the probability (the type I error) that the 𝑖th C item is
misclassified as NC and falsely rejected by the inspector; let
𝐵
𝑖
be the probability (the type II error) that the 𝑖th NC item is

misclassified as C and falsely accepted by the inspector. Let𝑌
𝑖

be zero, if the 𝑖th item is judged as a C item by the inspector,
and one, otherwise. That is, 𝐴

𝑖
= Pr{𝑌

𝑖
= 1 | 𝑋

𝑖
= 0} and

𝐵
𝑖
= Pr{𝑌

𝑖
= 0 | 𝑋

𝑖
= 1}. Then, Pr{𝑌

𝑖
= 1} and 𝐸[𝑌

𝑖
] can be

obtained as

𝐸 [𝑌
𝑖
] = Pr {𝑌

𝑖
= 1} =

1

∑

𝑘=0

Pr {𝑌
𝑖
= 1 | 𝑋

𝑖
= 𝑘}Pr {𝑋

𝑖
= 𝑘}

= 𝐴
𝑖
(1 − 𝑞) + (1 − 𝐵

𝑖
) 𝑞.

(1)

Since the expected number of rejected items after the
𝑛th inspections is ∑𝑛

𝑖=1
𝐸[𝑌
𝑖
], the FD of an infinite number

of items judged by the inspector, denoted by 𝑄, becomes
lim
𝑛→∞

(1/𝑛)∑
𝑛

𝑖=1
𝐸[𝑌
𝑖
] and can be reduced to

𝑄 = 𝑞 + lim
𝑛→∞

1

𝑛
{(1 − 𝑞)

𝑛

∑

𝑖=1

𝐴
𝑖
− 𝑞

𝑛

∑

𝑖=1

𝐵
𝑖
} . (2)

The above equation implies that the value of𝑄 becomes 𝑞
if all 𝐴

𝑖
and 𝐵

𝑖
are zeros since the value of the limit term
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Table 1: Four types of POE and CFD analysis.

Models Model I (C, C) Model II (R, C) Model III (C, R) Model IV (R, R)
Input

Known FD Constant, 𝑞 Constant, 𝑞 Constant, 𝑞 constant, 𝑞
Type I error Constant, 𝛼 Random variable, 𝐴 ∼ 𝑓

𝐴
(𝑎) Constant, 𝛼 Random variable, 𝐴 ∼ 𝑓

𝐴
(𝑎)

Type II error Constant, 𝛽 Constant, 𝛽 Random variable, 𝐵 ∼ 𝑓
𝐵
(𝑏) Random variable, 𝐵 ∼ 𝑓

𝐵
(𝑏)

Output
POE POEcc(𝑞) POErc(𝑞) POEcr(𝑞) POErr(𝑞)

CFD CFDcc CFDrc CFDcr CFDrr

becomes zero. We assume that two types of inspection errors
are nonzero and less than or equal to one unless specially
mentioned.That is, 0 < 𝐴

𝑖
, 𝐵
𝑖
≤ 1 for all 𝑖. Hence, the value of

the limit terms can be positive, zero, or negative, correspond-
ing to overestimation, correct estimation, or underestima-
tion, respectively. Either overestimation or underestimation
does not raise any problems by themselves, as long as their
probabilities are exactly the same. In fact, we are likely to
believe that all inspectors are expected to either overestimate
or underestimate a given FDwith a 50 : 50 chance. Otherwise,
either buyer or supplier must face economic loss due to an
unfair inspection game. However, unfortunately, it turns out
in this paper that the 50 : 50 chance is not always true and that
it depends upon 𝑞 and {(𝐴

𝑖
, 𝐵
𝑖
), 𝑖 = 1, 2, 3, . . .}. Let POE be

the probability of overestimation by the inspector, which can
be reduced to

POE = Pr {𝑄 > 𝑞}

= Pr{ lim
𝑛→∞

1

𝑛
{(1 − 𝑞)

𝑛

∑

𝑖=1

𝐴
𝑖
− 𝑞

𝑛

∑

𝑖=1

𝐵
𝑖
} > 0} .

(3)

If 𝑞 is an input variable, POE can be expressed as POE(𝑞).
If there exists a unique FD 𝑞

∗ such that POE(𝑞∗) = 0.5, then
𝑞
∗ is termed as “the critical fraction defective” or CFD. This
definition implies that 𝐸[𝑄 | 𝑞 = 𝑞

∗

] = 𝑞
∗; that is, 𝑄 is an

conditional unbiased estimator of CFD when 𝑄 is a random
variable. In the case that such a CFD does not exist, 𝑞 will be
called as CFD only if an inspector estimate 𝑞 correctly, that is,
𝑄 = 𝑞, and POE(𝑞) is defined to be 0.5.

Since inspection error 𝐴
𝑖
as well as 𝐵

𝑖
can be assumed

to be either a constant or a random variable, we need four
kinds of analyses of POE and CFD, as shown in Table 1.
Note that the subscript “𝑐” (or “𝑟”) under the right sides
of POE and CFD in the table represents that the type I or
type II error is assumed to be constant (or random). In
order to obtain some fundamental properties, we assume that
each random variable follows a uniform distribution with
an interval on (0, an upper value]. That is, 𝑓

𝐴
(𝑎) = (1/

𝛼
𝑢
)𝐼
(0,𝛼
𝑢
]
(𝑎), and 𝑓

𝐵
(𝑏) = (1/𝛽

𝑢
)𝐼
(0,𝛽
𝑢
]
(𝑏) where 𝐼

(0,𝑥
𝑢
]
(𝑥) is

an indicator function with one for 0 < 𝑥 ≤ 𝑥
𝑢
, and zero

otherwise. This uniformity assumption with zero/an upper
valuemay be justified, since it has been hoped that inspection
errors would become smaller and smaller, and there has been
almost no information on the distribution of inspection error,
up to now. It is well known that uniform distribution gives
maximum uncertainty. Our problem can be summarized as

follows: derive both POE(𝑞) and CFD for each model and
answer the fundamental question:

“Does an imperfect inspector overestimate a given
FD when it is very low?”

Throughout this paper, the first and second derivatives
of a function 𝑓(𝑥) will be expressed as 𝑓󸀠(𝑥) and 𝑓

󸀠󸀠

(𝑥),
respectively, and the expectation of a random variable𝑋 will
be denoted by 𝐸[𝑋].

3. Analysis of Model I (C, C)

Suppose that 𝐴
𝑖
= 𝛼 and 𝐵

𝑖
= 𝛽, for all 𝑖, and both 𝛼 and

𝛽 are real-valued constants. Then, since Pr{𝑌
𝑖
= 1 | 𝑋

𝑖
=

0} = 𝛼 and Pr{𝑌
𝑖
= 1 | 𝑋

𝑖
= 1} = 1 − 𝛽, the process

{𝑌
𝑖
, 𝑖 = 1, 2, 3, . . .} becomes an infinite Bernoulli process with

Pr{𝑌
𝑖
= 1} being the same number {𝛼(1 − 𝑞) + (1 − 𝛽)𝑞}. The

following proposition indicates that POEcc(𝑞) depends on 𝑞

and 𝜌cc where 𝜌cc = 𝛽/𝛼 and that CFDcc depends only on 𝜌cc,
not 𝑞. Let 𝑞cc = 1/(1 + 𝜌cc) and assume that 𝜌cc is a rational
number.

Proposition 1. Under the assumption that𝐴
𝑖
= 𝛼 and 𝐵

𝑖
= 𝛽,

for all 𝑖, and both 𝛼 and 𝛽 are real-valued constants with 0 <

𝛼, 𝛽 ≤ 1,

(1)

POEcc (𝑞) =
{{

{{

{

1, 𝑓𝑜𝑟 0 ≤ 𝑞 < 𝑞
𝑐𝑐
,

0.5, 𝑓𝑜𝑟 𝑞 = 𝑞
𝑐𝑐
,

0, 𝑓𝑜𝑟 𝑞cc < 𝑞 ≤ 1,

(4)

(2) CFD
𝑐𝑐
= 𝑞
𝑐𝑐
,

(3) an inspector with (𝛼, 𝛽) always overestimates 𝑞 for
0 ≤ 𝑞 < 𝑞

𝑐𝑐
, estimates 𝑞 correctly for 𝑞 = 𝑞

𝑐𝑐
with

POE
𝑐𝑐
(𝑞) = 0.5, and always underestimates 𝑞 for 𝑞

𝑐𝑐
<

𝑞 ≤ 1.

Proof. Equations (2) and (3) can be derived, respectively, as

𝑄cc = 𝑞 + (𝛼 + 𝛽) (𝑞cc − 𝑞) ,

POEcc (𝑞) = Pr {𝑄cc > 𝑞} = Pr {(𝛼 + 𝛽) (𝑞cc − 𝑞) > 0} .

(5)

For 0 ≤ 𝑞 < 𝑞cc, since the inequality (𝛼 + 𝛽)(𝑞cc − 𝑞) >

0 is “always” true, (i.e., an inspector with 𝜌cc “always” overesti-
mates 𝑞), POEcc(𝑞) can be defined to be one. For 𝑞cc < 𝑞 ≤ 1,
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Figure 1: The graph of POEcc(𝑞) and the overestimation region in two different planes.

since an inspectorwith𝜌cc “always” underestimates 𝑞, POEcc(𝑞)
can be defined to be zero. In the case of 𝑞 = 𝑞cc, since𝑄cc = 𝑞,
that is, an inspector estimate 𝑞 correctly, by our definition
in Section 2, it follows that CFDcc = 𝑞cc and POEcc(𝑞cc) =

0.5. However, 𝑞 is a rational number (note that 𝑞 can be
expressed as lim

𝑛→∞
(1/𝑛)∑

𝑛

𝑖=1
𝑋
𝑖
, which can be expressed

as the fraction𝑚/𝑛 of two integers, with 𝑛 > 0), while 𝑞cc can
be an irrational number depending on the values of 𝛼 and 𝛽.
Hence, 𝑞 cannot be equal to 𝑞cc if 𝜌cc (or 𝑞cc) is an irrational
number. Sincewe assume that𝜌cc (or 𝑞cc) is a rational number,
we have, 𝑄cc = 𝑞 if and only if 𝑞 = 𝑞cc and Proposition 1-(3)
holds true.

From Proposition 1, POEcc(𝑞) can be drawn as shown in
Figure 1(a). Suppose that both 𝑞 and 𝜌cc are input variables.
Then, since an inspector with 𝜌cc overestimates if and only
if 0 ≤ 𝑞 < 𝑞cc = 1/(1 + 𝜌cc), every point (𝑞, 𝜌cc) satisfying
𝑞(1 + 𝜌cc) < 1 gives overestimation. For 𝑞 ̸= 0, every point
(𝑞, 𝜌cc) satisfying 0 < 𝜌cc < (1 − 𝑞)/𝑞 gives overestimation.
For 𝑞 = 0, every point (0, 𝜌cc) for 𝜌cc > 0 gives overestimation.
Let 𝑅cc be the overestimation region as shown in Figure 1(b).
Then, an inspector with 𝜌cc overestimates 𝑞 if (𝑞, 𝜌cc) ∈ 𝑅cc,
estimates 𝑞 correctly if 𝜌cc = (1 − 𝑞)/𝑞, and underestimates
𝑞 otherwise. Note that the point (0, 0) cannot be included in
𝑅cc since 𝜌cc ̸= 0 due to the assumption that 𝛼 ̸= 0.

Suppose that both 𝛼 and 𝛽 are input variables and that
𝑞 is given as a constant. Then, since an inspector with 𝜌cc
overestimates if and only if 𝑞 < 𝑞cc = 𝛼/(𝛼 + 𝛽), every point
(𝛼, 𝛽) satisfying 𝑞(𝛼+𝛽) < 𝛼 gives overestimation. For 𝑞 ̸= 0,
every point (𝛼, 𝛽) satisfying 𝛽 < 𝑞

𝑠
𝛼 gives overestimation

where 𝑞
𝑠
= (1 − 𝑞)/𝑞. For 𝑞 = 0, every point (𝛼, 𝛽) satisfying

𝛼 > 0 gives overestimation. Let 𝑅󸀠cc be the overestimation
region bounded by 0 < 𝛽 < 𝑞

𝑠
𝛼, 0 < 𝛼 ≤ 1, and 0 <

𝛽 ≤ 1 as shown in Figure 1(c) where 𝑞
𝑠
> 𝛽/𝛼. That is, an

inspector with (𝛼, 𝛽) overestimates 𝑞 if (𝛼, 𝛽) ∈ 𝑅󸀠cc, estimates
𝑞 correctly if 𝛽 = 𝑞

𝑠
𝛼, and underestimates 𝑞 otherwise.

If 𝑞 = 0, then𝑄cc = 𝛼 from (2) and the inspector estimates
correctly if and only if 𝛼 = 0. Hence, POEcc(0) has two values
either 0.5 (when 𝛼 = 0) or one (when 0 < 𝛼 ≤ 1) depending
on 𝛼. If 𝑞 = 1, then 𝑄cc = 1 − 𝛽 from (2), and the inspector

estimates correctly if and only if 𝛽 = 0. Hence, POEcc(1) has
two values either 0.5 (when 𝛽 = 0) or zero (when 0 < 𝛽 ≤

1) depending on 𝛽. These special cases of (𝑞, 𝛼) = (0, 0) and
(𝑞, 𝛽) = (1, 1) will be discussed only if necessary.

Since CFDcc depends only on 𝜌cc, CFDcc remains the
same even if both 𝛼 and 𝛽 aremultiplied by the same number.
For example, the CFDcc of (𝛼, 𝛽) = (1 ppm, 3 ppm) is 0.25,
the same as that of (𝛼, 𝛽) = (10%, 30%). Typical CFDcc values
for 0 ≤ 𝛼, 𝛽 ≤ 1 are summarized in Table 2. As shown in
the table, the value of CFDcc is 50% on the diagonal, more
than 50% above the diagonal, and less than 50% below the
diagonal. It can be proved that (1) CFDcc is zero if and only
if 𝛼 = 0 and is one if and only if 𝛽 = 0 except the case that
(𝛼, 𝛽) = (0, 0), and (2) for a given 𝛽, CFDcc increases strictly
and forms a concave shape as 𝛼 increases, while for a given
𝛼, CFDcc decreases strictly and forms a convex shape as 𝛽
increases.

Example 2. Suppose that 𝑞 = 5% and in order to estimate
the FD correctly, we must select one inspector among three
inspectors with (𝛼

𝑖
, 𝛽
𝑖
) for 𝑖 = 1, 2, 3 as shown in Table 3.

In order to reflect actual inspection errors of a back-light
unit manufacturer, the value of 𝛼

𝑖
is set to be smaller than

that of 𝛽
𝑖
. At first glance, the inspector with either (𝛼

1
, 𝛽
1
) =

(0.1%, 2%) or (𝛼
2
, 𝛽
2
) = (0.2%, 2.5%) is more likely to be

selected than the inspector with (𝛼
3
, 𝛽
3
) = (0.3%, 5.7%) since

𝛼
1
< 𝛼
2
< 𝛼
3
and 𝛽

1
< 𝛽
2
< 𝛽
3
. However, it is a wrong

decision since inspector 1 underestimates 𝑞 as 4.995% and
inspector 2 overestimates 𝑞 as 5.065%,while the right decision
is to select the worst inspector 3 since only inspector 3 can
estimate 𝑞 correctly.This decision seems to be very strange at
first time but gives a new concept to quality controlmanagers,
who could utilize intentionally this perspective in special
situations.

4. Analysis of Model II (R, C)

Suppose that𝐴
𝑖
= 𝐴 and 𝐵

𝑖
= 𝛽 for all 𝑖where 𝛽 is a constant

with 0 < 𝛽 ≤ 1 and 𝐴 is a random variable distributed with
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Table 2: Critical fraction defective for 0 ≤ 𝛼, 𝛽 ≤ 1.

𝛽
𝛼

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 — 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.00 0.50 0.67 0.75 0.80 0.83 0.86 0.88 0.89 0.90 0.91
0.2 0.00 0.33 0.50 0.60 0.67 0.71 0.75 0.78 0.80 0.82 0.83
0.3 0.00 0.25 0.40 0.50 0.57 0.63 0.67 0.70 0.73 0.75 0.77
0.4 0.00 0.20 0.33 0.43 0.50 0.56 0.60 0.64 0.67 0.69 0.71
0.5 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.67
0.6 0.00 0.14 0.25 0.33 0.40 0.45 0.50 0.54 0.57 0.60 0.63
0.7 0.00 0.13 0.22 0.30 0.36 0.42 0.46 0.50 0.53 0.56 0.59
0.8 0.00 0.11 0.20 0.27 0.33 0.38 0.43 0.47 0.50 0.53 0.56
0.9 0.00 0.10 0.18 0.25 0.31 0.36 0.40 0.44 0.47 0.50 0.53
1 0.00 0.09 0.17 0.23 0.29 0.33 0.38 0.41 0.44 0.47 0.50

Table 3: POEcc(𝑞), CFDcc, and related results for 𝑛 = 10,000, 𝑞 =

5%, and (𝛼
𝑗
, 𝛽
𝑗
) for 𝑗 = 1, 2, 3.

Inspector 1 Inspector 2 Inspector 3
𝛼
𝑗

0.1% 0.2% 0.3%
𝛽
𝑗

2.0% 2.5% 5.7%
𝜌cc 20.0 12.5 19.0
𝑄cc 4.995% 5.065% 5.000%
POEcc(𝑞) 0 1 0.5
CFDcc(=𝑞cc) 4.7619% 7.4074% 5.0000%

the probability density function 𝑓
𝐴
(𝑎) for 0 < 𝑎 ≤ 𝛼

𝑢
and

0 < 𝛼
𝑢
≤ 1. Then, since Pr{𝑌

𝑖
= 1 | 𝑋

𝑖
= 0} = 𝐴 and Pr{𝑌

𝑖
=

0 | 𝑋
𝑖
= 1} = 𝛽, the process {𝑌

𝑖
, 𝑖 = 1, 2, 3, . . .} becomes

an infinite “random-Bernoulli” process with Pr{𝑌
𝑖
= 1} being

not a constant but the random variable {(1 − 𝑞)𝐴 + (1 − 𝛽)𝑞}.
From (2), 𝑄rc can be obtained as (1 − 𝑞)𝐴 + (1 − 𝛽)𝑞. From
(3), we have

POErc (𝑞) = Pr {𝑄rc > 𝑞} = Pr {(1 − 𝑞)𝐴 > 𝛽𝑞} . (6)

For 𝑞 ̸= 1, (6) can be further reduced to

POErc (𝑞) = Pr{𝐴 >
𝛽𝑞

1 − 𝑞
}

=

{{{{{{{

{{{{{{{

{

1, for
𝛽𝑞

1 − 𝑞
= 0,

1 − 𝐹
𝐴
(

𝛽𝑞

1 − 𝑞
) , for 0 <

𝛽𝑞

1 − 𝑞
≤ 𝛼
𝑢
,

0, for 𝛼
𝑢
<

𝛽𝑞

1 − 𝑞
,

(7)

where𝐹
𝐴
(𝑞) = ∫

𝑞

0

𝑓
𝐴
(𝑎)𝑑𝑎. For 𝑞 = 1, POErc(1) becomes zero

since 𝑄rc = (1 − 𝛽) is always smaller than 𝑞 = 1. If 𝑞 = 1 and
𝛽 = 0, then since 𝑄rc = 𝑞 = 1, every inspector with 𝛽 = 0

always estimates correctly regardless of any distribution of
𝑓
𝐴
(𝑎), and by our definition of POE, POErc(1) = 0.5. Hence,

POErc(1) has two values either 0.5 (when 𝛽 = 0) or zero
(when 0 < 𝛽 ≤ 1) depending on 𝛽. Suppose that 𝑓

𝐴
(𝑎) =

(1/𝛼
𝑢
)𝐼
(0,𝛼
𝑢
]
(𝑎). Then, we have the following proposition

indicating that POErc(𝑞) can be expressed as a function of two
input variables 𝜌rc, and 𝑞 where 𝜌rc = 2𝛽/𝛼

𝑢
.

Proposition 3. Under the assumptions that 𝐴
𝑖
= 𝐴 and 𝐵

𝑖
=

𝛽 for all 𝑖, where 𝛽 is a constant with 0 < 𝛽 ≤ 1 and 𝐴 is a
random variable distributed with 𝑓

𝐴
(𝑎) = (1/𝛼

𝑢
)𝐼
(0,𝛼
𝑢
]
(𝑎) for

0 < 𝑎 ≤ 𝛼
𝑢
and 0 < 𝛼

𝑢
≤ 1,

(1)

𝑃𝑂𝐸
𝑟𝑐
(𝑞) =

{

{

{

1 −
𝜌rc𝑞

2 (1 − 𝑞)
, 𝑓𝑜𝑟 0 ≤ 𝑞 ≤ 𝑞

𝑟𝑐
,

0, 𝑓𝑜𝑟 𝑞
𝑟𝑐
≤ 𝑞 ≤ 1,

(8)

where 𝑞
𝑟𝑐
= 2/(2 + 𝜌

𝑟𝑐
),

(2) 𝑃𝑂𝐸
𝑟𝑐
(𝑞) is a strictly decreasing concave function of 𝑞

for 0 ≤ 𝑞 ≤ 𝑞
𝑟𝑐
,

(3) 𝐶𝐹𝐷
𝑟𝑐
= 1/(1 + 𝜌

𝑟𝑐
),

(4) the inspector with (𝛼
𝑢
, 𝛽) overestimates 𝑞 with 𝑃𝑂𝐸 >

0.5 for 0 ≤ 𝑞 < 𝐶𝐹𝐷
𝑟𝑐
, estimates 𝑞 correctly with

𝑃𝑂𝐸 = 0.5 for 𝑞 = 𝐶𝐹𝐷
𝑟𝑐
, and underestimates 𝑞 with

𝑃𝑂𝐸 < 0.5 for 𝐶𝐹𝐷
𝑟𝑐
< 𝑞 ≤ 1.

Proof. From (7), since 𝐹
𝐴
(𝛽𝑞/(1 − 𝑞)) = 𝛽𝑞/𝛼

𝑢
(1 − 𝑞) for 0 ≤

𝑞 ≤ 𝑞rc, POErc(𝑞) can be derived as above. Since POE󸀠rc(𝑞) =
−𝜌rc/2(1 − 𝑞)

2

< 0 and POE󸀠󸀠rc(𝑞) = −𝜌rc/(1 − 𝑞)
3

< 0,
POErc(𝑞) is a strictly decreasing concave function of 𝑞 for
0 ≤ 𝑞 ≤ 𝑞rc. Since 0 ≤ POErc(𝑞) ≤ 1 for 0 ≤ 𝑞 ≤ 𝑞rc, solving
POErc(𝑞

∗

) = 0.5 for 0 ≤ 𝑞
∗

≤ 𝑞rc gives CFDrc = 1/(1 + 𝜌rc).
Hence, (4) holds true.

Note that POErc(𝑞) and CFDrc for any density function
𝑓
𝐴
(𝑎) can be generally derived as shown in Proposition A.1

in Appendix. Also note that 𝐸[𝑄rc | 𝑞 = CFDrc] = (1 −

CFDrc)𝐸[𝐴] + (1 − 𝛽)CFDrc = CFDrc where 𝐸[𝐴] = 𝛼
𝑢
/2.

A representative graph of POErc(𝑞) is shown in Figure 2(a).
Suppose that both 𝑞 and 𝜌rc are input variables.Then, solving
POErc(𝑞) = 1 − 𝜌rc𝑞/2(1 − 𝑞) > 0.5 for 0 ≤ 𝑞 ≤ 𝑞rc gives
0 < 𝜌rc < (1−𝑞)/𝑞 and Proposition 3 implies that every point
(𝑞, 𝜌rc) in the shaded region 𝑅rc as shown in Figure 2(b) gives
overestimation with POE > 0.5, where𝑅rc can be represented
by {(𝑞, 𝜌rc) | 0 < 𝜌rc < (1 − 𝑞)/𝑞, 0 ≤ 𝑞 < 1}. That is, an
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Figure 2: The graph of POErc(𝑞) and the overestimation region in two different planes.

Table 4: POErc(𝑞) and CFDrc for 𝑞 = 5% and different inspectors.

Inspector 1 Inspector 2 Inspector 3
𝛼
𝑢
(%) 0.2 0.4 0.6

𝛽 (%) 2.0 2.5 5.7
𝜌rc = 2𝛽/𝛼

𝑢
20.0 12.5 19.0

CFDrc = 𝑞rc 4.76% 7.41% 5.00%
POErc(𝑞) 47.37% 67.11% 50.00%

inspector with 𝜌rc overestimates 𝑞 if (𝑞, 𝜌rc) ∈ 𝑅rc, estimates
𝑞 with POE = 0.5 if 𝜌rc = (1 − 𝑞)/𝑞, and underestimates 𝑞
otherwise. Note that if 𝛽 = 0, then every point (𝑞, 0) for 0 <
𝑞 < 1 on the line 𝜌rc = 0 gives overestimation with POE > 0.5

since 𝑄rc = (1 − 𝑞)𝐴 + 𝑞 is always greater than 𝑞.
Suppose that both 𝛼

𝑢
and 𝛽 are input variables and 𝑞 is

given as a constant. Then, solving POErc(𝑞) = 1 − 𝛽𝑞/𝛼
𝑢
(1 −

𝑞) > 0.5 for 0 ≤ 𝑞 ≤ 𝑞rc gives 0 < 𝛽 < 0.5𝑞
𝑠
𝛼
𝑢
and

Proposition 3 implies that every point (𝛼
𝑢
, 𝛽) in the shaded

region 𝑅󸀠rc as shown in Figure 2(c) gives overestimation with
POE > 0.5 where 𝑅󸀠rc = {(𝛼

𝑢
, 𝛽) | 0 < 𝛽 < 0.5𝑞

𝑠
𝛼
𝑢
, 0 < 𝛼

𝑢
≤

1, 0 < 𝛽 ≤ 1}. That is, an inspector with (𝛼
𝑢
, 𝛽) overestimates

with POE > 0.5 if (𝛼
𝑢
, 𝛽) ∈ 𝑅

󸀠

rc, estimates 𝑞with POE = 0.5 if
𝛽 = 0.5𝑞

𝑠
𝛼
𝑢
, and underestimates 𝑞with POE < 0.5 otherwise.

Example 4. For 𝑞 = 5% and three inspectors given in Table 4,
POErc(𝑞) and CFDrc for each inspector can be computed
and summarized in the table. If we would like to select the
inspector satisfying POErc(𝑞) = 50%, then inspector 3 will be
selected again.

5. Analysis of Model III (C, R)

Suppose that𝐴
𝑖
= 𝛼 and 𝐵

𝑖
= 𝐵 for all 𝑖 where 𝛼 is a constant

with 0 < 𝛼 ≤ 1 and 𝐵 is a random variable distributed with
the probability density function 𝑓

𝐵
(𝑏) for 0 < 𝑏 ≤ 𝛽

𝑢
and

0 < 𝛽
𝑢
≤ 1. Then, since Pr{𝑌

𝑖
= 1 | 𝑋

𝑖
= 0} = 𝛼, Pr{𝑌

𝑖
=

0 | 𝑋
𝑖
= 1} = 𝐵, the process {𝑌

𝑖
, 𝑖 = 1, 2, 3, . . .} becomes

an infinite random-Bernoulli process with Pr{𝑌
𝑖
= 1} being

the random variable {𝛼(1 − 𝑞) + (1 − 𝐵)𝑞}. From (2), 𝑄cr can
be obtained as 𝛼(1 − 𝑞) + (1 − 𝐵)𝑞. From (3), we have

POEcr (𝑞) = Pr {𝑄cr > 𝑞} = Pr {𝑞𝐵 < 𝛼 (1 − 𝑞)} . (9)

For 𝑞 ̸= 0, (9) can be further reduced to

POEcr (𝑞) = Pr{𝐵 <
𝛼 (1 − 𝑞)

𝑞
}

=

{{{

{{{

{

1, for
𝛼 (1 − 𝑞)

𝑞
≥ 𝛽
𝑢
,

𝐹
𝐵
(
𝛼 (1 − 𝑞)

𝑞
) , for

𝛼 (1 − 𝑞)

𝑞
< 𝛽
𝑢
,

(10)

where 𝐹
𝐵
(𝑞) = ∫

𝑞

0

𝑓
𝐵
(𝑏)𝑑𝑏.

For 𝑞 = 0, POEcr(0) becomes one since 𝑄cr = 𝛼 is always
greater than 𝑞 = 0 from (9). If 𝑞 = 𝛼 = 0, then since
𝑄cr(= 0) is always equal to 𝑞(= 0), every inspector with 𝛼 = 0

always estimates correctly regardless of any distribution of
𝑓
𝐵
(𝑏), and, by our definition of POE, POEcr(0) is not one

but 50% in this case. This result implies that POEcr(0) can
be either one or 50% depending on the value of 𝛼. Since we
assume that 0 < 𝛼 ≤ 1, we have POEcr(0) = 1. Suppose
that 𝑓

𝐵
(𝑏) = (1/𝛽

𝑢
)𝐼
(0,𝛽
𝑢
]
(𝑏). Then, we have the following

proposition indicating that POEcr(𝑞) can be expressed as a
function of two input variables 𝜌cr and 𝑞 where 𝜌cr = 𝛽

𝑢
/2𝛼.

Proposition 5. Under the assumption that𝐴
𝑖
= 𝛼 and 𝐵

𝑖
= 𝐵

for all 𝑖where 𝛼 is a constant with 0 < 𝛼 ≤ 1 and 𝐵 is a random
variable distributed with𝑓

𝐵
(𝑏) for 0 < 𝑏 ≤ 𝛽

𝑢
and 0 < 𝛽

𝑢
≤ 1,

(1)

POEcr (𝑞) =
{{

{{

{

1, 𝑓𝑜𝑟 0 ≤ 𝑞 ≤ 𝑞cr,

(1 − 𝑞)

2𝜌cr𝑞
, 𝑓𝑜𝑟 𝑞cr ≤ 𝑞 ≤ 1,

(11)

where 𝑞
𝑐𝑟
= 1/(1 + 2𝜌

𝑐𝑟
),

(2) 𝑃𝑂𝐸
𝑐𝑟
(𝑞) is a strictly decreasing convex function of 𝑞

for 𝑞
𝑐𝑟
≤ 𝑞 ≤ 1,
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Figure 3: The graph of POEcr(𝑞) and the overestimation region in two different planes.

(3) CFD
𝑐𝑟
= 1/(1 + 𝜌

𝑐𝑟
),

(4) the inspector with (𝛼, 𝛽
𝑢
) overestimates 𝑞 with 𝑃𝑂𝐸 >

0.5 for 0 ≤ 𝑞 < 𝐶𝐹𝐷
𝑐𝑟
, estimates 𝑞 with 𝑃𝑂𝐸 = 0.5 for

𝑞 = 𝐶𝐹𝐷
𝑐𝑟
, and underestimates 𝑞 with 𝑃𝑂𝐸 < 0.5 for

𝐶𝐹𝐷
𝑐𝑟
< 𝑞 ≤ 1.

Proof. From (10), since𝐹
𝐵
(𝛼(1−𝑞)/𝑞) = 𝛼(1−𝑞)/𝛽

𝑢
𝑞 for 𝑞cr ≤

𝑞 ≤ 1, POEcr(𝑞) can be derived as above. Since POE󸀠cr(𝑞) =
−1/2𝜌cr𝑞

2

< 0 and POE󸀠󸀠cr(𝑞) = 1/𝜌cr𝑞
3

> 0 for 𝑞cr ≤ 𝑞 ≤

1, POEcr(𝑞) is a strictly decreasing convex function of 𝑞 for
𝑞cr ≤ 𝑞 ≤ 1. Since 0 ≤ POEcr(𝑞) ≤ 1 for 𝑞cr ≤ 𝑞 ≤ 1, solving
POEcr(𝑞

∗

) = 0.5 for 𝑞cr ≤ 𝑞
∗

≤ 1 gives CFDcr = 1/(1 + 𝜌cr).
Hence, (4) holds true.

Note that generally POEcr(𝑞) and CFDcr for any density
function 𝑓

𝐵
(𝑏) can be derived as shown in Proposition A.2

in Appendix. Also note that 𝐸[𝑄cr | 𝑞 = CFDcr] = (1 −

CFDcr)𝛼 + (1 − 𝐸[𝐵])CFDcr = CFDcr where 𝐸[𝐵] = 𝛽
𝑢
/2.

A representative graph of POEcr(𝑞) is shown in
Figure 3(a). Suppose that both 𝑞 and 𝜌cr are input variables.
Then, solving POEcr(𝑞) = (1 − 𝑞)/2𝜌cr𝑞 > 0.5 for 𝑞cr ≤ 𝑞 ≤ 1

gives 0 < 𝜌cr < (1 − 𝑞)/𝑞 and Proposition 5 implies that
every point (𝑞, 𝜌cr) in the shaded region 𝑅cr as shown in
Figure 3(b) gives overestimation with POE > 0.5 where
𝑅cr = {(𝑞, 𝜌cr) 0 < 𝜌cr < (1 − 𝑞)/𝑞, 0 ≤ 𝑞 < 1}. That is, an
inspector with 𝜌cr overestimates 𝑞 if (𝑞, 𝜌cr) ∈ 𝑅cr, estimates
𝑞 with POE = 0.5 if 𝜌cr = (1 − 𝑞)/𝑞, and underestimates 𝑞
with POE < 0.5 otherwise. Note that if 𝛼 = 0, then every
point (𝑞, 0) for 0 < 𝑞 < 1 gives underestimation since
Pr{𝑄cr > 𝑞} = Pr{𝐵 < 0} = 0.

Suppose that both 𝛼 and 𝛽
𝑢
are input variables and 𝑞 is

given as a constant.Then, solving POEcr(𝑞) = (1 − 𝑞)𝛼/𝑞𝛽
𝑢
>

0.5 for 𝑞cr ≤ 𝑞 ≤ 1 gives 0 < 𝛽
𝑢
< 2𝑞
𝑠
𝛼 and Proposition 5

implies that every point (𝛼, 𝛽
𝑢
) in the shaded region 𝑅

󸀠

cr as
shown in Figure 1(c) which gives overestimation with POE >

0.5 where 𝑅󸀠cr = {(𝛼, 𝛽
𝑢
) | 0 < 𝛽

𝑢
< 2𝑞
𝑠
𝛼, 0 < 𝛼 ≤ 1, 0 <

𝛽
𝑢
≤ 1}. That is, an inspector with (𝛼, 𝛽

𝑢
) overestimates with

Table 5: POEcr(𝑞) and CFD for 𝑞 = 5% and different inspectors.

Inspector 1 Inspector 2 Inspector 3
𝛼 (%) 0.1 0.2 0.3
𝛽
𝑢
(%) 4.0 5.0 11.4

𝜌cr = 𝛽
𝑢
/2𝛼 20.0 12.5 19.0

CFDcr = 𝑞cr 4.76% 7.41% 5.00%
POEcr(𝑞) 47.50% 76.00% 50.00%

POE > 0.5 if (𝛼, 𝛽
𝑢
) ∈ 𝑅

󸀠

cr, estimates 𝑞 with POE = 0.5 if
𝛽 = 2𝑞

𝑠
𝛼
𝑢
, and underestimates 𝑞 with POE < 0.5 otherwise.

Example 6. For 𝑞 = 5% and three inspectors given in Table 5,
POEcr(𝑞) and CFDcr for each inspector can be computed
and summarized in the table. If we would like to select the
inspector satisfying POEcr(𝑞) = 50%, then inspector 3 will be
selected again.

6. Analysis of Model IV (R, R)

Suppose that 𝐴
𝑖
= 𝐴 and 𝐵

𝑖
= 𝐵 for all 𝑖 where 𝐴 and 𝐵

are random variables distributed with the probability density
functions 𝑓

𝐴
(𝑎) and 𝑓

𝐵
(𝑏), respectively, for 0 < 𝑎 ≤ 𝛼

𝑢
, 0 <

𝑏 ≤ 𝛽
𝑢
and 0 < 𝛼

𝑢
, 𝛽
𝑢
≤ 1. Then, since Pr{𝑌

𝑖
= 1 | 𝑋

𝑖
= 0} =

𝐴 and Pr{𝑌
𝑖
= 0 | 𝑋

𝑖
= 1} = 𝐵, the process {𝑌

𝑖
, 𝑖 = 1, 2, 3, . . .}

becomes an infinite random-Bernoulli process with Pr{𝑌
𝑖
=

1} being the random variable {𝐴(1 − 𝑞) + (1 − 𝐵)𝑞}. From (2),
𝑄rr can be obtained as𝐴(1−𝑞)+ (1−𝐵)𝑞. From (3), POE can
be expressed as

POErr (𝑞) = Pr {𝑄rr > 𝑞} = Pr {(1 − 𝑞)𝐴 > 𝑞𝐵} . (12)

If 𝑞 = 1, then POErr(𝑞) = 0 since POErr(𝑞) = Pr{𝐵 <

0} = 0; that is, even perfect inspector always underestimates
𝑞 regardless of any distribution of (𝑓

𝐴
(𝑎), 𝑓
𝐵
(𝑏)). On the other

hand, if 𝑞 = 0, then POErr(0) = 1 since POErr(0) = Pr{𝐴 >

0} = 1; that is, even perfect inspector always overestimates 𝑞
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0 1 a

1

b

𝛽u

b = qsa

Srr

𝛼u

(a) For 𝑞
𝑠
≥ 𝜌rr (or 0 < 𝑞 ≤ 𝑞rr)

1

b

𝛽u

b = qsa

Srr

0 1 a𝛼u

(b) For 0 < 𝑞
𝑠
≤ 𝜌rr (or 𝑞rr ≤ 𝑞 < 1)

Figure 4: The region of 𝑆rr depending on 𝑞𝑠 and 𝜌rr.

regardless of any distribution of (𝑓
𝐴
(𝑎), 𝑓
𝐵
(𝑏)). For 0 < 𝑞 < 1,

(12) can be reduced to

POErr (𝑞) = ∫

𝛽
𝑢

0

Pr {(1 − 𝑞)𝐴 > 𝑞𝐵 | 𝐵 = 𝑏} 𝑓
𝐵
(𝑏) 𝑑𝑏

= ∫

𝛽
𝑢

0

Pr{
𝑞𝑏

1 − 𝑞
< 𝐴 ≤ 𝛼

𝑢
}𝑓
𝐵
(𝑏) 𝑑𝑏

= ∫

𝛽
𝑢

0

{∫

𝛼
𝑢

𝑞𝑏/(1−𝑞)

𝑓
𝐴
(𝑎) 𝑑𝑎}𝑓

𝐵
(𝑏) 𝑑𝑏

= ∬
(𝑎,𝑏)∈𝑆rr

𝑓
𝐴
(𝑎) 𝑓
𝐵
(𝑏) 𝑑𝑎 𝑑𝑏,

(13)

where 𝑆rr = {(𝑎, 𝑏)| 𝑏 < 𝑞
𝑠
𝑎, 0 ≤ 𝑎 ≤ 𝛼

𝑢
, 0 ≤ 𝑏 ≤

𝛽
𝑢
, and 0 < 𝛼

𝑢
, 𝛽
𝑢
≤ 1}.

Suppose that 𝑓
𝐴
(𝑎) = (1/𝛼

𝑢
)𝐼
(0,𝛼
𝑢
]
(𝑎) and 𝑓

𝐵
(𝑏) = (1/

𝛽
𝑢
)𝐼
(0,𝛽
𝑢
]
(𝑏).Then, we have the following proposition indicat-

ing that POErr(𝑞) can be expressed as a function of two input
variables 𝜌rr and 𝑞 where 𝜌rr = 𝛽

𝑢
/𝛼
𝑢
.

Proposition 7. Under the assumption that 𝐴
𝑖
= 𝐴 and 𝐵

𝑖
=

𝐵 for all 𝑖 where 𝐴 and 𝐵 are random variables distributed
with 𝑓

𝐴
(𝑎) = (1/𝛼

𝑢
)𝐼
(0,𝛼
𝑢
]
(𝑎) and 𝑓

𝐵
(𝑏) = (1/𝛽

𝑢
)𝐼
(0,𝛽
𝑢
]
(𝑏),

respectively, for 0 < 𝑎 ≤ 𝛼
𝑢
, 0 < 𝑏 ≤ 𝛽

𝑢
, and 0 < 𝛼

𝑢
, 𝛽
𝑢
≤ 1,

(1)

𝑃𝑂𝐸
𝑟𝑟
(𝑞)

=

{{{{{{{

{{{{{{{

{

𝑃𝑂𝐸
𝑟𝑟1

(𝑞) = 1 −
𝜌
𝑟𝑟
𝑞

2 (1 − 𝑞)
,

𝑓𝑜𝑟 0 ≤ 𝑞 ≤ 𝑞
𝑟𝑟

(𝑜𝑟 𝑞
𝑠
≥ 𝜌
𝑟𝑟
) ,

𝑃𝑂𝐸
𝑟𝑟2

(𝑞) =
1 − 𝑞

2𝜌
𝑟𝑟
𝑞
,

𝑓𝑜𝑟 𝑞
𝑟𝑟
≤ 𝑞 ≤ 1 (𝑜𝑟 0 ≤ 𝑞

𝑠
≤ 𝜌
𝑟𝑟
) ,

(14)

where 𝑞
𝑟𝑟
= 1/(1 + 𝜌

𝑟𝑟
),

(2) 𝑃𝑂𝐸
𝑟𝑟1
(𝑞) is a strictly decreasing concave function of

𝑞 with 𝑃𝑂𝐸
𝑟𝑟1
(0) = 1, and 𝑃𝑂𝐸

𝑟𝑟2
(𝑞) is a strictly

decreasing convex function of 𝑞 with 𝑃𝑂𝐸
𝑟𝑟2
(1) = 0,

(3) 𝐶𝐹𝐷
𝑟𝑟
= 1/(1 + 𝜌

𝑟𝑟
),

(4) the inspector with 𝜌
𝑟𝑟
overestimates 𝑞 with 𝑃𝑂𝐸 > 0.5

for 0 ≤ 𝑞 < 𝐶𝐹𝐷
𝑟𝑟
, estimates 𝑞 with POE = 0.5 for

𝑞 = CFDrr, and underestimates 𝑞 with POE < 0.5 for
CFDrr < 𝑞 ≤ 1.

Proof. It isproved from(12) that POErr(0) = 1 andPOErr(1) = 0.
For 0 < 𝑞 < 1, since the shape of 𝑆rr depends upon 𝑞𝑠 and 𝜌rr,
for 𝑞
𝑠
≥ 𝜌rr as shown in Figure 4(a), (13) can be reduced to

POErr1 (𝑞) =
1

𝛼
𝑢
𝛽
𝑢

∫

𝛽
𝑢

0

∫

𝛼
𝑢

𝑞𝑏/(1−𝑞)

𝑑𝑎 𝑑𝑏 = 1 −
𝜌rr𝑞

2 (1 − 𝑞)
;

(15)

and for 0 < 𝑞
𝑠
≤ 𝜌rr as shown in Figure 4(b), (13) can be

reduced to

POErr2 (𝑞) =
1

𝛼
𝑢
𝛽
𝑢

∫

((1−𝑞)/𝑞)𝛼
𝑢

0

∫

𝛼
𝑢

𝑞𝑏/(1−𝑞)

𝑑𝑎 𝑑𝑏 =
1 − 𝑞

2𝜌rr𝑞
.

(16)

Equation (15) holds when 𝑞 = 0 (equivalently, 𝑞
𝑠
= ∞)

since replacing 𝑞 in (15) with zero gives POErr1(0) = 1 and
(16) holds when 𝑞 = 1 (equivalently, 𝑞

𝑠
= 0) since replacing

𝑞 in (16) with one gives POErr2(1) = 0. For 0 ≤ 𝑞 ≤ 𝑞rr,
since POE󸀠rr1(𝑞) = −𝜌rr/2(1 − 𝑞)

2

< 0 and POE󸀠󸀠rr1(𝑞) = −𝜌rr/

(1 − 𝑞)
3

< 0, POErr1(𝑞) is a strictly decreasing concave func-
tion of 𝑞. For 𝑞rr ≤ 𝑞 ≤ 1, since POE󸀠rr2(𝑞) = −1/2𝜌rr𝑞

2

< 0

and POE󸀠󸀠rr2(𝑞) = 1/𝜌rr𝑞
3

> 0, POErr2(𝑞) is a strictly decreas-
ing convex function of 𝑞. Note that POErr(𝑞) is differentia-
ble at 𝑞 = 𝑞rr. Hence, POErr(𝑞) is a strictly decreasing
function of 𝑞 with POErr(0) = POErr1(0) = 1 and POErr(1) =
POErr2(1) = 0. Since POErr1(𝑞rr) = POErr2(𝑞rr) = 0.5,
CFDrr is 𝑞rr. Since POErr1(𝑞) > 0.5 for 0 ≤ 𝑞 < CFDrr and
POErr2(𝑞) < 0.5 for CFDrr < 𝑞 ≤ 1, (4) holds true.
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0

1

q

5.0

1

POErr (q)

POErr1(q)

POErr2(q)

qrr

(a) The graph of POErr(𝑞)

0 q1

𝜌rr

Rrr

𝜌rr =
1 − q

q

(b) The region of overestimation in (𝑞, 𝜌rr)
plane

0

1

1

𝛽u

R󳰀
rr

𝛼u

𝛽u = qs𝛼u

(c) The region of overestimation in (𝛼
𝑢
, 𝛽
𝑢
)

plane for given 𝑞 when 𝑞
𝑠
> 𝛽
𝑢
/𝛼
𝑢

Figure 5: The graph of POEcr(𝑞) and the overestimation region in two different planes.

Since𝐴 and𝐵 are uniform randomvariables, respectively,
(15) and (16) can be derived by a different method as follows.
Equation (13) can be expressed as

POErr (𝑞) = ∬
(𝑎,𝑏)∈𝑆rr

𝑓
𝐴
(𝑎) 𝑓
𝐵
(𝑏) 𝑑𝑎 𝑑𝑏

=
1

𝛼
𝑢
𝛽
𝑢

∬
(𝑎,𝑏)∈𝑆rr

𝑑𝑎 𝑑𝑏.

(17)

Since the value of the integral is equivalent to the size of
the area 𝑆rr as shown in Figure 4, POErr(𝑞) can be interpreted
as the ratio of the size of 𝑆rr to the size of the rectangle 𝛼𝑢𝛽𝑢.
The shape of 𝑆rr varies depending on the straight line 𝑏 = 𝑞

𝑠
𝑎,

which cuts the rectangle into two parts, that is, an upper part
and a lower part as shown in Figure 4. The lower part of the
rectangle under the line corresponds to 𝑆rr, a right-angled
triangle when 0 < 𝑞

𝑠
≤ 𝜌rr, and a trapezoid when 𝑞

𝑠
> 𝜌rr.

Since the size of the trapezoid and the triangle can be derived
as (2𝑞

𝑠
𝛼
𝑢
− 𝛽
𝑢
)𝛽
𝑢
/2𝑞
𝑠
and 𝑞
𝑠
𝛼
2

𝑢
/2, respectively, POErr(𝑞) can

be easily obtained.
It seems to be mathematically hard to derive POErr(𝑞)

and CFDrr generally for any density functions. From
Propositions A.1 and A.2 in Appendix, our conjecture is that
CFDrr = 𝐹

−1

𝐴
(0.5)/(𝐹

−1

𝐴
(0.5)+𝐹

−1

𝐵
(0.5)). Note that𝐸[𝑄rr | 𝑞 =

CFDrr] = (1 − CFDrr)𝐸[𝐴] + (1 − 𝐸[𝐵])CFDrr = CFDrr.
From Proposition 7, a graph of POErr(𝑞) can be drawn

as shown in Figure 5(a). Suppose that 𝑞 and 𝜌rr are input
variables. Then, since POErr1(𝑞) > 0.5, solving POErr1(𝑞) =
1 − 𝜌rr𝑞/2(1 − 𝑞) > 0.5 for 0 ≤ 𝑞 ≤ 𝑞rr = 1/(1 + 𝜌rr) gives
0 < 𝜌rr < (1−𝑞)/𝑞 and Proposition 7 implies that every point
(𝑞, 𝜌rr) in the shaded region 𝑅rr as shown in Figure 5(b) gives
overestimation with POE > 0.5 where 𝑅rr = {(𝑞, 𝜌rr) | 0 <

𝜌rr < (1 − 𝑞)/𝑞, 0 ≤ 𝑞 < 1}. That is, an inspector with 𝜌rr
overestimates 𝑞 with POE > 0.5 if (𝑞, 𝜌rr) ∈ 𝑅rr, estimates
𝑞 with POE = 0.5 if 𝜌rr = 𝑞

𝑠
, and underestimates 𝑞 with

POE < 0.5 otherwise.

Table 6: POErr(𝑞) and CFD for 𝑞 = 5% and different inspectors.

Inspector 1 Inspector 2 Inspector 3
𝛼
𝑢
(%) 0.2 0.4 0.6

𝛽
𝑢
(%) 4.0 5.0 11.4

𝜌rr = 𝛽
𝑢
/𝛼
𝑢

20.0 12.5 19.0
CFDrr = 𝑞rr 4.76% 7.41% 5.00%
POErr(𝑞) 47.50% 67.11% 50.00%

Suppose that 𝑞 is a given constant and both 𝛼
𝑢
and 𝛽

𝑢

are input variables. Then, similarly solving POErr1(𝑞) = 1 −

(𝑞/2(1−𝑞))⋅(𝛽
𝑢
/𝛼
𝑢
) > 0.5 for 0 ≤ 𝑞 ≤ 𝑞rr = 𝛼

𝑢
/(𝛼
𝑢
+𝛽
𝑢
) gives

0 < 𝛽
𝑢
< ((1 − 𝑞)/𝑞)𝛼

𝑢
and Proposition 7 implies that every

point (𝛼
𝑢
, 𝛽
𝑢
) in the shaded region𝑅󸀠rr as shown in Figure 5(c)

gives overestimation POE > 0.5 where 𝑅󸀠rr = {(𝛼
𝑢
, 𝛽
𝑢
) | 0 <

𝛽
𝑢
< 𝑞
𝑠
𝛼
𝑢
, 0 < 𝛼

𝑢
≤ 1, 0 < 𝛽

𝑢
≤ 1}. That is, an inspector

with (𝛼
𝑢
, 𝛽
𝑢
) overestimates 𝑞with POE > 0.5 if (𝛼

𝑢
, 𝛽
𝑢
) ∈ 𝑅
󸀠

rr,
estimates 𝑞 with POE = 0.5 if 𝛽

𝑢
= 𝑞
𝑠
𝛼
𝑢
, and underestimates

𝑞 with POE < 0.5 otherwise.

Example 8. For 𝑞 = 5% and three inspectors given in Table 6,
POErr(𝑞) and CFDrr for each inspector can be computed
and summarized in the table. If we would like to select the
inspector satisfying POErr(𝑞) = 50%, then inspector 3 will be
selected again as before.

7. Summary

In order to find relations between four propositions, the
constants 𝛼 and 𝛽 can be assumed to be 𝐸[𝐴] and 𝐸[𝐵],
respectively.This assumptionmay be justified since a constant
can be interpreted as a representative value. Since𝐴 and 𝐵 are
uniform random variables on (0, 𝛼

𝑢
] and (0, 𝛽

𝑢
], respectively,

we have, 𝛼 = 𝐸[𝐴] = 𝛼
𝑢
/2 and 𝛽 = 𝐸[𝐵] = 𝛽

𝑢
/2, respectively.

Thus, the following theorem holds true.
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Theorem 9. Assuming an infinite sequence of items with a
known FD 𝑞 and nonzero inspection errors with 𝛼 = 𝐸[𝐴] =

𝛼
𝑢
/2 and 𝛽 = 𝐸[𝐵] = 𝛽

𝑢
/2,

(1) an imperfect inspector with nonzero inspection errors
(𝐸[𝐴], 𝐸[𝐵]) has his/her own POE curve and CFD,

(2) POE is a function of two variables 𝑞 and 𝜌, denoted by
𝑃𝑂𝐸(𝑞, 𝜌),

(3) POE is a decreasing function of 𝑞 with 𝑃𝑂𝐸(0, 𝜌) = 1

and 𝑃𝑂𝐸(1, 𝜌) = 0,
(4) POE is a decreasing function of 𝜌 with POE(q, 0) = 1

and 𝑃𝑂𝐸(q, 1) = 0,
(5) there always exists a unique 𝐶𝐹𝐷 = 1/(1 + 𝜌), which

depends only on inspection errors and not 𝑞,
(6) the inspector overestimates 𝑞 with 𝑃𝑂𝐸 > 0.5 for 0 ≤

𝑞 < 𝐶𝐹𝐷, estimates 𝑞 with 𝑃𝑂𝐸 = 0.5 for 𝑞 = 𝐶𝐹𝐷,
and underestimates 𝑞 with 𝑃𝑂𝐸 < 0.5 for 𝐶𝐹𝐷 < 𝑞 ≤

1.

Proof. If 𝛼 = 𝐸[𝐴] = 𝛼
𝑢
/2 and 𝛽 = 𝐸[𝐵] = 𝛽

𝑢
/2, then

we have 𝜌cc = 𝜌rc = 𝜌cr = 𝜌rr = 𝐸[𝐵]/𝐸[𝐴] and CFDcc =

CFDrc = CFDcr = CFDrr = 𝐸[𝐴]/(𝐸[𝐴] + 𝐸[𝐵]) = 1/(1 + 𝜌),
where 𝜌 = 𝐸[𝐵]/𝐸[𝐴]. Let CFD = 1/(1 + 𝜌). Then, from
the results of four propositions, the theorem except (4) holds
true and those results are summarized in Table 7. By using
the similar method used for proofs of propositions, (4) can
be proved.

Since we have

𝑞cc =
𝐸 [𝐴]

𝐸 [𝐴] + 𝐸 [𝐵]
=

1

1 + 𝜌
,

𝑞rc =
2𝐸 [𝐴]

2𝐸 [𝐴] + 𝐸 [𝐵]
=

2

2 + 𝜌
,

𝑞cr =
𝐸 [𝐴]

𝐸 [𝐴] + 2𝐸 [𝐵]
=

1

1 + 2𝜌
,

𝑞rr =
𝐸 [𝐴]

𝐸 [𝐴] + 𝐸 [𝐵]
=

1

1 + 𝜌
,

POErc (𝑞) = 1 −
𝜌𝑞

2 (1 − 𝑞)
for 0 ≤ 𝑞 ≤

2

2 + 𝜌
,

POEcr (𝑞) =
1 − 𝑞

2𝜌𝑞
for 1

1 + 2𝜌
≤ 𝑞 ≤ 1,

POErr (𝑞) =

{{{

{{{

{

1 −
𝜌𝑞

2 (1 − 𝑞)
, for 0 ≤ 𝑞 ≤

1

1 + 𝜌
,

1 − 𝑞

2𝜌𝑞
, for 1

1 + 𝜌
≤ 𝑞 ≤ 1,

(18)

it can be observed in Table 7 that POErr(𝑞) has the same form
as POErc(𝑞) for 0 ≤ 𝑞 ≤ 1/(1+𝜌) and POEcr(𝑞) for 1/(1+𝜌) ≤
𝑞 ≤ 1 even though their related domains are not the same.
Now, based on our theorem, our answer to the fundamental
question “Does an imperfect inspector overestimate a known
fraction defective when it is very low?” could be “certainly yes
at least under our assumptions” since POE ≈ 1 when FD is
very low.

8. Conclusion

Overestimation by an inspector may be explained not only
by inspection errors but also by other factors such as psycho-
logical aspects of inspectors, incentive plans for inspectors,
workload, conflicts among inspectors, and so on. However,
our results and concepts are based on four assumptions: the
assumption of an infinite sequence of items, the assumption
of a fixed known FD, the assumption of nonzero inspection
errors, and the assumption of a uniform distribution. Further
research may be concentrated on relaxing these assumptions.
We may obtain slightly different results, by assuming a finite
sequence of items; or by assuming that FD is not a fixed
constant, but a random variable; or by assuming other dis-
tributions, such as a skewed triangular, a truncated normal,
or an empirical distribution for a lower/upper limit interval.
However, our strong conjecture is that our theorem will
still be true, regardless of any distribution, and even a finite
number of items, as long as FD is a constant. Since our math-
ematical models do not consider any related costs, a cost-
based optimization model with POE could be constructed,
to determine a trade-off point between buyers and sellers.

If we consider the fair trade between a seller and a buyer,
and the trend that FD’s of manufacturers have been contin-
uously approaching zero, Theorem 9 implies that either the
ratio of type I error to type II error must go to infinity, or
the type I error must be zero in order for CFD to approach
zero, and that all commercial inspection plans should be
revised with the concept of POE in the near future, for the
fairness of commercial trades, since the smaller (up to several
hundreds ppm level) the FD of items sold by sellers is, the
more their unfair loss is forced to be. We hope that the
concept of POE should become one of the major criteria in
the future. Our methodology used in this paper could, with
slight modification, be applied and extended to the existing
sampling plans.

Appendix

Proposition A.1. Under the assumption that type I error is
distributed with 𝑓

𝐴
(𝑎) and that type II error is given as a

constant 𝛽 where 0 < 𝑎 ≤ 𝛼
𝑢
, 0 < 𝛼

𝑢
≤ 1, and 0 < 𝛽 ≤ 1,

(1)

𝑃𝑂𝐸
𝑟𝑐
(𝑞) =

{

{

{

1 − 𝐹
𝐴
(

𝛽𝑞

1 − 𝑞
) , 𝑓𝑜𝑟 0 ≤ 𝑞 ≤ 𝑞

𝑟𝑐
,

0, 𝑓𝑜𝑟 𝑞
𝑟𝑐
≤ 𝑞 ≤ 1,

(A.1)

(2) 𝑃𝑂𝐸
𝑟𝑐
(𝑞) is a strictly decreasing function of 𝑞 for 0 ≤

𝑞 ≤ 𝑞
𝑟𝑐
,

(3) 𝐶𝐹𝐷
𝑟𝑐
= 𝐹
−1

𝐴
(0.5)/(𝐹

−1

𝐴
(0.5) + 𝛽),

(4) the inspector with 𝜌
𝑟𝑐
overestimates 𝑞 with 𝑃𝑂𝐸 > 0.5

for 0 ≤ 𝑞 < 𝐶𝐹𝐷
𝑟𝑐
, estimates 𝑞 with 𝑃𝑂𝐸 = 0.5 for

𝑞 = 𝐶𝐹𝐷
𝑟𝑐
, and underestimates 𝑞 with 𝑃𝑂𝐸 < 0.5 for

𝐶𝐹𝐷
𝑟𝑐
< 𝑞 ≤ 1.
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Proof. Replacing 𝑞 in (7) with zero and 𝑞rc gives POErc(0) =

∫
𝛼
𝑢

0

𝑓
𝐴
(𝑎)𝑑𝑎 = 1 and POErc(𝑞rc) = 1, respectively. Thus, (1)

holds true for 𝑞 = 0 and 𝑞 = 𝑞rc. Since POE󸀠rc(𝑞) = −(𝜕/

𝜕𝑞)𝐹
𝐴
(𝛽𝑞/(1 − 𝑞)) = −(𝛽/(1 − 𝑞)

2

)𝑓
𝐴
(𝛽𝑞/(1 − 𝑞)) < 0,

POErc(𝑞) is a strictly decreasing function of 𝑞 for 0 ≤ 𝑞 ≤ 𝑞rc.
Since 0 ≤ POErc(𝑞) ≤ 1 for 0 ≤ 𝑞 ≤ 𝑞rc, solving POErc(𝑞

∗

) =

0.5 for 0 ≤ 𝑞
∗

< 𝑞rc gives CFDrc = 𝐹
−1

𝐴
(0.5)/(𝐹

−1

𝐴
(0.5) + 𝛽).

Hence, (3) and (4) hold true.

Proposition A.2. Under the assumption that type I error is
given as a constant 𝛼 and that type II error is distributed with
𝑓
𝐵
(𝑏) where 0 < 𝑏 ≤ 𝛽

𝑢
, 0 < 𝛽

𝑢
≤ 1, and 0 < 𝛼 ≤ 1,

(1)

𝑃𝑂𝐸
𝑐𝑟
(𝑞) =

{{

{{

{

1, 𝑓𝑜𝑟0 ≤ 𝑞 ≤ 𝑞
𝑐𝑟
,

𝐹
𝐵
(
𝛼 (1 − 𝑞)

𝑞
) , 𝑓𝑜𝑟𝑞

𝑐𝑟
≤ 𝑞 ≤ 1

(A.2)

(2) 𝑃𝑂𝐸
𝑐𝑟
(𝑞) is a strictly decreasing function of 𝑞 for 𝑞

𝑐𝑟
≤

𝑞 ≤ 1,

(3) 𝐶𝐹𝐷
𝑐𝑟
= 𝛼/(𝛼 + 𝐹

−1

𝐵
(0.5)),

(4) the inspector with 𝜌
𝑐𝑟
overestimates 𝑞 with 𝑃𝑂𝐸 > 0.5

for 0 ≤ 𝑞 < 𝐶𝐹𝐷
𝑐𝑟
, estimates 𝑞 with 𝑃𝑂𝐸 = 0.5 for

𝑞 = 𝐶𝐹𝐷
𝑐𝑟
, and underestimates 𝑞 with 𝑃𝑂𝐸 < 0.5 for

𝐶𝐹𝐷
𝑐𝑟
< 𝑞 ≤ 1.

Proof. Since POEcr(0) = 1 for 𝛼 ̸= 0, (1) holds true for 𝑞 = 0.
Since POE󸀠cr(𝑞) = (𝜕/𝜕𝑞)𝐹

𝐵
(𝛼(1 − 𝑞)/𝑞) = −(𝛼/𝑞

2

)𝑓
𝐵
(𝛼(1 −

𝑞)/𝑞) < 0, POEcr(𝑞) is a strictly decreasing function of 𝑞 for
𝑞cr ≤ 𝑞 ≤ 1. Since 0 ≤ POEcr(𝑞) ≤ 1 for 𝑞cr ≤ 𝑞 ≤ 1, solv-
ing POEcr(𝑞

∗

) = 0.5 for 𝑞cr ≤ 𝑞
∗

≤ 1 gives CFDcr = 𝛼/(𝛼 +

𝐹
−1

𝐵
(0.5)). Hence, (3) and (4) hold true.
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