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As a powerful tool in solving privacy preserving cooperative problems, secure multiparty computation is more and more popular
in electronic bidding, anonymous voting, and online auction. Privacy preserving sequencing problem which is an essential link is
regarded as the core issue in these applications. However, due to the difficulties of solvingmultiparty privacy preserving sequencing
problem, related secure protocol is extremely rare. In order to break this deadlock, this paper first presents an efficient secure
multiparty computation protocol for the general privacy-preserving sequencing problem based on symmetric homomorphic
encryption. The result is of value not only in theory, but also in practice.

1. Introduction

Sequencing problem is very common in our daily life, such
as ranking according to the scores, queuing by the height.
Informally speaking, it is about comparing and sequencing
of some numbers. It is easy and convenient to get the result
because it cares nothing about privacy in the scenes above.On
the contrary, privacy-preserving sequencing problem (PPSP)
is always a hard challenge since it requires to conduct secret
numbers comparison without knowing the numbers. In this
scenario, all participants distrust each other and would not
like to leak their own secret information to anyone else. It is an
urgent task to be solved for some important applications such
as electronic bidding, anonymous voting, and online auction.
Naturally, as a powerful tool in solving privacy-preserving
cooperative problems, securemultiparty computation (SMC)
[1] is the best choice for privacy-preserving sequencing. In
fact, the classical Millionaire’s problem [1–3] is the earliest
example of introducing secure multiparty computation into
the sequencing problem. More specifically, the millionaire’s
problem, with the aim to find out which one of the two
Millionaires is richer without revealing their net worth, can

be described as comparing two secret numbers in the per-
spective of sequencing, that is, the 2-party case of PPSP.
In this aspect, the case of 2-party sequencing problem has
already been resolved along with the advent of the solutions
to Millionaire’s problem and the presence of other secure
two-party computation protocols [4–12]. Due to the limita-
tion of the 2-party case in practice, the general multiparty
PPSP becomes the focus in secure multiparty computation
recently.

In 1962, Held and Karp [13] put forward a dynamic pro-
gramming approach to multiparty sequencing problem
before the advent of SMC. They concern more about some
certain scenarios and aim to design schemes for the special
applications such as the traveling-salesman problem. Sub-
sequently, the research on PPSP is rare and mainly about
the 2-party case. Currently, Tang et al. [14] have constructed
an efficient and secure multiparty computation protocol for
PPSP by making use of a secret sharing scheme based on
polynomial. It is an important fruit of PPSP since it has indeed
realized secure sequencing among distrusted participants.
However, the cost is too high in choosing random numbers
and transmitting messages. In the case of 𝑛 parties with
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𝑡 adversaries, it needs to choose 2𝑛 ⋅ (2𝑡 + 1) + 𝑛 polynomials
and 2𝑛⋅(𝑡+1) randomnumbers.What ismore, the transmitted
messages are up to (2𝑡 + 1) ⋅ (𝑛 − 1) ⋅ 𝑛 + (𝑛 − 1) ⋅ 𝑛 + 𝑛2(2𝑡 + 1)
every round.

This paper applies the fast symmetric homomorphic
encryption to replace the cumbersome secret sharing based
on polynomial. It no longer needs to choose so many
polynomials and random numbers. Relevant complexities in
computation and communication also have a great improve-
ment. Our result is not only much simpler but also more
efficient. In brief, our contributions can be summarized as
follows.

(1) We first introduce symmetric homomorphic encryp-
tion to solve the privacy-preserving sequencing prob-
lem in secure multiparty computation, which brings
less communications and random numbers than the
method of secret sharing based on polynomial.

(2) Our protocol is appropriate for the insecure channel
which allows external attackers to eavesdrop and can
resist at most 𝑡 < 𝑛/2 adversaries’ corruption suppos-
ing that any two neighbor parties do not conspire.

(3) We propose a protocol for the general privacy-
preserving sequencing problem, which is suitable for
multiple parties to securely determine the order of
a given set rather than just two parties such as the
simplest sequencing problem-Millionaire’s problem,
or a special application such as the traveling-salesman
problem.

Organization. The rest of this paper is organized as follows.
In Section 2, we briefly give some related preliminaries. In
Section 3, we present the new efficient secure multiparty
computation protocol for privacy-preserving sequencing
problem over insecure channel. In Section 4, we analyze the
proposed protocol in detail including its correctness and
privacy. Furthermore, we show the advantages of our protocol
in the two aspects of transmitted messages and random
numbers. Finally, we summarize our work of this paper in the
last section.

2. Preliminaries

2.1. SecureMultiparty Computation. Securemultiparty com-
putation is dedicated to dealing with the problem of privacy-
preserving cooperative computation among distrusted par-
ticipants. It was first introduced by Yao in 1982 [1] by putting
forward the famous Millionaire’s problem. Afterwards, SMC
has become a research focus in the international crypto-
graphic community, and a mass of research results have been
published one after the other [2–12].

Generally speaking, SMC is amethod to implement coop-
erative computation with all participants’ private data, ensur-
ing the correctness of the computation as well as not dis-
closing additional information except the necessary results.
Assume that there are 𝑛 participants 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
. Each has a

secret, respectively, 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
. They want to compute the

value of a public function 𝐹(⋅) on 𝑛 variables at the point

(𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
), that is, 𝐹(𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
). An SMC protocol is

dubbed secure if no participant can learn more from the
description of the public function and the result of the global
calculation thanwhat he can learn from his own information.

2.2. Homomorphic Encryption. In this subsection, we intro-
duce a basic tool to design our protocol, the symmetric
homomorphic encryption scheme. Allowing for security, the
participants usually would not like to directly transmit their
original data over insecure channel while interacting with
others. They expect that other parties can perform necessary
computations on the encrypted version of the data. In this
way, they can encrypt their own private information and
then transmit it to others without exposing the real data and
finally decrypt the information sent back by others to get
the target result when completing cooperative computation.
To meet this demand, Rivest et al. proposed homomorphic
encryption in 1978 [15]. His work sparked the research in this
field. A lot of articles have been proposed and widely used
in many applications since then. However, the most common
homomorphic encryption schemes are mainly asymmetric,
for example, ELGamal homomorphic encryption scheme and
Paillier’ homomorphic encryption scheme.

Although symmetric homomorphic encryption has not
been used in PPSP, it is really a promising method for secure
multiparty computation while dealing with the problem of
privacy-preserving sequencing. The symmetry will bring
high efficiency to our solution since symmetric encryption
possesses the advantage of being really fast and can be used as
often as possible. As illustrated in [16], a block cipher like AES
is typically 100 times faster than RSA encryption and 2000
times than RSA decryption, with about 60MB per second
on a modest platform. Stream ciphers are even faster, some
of them being able to encrypt/decrypt 100MB per second
or more. Therefore, asymmetric homomorphic encryptions
are bound to much slower than the symmetric ones. In this
paper, we will employ the superior symmetric homomorphic
encryption schemes to construct our protocol.

Generally, an encryption scheme is said to be homo-
morphic if for any given encryption key 𝑘, the encryption
function 𝐸(⋅) satisfies the following condition:

∀𝑚
1
, 𝑚
2
∈ 𝑃, 𝐸 (𝑚

1
⊙
𝑃
𝑚
2
) = 𝐸 (𝑚

1
) ⊙
𝐶
𝐸 (𝑚
2
) , (1)

where𝑃(𝐶) denotes the set of the plaintexts (ciphertexts), and
⊙
𝑃
and ⊙

𝐶
are the operators in 𝑃 and 𝐶.

We say that a scheme is additively homomorphic if we
consider addition operators, and it is multiplicatively homo-
morphic if we consider multiplication operators. Usually,
multiplicative homomorphic encryption functions are more
efficient than additive homomorphic encryption functions.

Herein, we will use the random symmetric homomorphic
encryption function 𝐸(⋅) in this paper, which satisfies the
following property:

∀𝑚
1
, 𝑚
2
∈ 𝑄
+
, 𝐸 (𝑚

1
+ 𝑚
2
) = 𝐸 (𝑚

1
) ∗ 𝐸 (𝑚

2
) , (2)

where 𝐸(⋅) is a random function and 𝑄 is the set of rational
numbers.
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It is easy to deduce that for all𝑚 ∈ 𝑄
+, 𝑟 ∈ 𝑍

+,

𝐸 (𝑟 ∗ 𝑚) = 𝐸(𝑚)
𝑟
. (3)

2.3. Privacy-Preserving Sequencing Problem

2.3.1. The Original Problem. Privacy-preserving sequencing
problem is in fact the more universal description of the
generalized secret number comparison. To be more specific,
there are 𝑛 distrusted participants𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
. Each of them

has a private number, respectively, 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
.The problem

is that they hope to rank the 𝑛-array (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
) without

leaking any information about 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
. It requires that

after executing cooperative computation, 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
know

the size relations of 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
but no more other infor-

mation. Formally, we can represent the whole problem as
shown in Algorithm 1.

2.3.2. Equivalent Transformation of the Original Problem.
In this paper, we make use of a useful theorem in the
progressing procedure following reference [14] so that we
can reduce the initial sequencing problem about the 𝑛-
array (𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
) to the new 𝑛-array (𝑆󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
), which

has the same sequence as (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
) and is called as

the pseudoarray of (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
). Then 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
can

obtain the sequence of 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
by directly comparing

the pseudoarrays (𝑆󸀠
1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
) in public. Along with the

equivalent transformation of the problem, the aim of secure
multiparty computation needs a corresponding change. It
no longer has to consider how to deal with the real data
𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
but only needs to securely get the pseudodata

𝑆
󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
. And then the subsequent work is just a piece of

cake.

Theorem 1. Arrays (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
) and (𝑆

󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
) have

the same sequence, where 𝑆󸀠
𝑖
= 𝑟
1
∗ 𝑆
𝑖
+ 𝑟
2
∗ 𝑆
2

𝑖
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
∗ 𝑆
𝑛

𝑖
,

𝑟
𝑖
≥ 0, 𝑆

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

Proof. Given for all 𝑆󸀠
𝑖
, 𝑆
󸀠

𝑗
∈ (𝑆
󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
)

𝑆
󸀠

𝑖
= 𝑟
1
∗ 𝑆
𝑖
+ 𝑟
2
∗ 𝑆
2

𝑖
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
∗ 𝑆
𝑛

𝑖
,

𝑆
󸀠

𝑗
= 𝑟
1
∗ 𝑆
𝑗
+ 𝑟
2
∗ 𝑆
2

𝑗
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
∗ 𝑆
𝑛

𝑗
.

(4)

Then,

𝑆
󸀠

𝑖
− 𝑆
󸀠

𝑗
= (𝑟
1
∗ 𝑆
𝑖
+ 𝑟
2
∗ 𝑆
2

𝑖
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
∗ 𝑆
𝑛

𝑖
)

= (𝑟
1
∗ 𝑆
𝑖
+ 𝑟
2
∗ 𝑆
2

𝑖
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
∗ 𝑆
𝑛

𝑖
)

− (𝑟
1
∗ 𝑆
𝑗
+ 𝑟
2
∗ 𝑆
2

𝑗
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
∗ 𝑆
𝑛

𝑗
)

= 𝑟
1
∗ (𝑆
𝑖
− 𝑆
𝑗
) + 𝑟
2
∗ (𝑆
2

𝑖
− 𝑆
2

𝑗
) + ⋅ ⋅ ⋅ + 𝑟

𝑛
∗ (𝑆
𝑛

𝑖
− 𝑆
𝑛

𝑗
)

= (𝑆
𝑖
− 𝑆
𝑗
) [ 𝑟
1
+ 𝑟
2
∗ (𝑆
𝑖
+ 𝑆
𝑗
)

+𝑟
3
∗ (𝑆
2

𝑖
+ 𝑆
𝑖
⋅ 𝑆
𝑗
+ 𝑆
2

𝑗
) + ⋅ ⋅ ⋅

+ 𝑟
𝑛
∗(𝑆
𝑛−1

𝑖
+𝑆
𝑛−2

𝑖
⋅𝑆
𝑗
+⋅ ⋅ ⋅+𝑆

𝑖
⋅𝑆
𝑛−2

𝑗
+𝑆
𝑛−1

𝑗
)] .

(5)

Input: (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
), 𝑆
𝑖
is the private number of 𝑃

𝑖
;

Output: (𝑙
1
, 𝑙
2
, . . . , 𝑙

𝑛
), 𝑙
𝑖
is the order of 𝑆

𝑖
in the n-array.

Algorithm 1

Let

𝑄 = 𝑟
1
+ 𝑟
2
∗ (𝑆
𝑖
+ 𝑆
𝑗
) + 𝑟
3
∗ (𝑆
2

𝑖
+ 𝑆
𝑖
⋅ 𝑆
𝑗
+ 𝑆
2

𝑗
) + ⋅ ⋅ ⋅

+ 𝑟
𝑛
∗ (𝑆
𝑛−1

𝑖
+ 𝑆
𝑛−2

𝑖
⋅ 𝑆
𝑗
+ ⋅ ⋅ ⋅ + 𝑆

𝑖
⋅ 𝑆
𝑛−2

𝑗
+ 𝑆
𝑛−1

𝑗
) .

(6)

Then, 𝑆󸀠
𝑖
− 𝑆
󸀠

𝑗
= (𝑆
𝑖
− 𝑆
𝑗
) ⋅ 𝑄. As we know that 𝑟

𝑖
≥ 0,

𝑆
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛. Therefore, 𝑄 ≥ 0. That means, for

all 𝑆󸀠
𝑖
, 𝑆
󸀠

𝑗
∈ (𝑆
󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
), 𝑆󸀠
𝑖
, 𝑆󸀠
𝑗
and 𝑆
𝑖
, 𝑆
𝑗
have the same seq-

uence. Obviously, (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
) and (𝑆󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
) have the

same sequence.

3. Proposed Protocol

In this section, we present our protocol. The simplified
version of the protocol is briefly illustrated in Figure 1, and
the details can be described as follows.

Initialization. Assume that there are 𝑛 participants 𝑃
1
, 𝑃
2
,

. . . , 𝑃
𝑛
, each 𝑃

𝑖
owning a secret number 𝑆

𝑖
and a random

symmetric homomorphic encryption function 𝐸
𝑖
(⋅).

Computation

(1) 𝑃
𝑖
chooses a random number 𝑟

𝑖
> 0, 𝑖 = 1, 2,

. . . , 𝑛, and computes 𝐸
𝑖
(𝑆
𝑖
), 𝐸
𝑖
(𝑆
2

𝑖
), . . . , 𝐸

𝑖
(𝑆
𝑖−1

𝑖
),

𝐸
𝑖
(𝑆
𝑖+1

𝑖
), . . . , 𝐸

𝑖
(𝑆
𝑛

𝑖
) and 𝐸

𝑖
(𝑟
𝑖
∗ 𝑆
𝑖

𝑖
) locally. For 𝑖 = 1, 2,

. . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗, 𝑃
𝑖
sends 𝐸

𝑖
(𝑆
𝑗

𝑖
) to 𝑃
𝑗
.

(2) After receiving 𝐸
𝑖
(𝑆
𝑗

𝑖
), 𝑃
𝑗
computes 𝐸

𝑖
(𝑆
𝑗

𝑖
)
𝑟𝑗 , 𝑖 = 1, 2,

. . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗. And then, 𝑃
𝑗
transmits

𝐸
𝑖
(𝑆
𝑗

𝑖
)
𝑟𝑗 to 𝑃

𝑖+1
, 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑗 = 1, 2, . . . , 𝑛,

𝑗 ̸= 𝑖 + 1. For 𝑖 = 𝑛, 𝑃
𝑗
transfers 𝐸

𝑛
(𝑆
𝑗

𝑛
)
𝑟𝑗 to 𝑃

1
, 𝑗 =

2, . . . , 𝑛.
(3) 𝑃
1
computes 𝑆󸀠󸀠

𝑛
= 𝐸
𝑛
(𝑟
1
∗𝑆
𝑛
+𝑟
2
∗𝑆
2

𝑛
+⋅ ⋅ ⋅+𝑟

𝑛
∗𝑆
𝑛

𝑛
) and

sends 𝑆󸀠󸀠
𝑛
to 𝑃
𝑛
; For 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑃

𝑖+1
computes

𝑆
󸀠󸀠

𝑖
= 𝐸
𝑖
(𝑟
1
∗ 𝑆
𝑖
+ 𝑟
2
∗ 𝑆
𝑖

2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
∗ 𝑆
𝑛

𝑖
) and sends 𝑆󸀠󸀠

𝑖

to 𝑃
𝑖
.

(4) 𝑃
𝑖
computes 𝑆󸀠

𝑖
= 𝐷
𝑖
(𝑆
󸀠󸀠

𝑖
), 𝑖 = 1, 2, . . . , 𝑛 and broad-

casts 𝑆󸀠
𝑖
to obtain the sequence of the 𝑛-array (𝑆

1
, 𝑆
2
,

. . . , 𝑆
𝑛
) by comparing the size of the pseudoarray

(𝑆
󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
).

4. Analysis

In this section, we have an analysis of the proposed protocol
in the aspects of security and efficiency. To guarantee that it is
a secure multiparty computation protocol, we have to prove
that it satisfies correctness and privacy requirements at first.
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Efficient SMC protocol for PPSP

Pi : Si, ri

Ei(Si), Ei(Si
2), . . . , Ei(Si

i−1), Ei(Si
i+1), . . . , Ei(Si

n), Ei(ri ∗ Si
i)

Ei(Si
j)

Pj : Ei(Si
j)r𝑗

Ei(Si
j)r𝑗

Pi+1 : Si
󳰀󳰀

Si
󳰀󳰀

Si
󳰀󳰀 = Ei(r1 ∗ Si + r2 ∗ Si

2 + · · · + rn ∗ Si
n)

Pi : Si
󳰀

Figure 1: Simplified version of the proposed protocol.

4.1. Correctness. Assume that the attacker is passive.Then, all
participants (including all attackers and honest participants)
correctly follow the protocol. Therefore, we only need to
examine whether the protocol will give the correct sequence
for the array (𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
). From the proof ofTheorem 1, we

know that the array (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
) have the same sequence

with the pseudoarray (𝑆
󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
). Thus, the proposed

protocol can correctly achieve the aimof sequencing the array
(𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
) by comparing the pseudoarrays (𝑆󸀠

1
, 𝑆
󸀠

2
, . . . , 𝑆

󸀠

𝑛
)

secretly. Hence, the protocol satisfies correctness.

4.2. Privacy. According to the definition of privacy in multi-
party computation protocols in [17], the protocol is private if
the protocol satisfies the following conditions.

(a) The information string viewed by each participant 𝑃
𝑖

and a random string with the same length have the
same probability distribution.That is, the information
string and the random string are indistinguishable.

(b) Arbitrary 𝑡 < 𝑛/2 participants cannot jointly obtain
any information about the input of any other partici-
pant.

In fact, in the proposed protocol, the viewed infor-
mation strings of 𝑃

𝑖
are 𝐸
𝑖
(𝑆
𝑖
), 𝐸
𝑖
(𝑆
2

𝑖
), . . . , 𝐸

𝑖
(𝑆
𝑖−1

𝑖
), 𝐸
𝑖
(𝑆
𝑖+1

𝑖
),

. . . , 𝐸
𝑖
(𝑆
𝑛

𝑖
), and 𝐸

𝑖
(𝑟
𝑖
∗ 𝑆
𝑖

𝑖
) in the first step; 𝐸

𝑖
(𝑟
𝑖
∗ 𝑆
𝑖

𝑖
), 𝐸
𝑗
(𝑆
𝑖

𝑗
),

𝐸
𝑗
(𝑆
𝑖

𝑗
)
𝑟𝑖 , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗 in the second step;

𝑆
󸀠󸀠

𝑖−1
, 𝑖 = 2, . . . , 𝑛, specially, for 𝑖 = 1, the viewed information

string in this step is 𝑆󸀠󸀠
𝑛
for 𝑃
1
; finally, in the last step, the

viewed string is 𝑆󸀠
𝑖
for 𝑃
𝑖
. All the strings are generated by the

random symmetric homomorphic encryption function 𝐸
𝑖
(⋅).

Therefore, the strings viewed by 𝑃
𝑖
and a random string with

the same length have the same probability distribution, and
(a) is satisfied.

Moreover, our protocol also satisfies that arbitrary 𝑡 < 𝑛/2

participants cannot jointly obtain any information about the
input of any other participant under the assumption that
any two neighbor parties never conspire. Since we have 𝑃

𝑖+1

Table 1: Efficiency comparison.

Item Our protocol Tang’s protocol
Random numbers 𝑛 2𝑛(𝑡 + 1)

Transmitted messages 𝑛(2𝑛 − 1)

(2𝑡 + 1)(𝑛 − 1)𝑛 + (𝑛 −

1)𝑛 + 𝑛
2
(2𝑡 + 1)

Table 2: Efficiency comparison.

Item Our protocol Tang’ protocol
Random numbers 𝑛 𝑛(𝑛 + 1)

Transmitted messages 𝑛(2𝑛 − 1) 2𝑛
3
− 𝑛

to compute 𝑆󸀠󸀠
𝑖
for 𝑃
𝑖
by collecting 𝐸

𝑖
(𝑆
𝑗

𝑖
)
𝑟𝑗 , 𝑗 = 1, . . . , 𝑛, it

is obvious that it is insecure if 𝑃
𝑖
and 𝑃

𝑖+1
collude. It is

reasonable to suppose that no neighbors collude because the
two adversaries are not exactly adjacent since they cannot
control the order of the parties when executing the protocol.
In addition, if an adversary wants to get more information
from 𝑆

󸀠󸀠

𝑖
= 𝐸
𝑖
(𝑟
1
∗𝑆
𝑖
+𝑟
2
∗𝑆
2

𝑖
+⋅ ⋅ ⋅+𝑟

𝑛
∗𝑆
𝑛

𝑖
), hemust corruptwith

at least 𝑛−1 parties since there are 𝑛−1 unknown coefficients
as well as breaking the encryption scheme 𝐸(⋅).

What is more, in our protocol, all information strings are
transmitted in the encrypted forms. The private information
𝑆
𝑖
and 𝑟
𝑖
are secret as long as the encryption function 𝐸

𝑖
(⋅)

is robust. In other words, it is secure even over the insecure
channel, which is better than the previous protocol based on
polynomial for the sequencing problem.

In short, our protocol is correct and private.

4.3. Efficiency. Our protocol is efficient as well as secure.
It operates better than the previous one because it is inde-
pendent of the secret sharing scheme based on complex
polynomial.We canmake a concrete comparison between the
proposed protocol and the previous one on the numbers of
random numbers and transmitted messages as in Table 1.

From Table 1, we can easily find that in Tang’ protocol
[14], it needs to choose 𝑛 ⋅ (2𝑡 + 1) polynomials for 𝑓(⋅), 𝑛
polynomials for 𝑟(⋅), and 𝑛 ⋅ (2𝑡 + 1) polynomials for ℎ(⋅), that
is, totally 2𝑛 ⋅ (𝑡+1) random numbers as well as 2𝑛 ⋅ (2𝑡+1)+𝑛
polynomials; it also needs to transmit 𝑓

𝑖𝑘
(𝑥
𝑗
) from 𝑃

𝑖
to 𝑃
𝑗
,

𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 2𝑡 + 1, 𝑟
𝑖
(𝑥
𝑗
), ℎ
𝑖𝑘
(𝑥
𝑗
) from 𝑃

𝑖
to

𝑃
𝑗
, 𝑖 = 1, 2, . . . , 2𝑡 + 1, 𝑗, 𝑘 = 1, 2, . . . , 𝑛; thus, (2𝑡 + 1) ⋅ (𝑛 − 1) ⋅

𝑛+(𝑛−1)⋅𝑛+𝑛
2
(2𝑡+1)messages are needed to be transmitted

totally.
In our protocol, it only needs to choose 𝑛 random num-

bers in the whole procedure. And the messages that need to
be transmitted are, respectively, 𝐸

𝑖
(𝑆
𝑗

𝑖
), 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗, 𝐸
𝑖
(𝑆
𝑗

𝑖
)
𝑟𝑗 , 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑗 = 1, 2, . . . , 𝑛,

𝑗 ̸= 𝑖 + 1, and 𝐸
𝑛
(𝑆
𝑗

𝑛
)
𝑟𝑗 , 𝑗 = 2, . . . , 𝑛, and 𝑆

󸀠󸀠

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

totally 𝑛 ⋅ (2𝑛 − 1) messages. It is much simpler and more
appropriate for the clients who expect easier products in
practice.

If there are 𝑡 = (𝑛 − 1)/2 adversaries (the upper bound of
the adversaries in Tang’ protocol [14]), the advantages of our
protocol are more obvious as shown in Table 2.
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5. Conclusion

It is always a difficult problem in the cryptographic field
to construct a secure multiparty computation protocol for
the privacy-preserving sequencing problem. In the present
study, we have successfully designed an efficient secure
multiparty computation protocol for sequencing problem
over insecure channel based on symmetric homomorphic
encryption, which is of great importance to the theory on this
topic and of significant value in practice for its high efficiency.
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