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Placing-in and taking-out wagons timely can decrease wagons’ dwell time in railway stations, improve the efficiency of railway
transportation, and reduce the cost of goods transportation. We took the locomotive running times between goods operation
sites as weights, so the wagons’ placing-in and taking-out problem could be regarded as a single machine scheduling problem,
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𝐶max, which could be transformed into the shortest circle problem in a Hamilton graph whose relaxation problem was an

assignment problem.We used a Hungarian algorithm to calculate the optimal solution of the assignment problem.Then we applied
a broken circle and connection method, whose computational complexity was 𝑂(𝑛2), to find the available satisfactory order of
wagons’ placing-in and taking-out. Complex problems, such as placing-in and transferring combined, taking-out and transferring
combined, placing-in and taking-out combined, or placing-in, transferring, and taking-out combined, could also be resolved with
the extended algorithm. A representative instance was given to illustrate the reliability and efficiency of our results.

1. Introduction

After a wagon has been loaded in a loading station, it should
be taken out from the goods yard (or railway siding) and
coupled to its departure train by a shunting locomotive.
When the train arrives at an unloading station, some wagons
are removed and placed on their operation sites.

The total time of the process of transporting a wagon
from origin to destination can be split into three parts:
time spent in the loading station and unloading station,
transit time in the marshalling station, and time on the run.
According to Chinese statistics, stay time in loading and
unloading stations occupies more than 70 percent of the
total time [1]. Therefore, organizing wagons’ placing-in and
taking-out timely can decrease wagons’ dwell time in loading
and unloading stations, improve the efficiency of railway
transportation, and reduce the cost of goods transportation.

The placing-in and taking-out problem has puzzled
scholars since the 1950s, and a number of helpful studies
have been published. Lei et al. [1] formulated a mathematical

model of optimizing operation for placing-in and taking-
out wagons in branch-shaped sidings and depicted it as a
typical traveling salesman problem (TSP). A combination of a
genetic algorithm and an ant colony algorithm called GACA
was presented. Li and Du [2] built a graph and a scheduling
theory model of the fetching and delivering wagon problem
in a branch-shaped railway siding and suggested two fast and
simple algorithms. Shi et al. [3] and Yu and Li [4] turned
placing-in and taking-out on branch-shaped sidings into a
searching Hamilton circle with minimum weights. Heuristic
algorithms were used to resolve the problem. Du and Li [5]
built a model of scheduling theory for fetching and delivering
vehicles on radial sidings and provided a fast algorithm.

Another related problem is TSP with pick-up and deliv-
ery, which includes the additional constraint that delivery
customers must be visited before any pick-up customers.
Nenad and colleagues presented a variable neighborhood
search approach for solving the one-commodity pick-up
and delivery traveling salesman problem. They adapted a
collection of neighborhood structures, 𝑘-opt, double-bridge,
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and insertion operators, mainly used for solving the classi-
cal traveling salesman problem [6]. Renaud and colleagues
proposed three mathematical models for the pick-up and
delivery problem with shuttle routes and a branch-and-
cut-and-price algorithm to solve it [7]. Rais and colleagues
described mixed integer-programming formulations for the
problem with and without time windows for services [8].
Another helpful research is cited in the reference list [9, 10].

The published research on the placing-in and taking-
out wagons problem mostly establishes its model on certain
ideal conditions. For example, some scholars considered
wagons’ placing-in and taking-out as two separate operations,
which were difficult to apply to actual situations. In addition,
the accuracy of the heuristic algorithms provided deserves
further consideration. In this paper, we take the locomotive
running time between goods operation sites as weights,
regard the wagons’ placing-in and taking-out problem as a
single machine scheduling problem 1|𝑝

𝑖𝑗
|𝐶max, and trans-

form it into the shortest circle problem in a Hamilton
graph, whose relaxation problem is an assignment problem.
We use a Hungarian algorithm to calculate the optimal
solution of the assignment problem. Then, we use a broken
circle and connection method to find a satisfactory order
of wagons’ placing-in and taking-out. In addition, we study
complex problems: placing-in and transferring combined or
taking-out and transferring combined; placing-in and taking-
out combined; and placing-in, transferring, and taking-out
combined.

The remainder of the paper is organized as follows. The
problem description is shown in Section 2. In Section 3, we
provide a single machine scheduling problem for wagons’
placing-in separately operation and transform it into the
shortest circle problems in a Hamilton graph, and a broken
circle and connectionmethod is used to resolve it. We extend
our research to other operation patterns in Section 4. A
representative numerical example is presented in Section 5.
Section 6 concludes.

2. Problem Description

Railway sidings and freight yards are places where goods
are loaded and unloaded. In this paper, we refer to them as
goods operation sites. Depending on their layout in a railway
station, we can divide them into three types: radial, branch-
shaped, and mixed. In a radial station, after the shunting
locomotive has sent a wagon-group to one goods operation
site, it must go back to the railway station before running
on to the next site. Accordingly, every wagon-group reaches
its corresponding site at a different time and returns to the
railway station at a different time too. For a branch-shaped
station, the shunting locomotive does not need to return to
the station before placing-in another wagon-group. That is
to say, all groups’ arrival times are different, but their return
times are the same.As regards themixed goods operation site,
the wagon operation shares some common features with the
two types above.

In the loading station or the unloading station, a shunt-
ing locomotive is assigned to certain tasks, which include

placing-in wagons, taking-out wagons, and transferring wag-
ons between the station or operation sites. Because of the
diversity of assignment operations and several combina-
tions, the pattern of placing-in and taking-out wagons is
summarized as placing-in separately, taking-out separately,
placing-in and taking-out combined, placing-in and trans-
ferring combined, taking-out and transferring combined, and
placing-in, transferring, and taking-out combined.

Considering that trains leave the station on time as much
as possible, this paper discusses how the dispatcher optimizes
the operation sequence of related sites to minimize the total
running time of the locomotive. Only in this way can we
reduce the possibility of train delay to a meaningful extent,
decrease the cost of locomotive operation to aminimum, and
cut down wagons’ dwell time in the station.

3. Wagons’ Placing-In Separately or
Taking-Out Separately

Wagons’ placing-in separately means that a shunting loco-
motive couples all wagons, sends them to the operation
sites one by one, puts the wagons in the right place, and
then goes back to the station alone. Regardless of whether
the wagons waiting to be sent are loaded or empty, the
operation process of wagons placing-in separately comprises
the following steps: selecting wagon-group, running to the
sites, placing wagons, and returning the station. Taking-out
separately means that the shunting locomotive goes to goods
sites to retrieve the requiredwagons one by one and goes back
to the railway station. The operational process of wagons’
taking-out separately comprises the following steps: running
to the sites, taking-out wagons, returning the station. It can be
concluded from the above that the two operational processes
have some identical features, and, hence, we can unite them
in one mathematical model.

3.1. Mathematical Model. In this paper, we will discuss the
wagons’ placing-in problem in a branch-shaped railway
station. To fit the actual circumstance of a railway station, the
following conditions below are set.

(1) There is only one shunting locomotive in the railway
station. The locomotive should send wagons to rel-
evant operation sites, visit every site only once, and
return to the railway station after its work has been
accomplished.

(2) Numbers of the wagons waiting for placing-in (or
taking-out) are known beforehand.

(3) The locomotive running times between all sites are
obtained from actual data.

(4) The number of wagons coupled by the locomotive
has no influence on the locomotive running times
between operation sites.

In what follows, we describe a series of tasks involving
four goods sites in a railway station. Several wagon-groups
should be sent to corresponding goods sites.
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Figure 1: Layout station with branch-shaped goods operation sites.

In Figure 1, point V
0
is considered as the railway station

and points V
1
, V
2
, V
3
, V
4
are related goods sites. V󸀠

1
, V󸀠
2
, V󸀠
3
are

representations of turnout between rail lines. Notations 𝑎 ∼ 𝑔
refer to locomotive running times between points (operation
sites, turnouts, or the station), which can be gained from
actual measurement data. Although there is a slight time
discrepancy between the times the locomotive runs back and
forth on the same line, we regard them as the same for the
sake of simplicity.

If we think of the shunting locomotive as a machine,
the operation of placing-in wagon-groups to the site 𝑖 as
processing workpiece 𝐽

𝑖
and wagons placing-in completion

is considered to be workpiece 𝐽
𝑖
processing accomplishment;

the wagons’ placing-in problem can be regarded as a single
machine scheduling problem 1|𝑝

𝑖𝑗
|𝐶max. If workpiece 𝐽𝑖 is the

predecessor of workpiece 𝐽
𝑗
, then the processing time of 𝐽

𝑗

is 𝑡
𝑖𝑗
(𝑖 ̸= 𝑗, 𝑖, 𝑗 = 0, 1, 2, 3, 4). Accordingly, 𝑖 = 0 means

that there is no predecessor workpiece. In other words, the
shunting locomotive starts from the station en route to its
first operation site. Our objective is to optimize the shunting
locomotive operation to achieve minimum operation time
after it has accomplished all its tasks. Therefore, the problem
of wagons’ placing-in separately can be regarded as a single
machine scheduling problem 1|𝑝

𝑖𝑗
|𝐶max. 𝑝𝑖𝑗 is machine pro-

cessing time, which corresponds to 𝑡
𝑖𝑗
in this paper. 𝐶max is

completed time of the last workpiece, which is the time in
which the shunting locomotive returns to the railway station.
Scheduling problem 1|𝑝

𝑖𝑗
|𝐶max can be solved by transforming

it into the well-known problem of the shortest circle in a
Hamilton graph.

We can convert wagons’ placing-in separately into the
problem of the shortest circle in a Hamilton graph 𝐺 =
[𝑉,𝐴, 𝐶]. In the Hamilton graph 𝐺 shown in Figure 2, 𝑉
signifies the point set {V

0
, V
1
, . . . , V

4
},𝐴 is presentation of edge

set {(V
𝑖
, V
𝑗
) | V
𝑖
, V
𝑗
∈ 𝑉}, and𝐶 expresses shunting locomotive

running time set {𝑡
𝑖𝑗
| 𝑖, 𝑗 ̸= 0, 1, . . . , 4}.

We regard vertex V
0
as the railway station, which is the

starting vertex of Hamilton graph 𝐺. We consider related
operation sites of a series of tasks, which should be visited
only once by the locomotive, as vertices of Hamilton. If we
can find a circle which goes through all related operation sites
only once and its origin and destination are V

0
, a Hamilton

circle will be achieved. Shunting locomotive running time
between any two sites is shown in Figure 1. Corresponding
weights of Hamilton circle are the aggregation of locomotive
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Figure 2: Hamilton graph.

running time on the lines. For example, V
0
→ V
1
→ V
3
→

V
4
→ V
2
→ V
0
is a Hamilton circle which has path length of

2𝑎 + 4𝑏 + 4𝑐 + 2𝑑 + 2𝑒 + 2𝑓 + 2𝑔.
Since all vertices of Hamilton graph 𝐺 in Figure 2 are

connected, it is a complete graph. On the other hand,
it is an undirected graph on condition that the time the
locomotive spends running back and forth between two sites
is considered to be the same. A Hamilton graph composed of
𝑁 goods operation sites (including the station) has (𝑁 − 1)!
Hamilton circles. It is obvious that it is not easy to obtain
the optimal solution with the enumeration method. Hence,
it is essential to choose a simple method to select the optimal
scheme from the many schemes available.

The problem of the shortest circle in a Hamilton graph is
a classic NP-complete combinatorial problem and therefore
there is no knownpolynomial time algorithm (unless𝑃=NP)
that is able to solve all instances of the problem.Consequently,
heuristic algorithms are used to provide solutions that are
of high quality but not necessarily optimal. Since the 1990s,
various approaches have been proposed to solve the problem,
such as branch-and-bound, cutting planes, 2-opt, simulated
annealing, neural network, and tabu search. Some of these
methods are exact algorithms and the others are near-optimal
or approximate algorithms [11–17]. In this paper, we provide
a broken circle and connection method to find a satisfactory
circle in a Hamilton graph easily, that is, the satisfactory
available order of wagons’ placing-in and taking-out.

In a Hamilton circle, as seen in Figure 2, an arrow’s
head connects with another arrow’s tail. In other words, a
vertex is the starting-point of one arrow and the end-point
of another. Some characteristics of assignment problem in
integer programming problems afflict the Hamilton circle.
Assigning V

𝑖
to V
𝑗
as its source point is equivalent to task 𝑖

being assigned to worker 𝑗 to do. Accordingly, the weights of
edge correspond to the quantity of resource costs.

Introduce the variable 𝑥
𝑖𝑗
and define it as follows:

𝑥
𝑖𝑗
= {
1, if V

𝑖
is assigned to V

𝑗
as its source point

0, otherwise.
(1)
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Table 1: Time coefficient of assignment problem.

Start-point End-point
V
0

V
1

V
2

V
3

V
4

V
0

𝑀 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑒 𝑎 + 𝑏 + 𝑓 𝑎 + 𝑔

V
1

𝑎 + 𝑏 + 𝑐 + 𝑑 𝑀 𝑑 + 𝑒 𝑐 + 𝑑 + 𝑓 𝑏 + 𝑐 + 𝑑 + 𝑔

V
2

𝑎 + 𝑏 + 𝑐 + 𝑒 𝑑 + 𝑒 𝑀 𝑐 + 𝑒 + 𝑓 𝑏 + 𝑐 + 𝑒 + 𝑔

V
3

𝑎 + 𝑏 + 𝑓 𝑐 + 𝑑 + 𝑓 𝑐 + 𝑒 + 𝑓 𝑀 𝑏 + 𝑓 + 𝑔

V
4

𝑎 + 𝑔 𝑏 + 𝑐 + 𝑑 + 𝑔 𝑏 + 𝑐 + 𝑒 + 𝑔 𝑏 + 𝑓 + 𝑔 𝑀

According to the above analysis, the Hamilton graph of
wagons’ placing-in separately can be relaxed as an assignment
problem, and its linear model is shown as follows:

min 𝑧 =
𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

𝑡
𝑖𝑗
𝑐
𝑖𝑗
, (2)

s.t.
𝑛

∑

𝑖=0

𝑥
𝑖𝑗
= 1, 𝑗 ∈ 𝑉, (3)

𝑛

∑

𝑗=0

𝑥
𝑖𝑗
= 1, 𝑖 ∈ 𝑉, (4)

𝑥
𝑖𝑗
= 0 or 1, 𝑖, 𝑗 ∈ 𝑉. (5)

Equation (2) is the objective function which indicates that
we want to minimize the whole locomotive running time of
a series of placing-in wagon operations. Constraints (3) and
(4) signify that the shunting locomotive goes forward to an
operation site and returns only once, respectively. Constraint
(5) denotes that 𝑥

𝑖𝑗
is a binary variable.

The transformed time coefficient of Hamilton graph 𝐺 in
Figure 2 is shown in Table 1. All vertices of graph 𝐺 lack a
ring. On the other hand, because the shortest circle problem
is a minimization problem, we suppose that 𝑐

𝑖𝑗
(𝑖 = 𝑗) is equal

to𝑀 (𝑀 is a sufficient positive number), in order to ensure
that no vertex can be assigned to itself as source point.

The assignment problem, which should be pointed out, is
only a relaxation problem of the Hamilton graph discussed.
The shortest circle in a Hamilton graph must be a connected
graph which requires all arrows’ heads and tails to be
connected rather than divided. Therefore, the complete form
of the Hamilton graph model should include the following
two constraints too:

∑

𝑖,𝑗∈𝑉

𝑥
𝑖𝑗
≤ |𝑆| − 1,

𝑆 ⊂ 𝑉, 2 ≤ |𝑆| ≤ 𝑛 − 2,

(6)

where 𝑆 in the above constraints is a proper subset of set
𝑉. |𝑆| denotes the number of elements. Constraints (6) are
subtour elimination constraints which prohibit the formation
of subtours, that is, tour subsets of fewer than 𝑛 vertices.

3.2. SolvingMethod. Solving themodel of wagons’ placing-in
separately in the railway station should be performed in two
steps. First, a classical algorithm of the assignment problem,

theHungarian algorithm, is used to calculate the lower bound
𝑧
∗
. Second, with the help of a broken circle and connection

method, we can obtain a satisfactory circle in a Hamilton
graph, which corresponds to the satisfactorywagons’ placing-
in order for related operation sites.

3.2.1. Assignment ProblemMethod. As a classical algorithmof
assignment problems, the Hungarian algorithm can obtain a
global optimal solution.With an increasing coefficientmatrix
dimension, the algorithm’s running time becomes a little
longer, but it can reduce computational efforts much more
than any enumeration method. In this paper, the Hungarian
algorithm is selected to resolve the relaxation problem of
wagons’ placing-in separately—the assignment problem.

3.2.2. Broken Circle and Connection Method. The solution
obtained with the Hungarian algorithm, which should be
pointed out, is only a solution to the relaxation problem. If it
has formed a Hamilton circle, the optimal solution regarding
the shortest cycle of the Hamilton graph is obtained. If it is
still a 𝑁 (𝑁 > 1) bipartite graph, then we break the circles
and connect them as follows.

Assuming that the point set of one bipartite graph is
𝑈 = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑖
, 𝑢
𝑗
, . . . , 𝑢

𝑚
} and that of another is 𝑉 =

{V
1
, V
2
, . . . , V

𝑘
, V
𝑙
, . . . , V

𝑚
}, we select randomly two point pairs

(𝑢
𝑖
, 𝑢
𝑗
) and (V

𝑘
, V
𝑙
) and exchange their heads and tails. Corre-

sponding weight increments can be computed as follows:

Δ𝑡 = 𝑡
𝑖𝑙
+ 𝑡
𝑘𝑗
− 𝑡
𝑖𝑗
− 𝑡
𝑘𝑙
. (7)

Compare weight increments of all point pairs, select the point
pairs which have minimal increments, and connect them
together. In this case, an 𝑁 bipartite graph is transformed
into an 𝑁 − 1 bipartite graph. If this process continues, we
gradually obtain a connected graph. Finally, a satisfactory
circle of a Hamilton graph can be obtained.

3.2.3. Solution Procedure. According to the analysis above, we
perform a computational procedure for the wagons’ placing-
in separately problem as follows.

Step 1. Transform wagons’ placing-in order problem in the
railway station into the shortest circle in Hamilton graph 𝐺.

Step 2. Compute the relaxation problem to obtain the optimal
solution with the Hungarian method. If a connected graph is
obtained, go to Step 5. Otherwise, go to Step 3.
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Step 3. Randomly select two parts from the 𝑁 bipartite
graph. Choose a point pair from the two selected parts
(𝑢
𝑖
, 𝑢
𝑗
) and (V

𝑘
, V
𝑙
). Find other point pairs and calculate their

corresponding values Δ𝑡.

Step 4. Compare all Δ𝑡 values of point pairs. Select the
minimum pairs and exchange their heads and tails. Then,
𝑁 := 𝑁 − 1. If𝑁 = 1, go to Step 5. If𝑁 > 1, go to Step 3.

Step 5. Output optimal order of wagons’ placing-in to goods
operation sites. The computation ends.

Wagons’ taking-out separately operation has some same
characters with wagons’ placing-in separately. Therefore, the
model and algorithmofwagons’ placing-in separately are also
suitable for the problem of wagons’ taking-out separately.

3.2.4. Complexity Analysis. If there are 𝑛 vertices in the
Hamilton graph, there are 𝑛/2 subcycles in the worst case.We
should execute a broken circle (𝑛/2)-1 times to form only one
circle. We should make comparisons 𝑛/2 times and similarly
each circle has 𝑛/2 vertices at most.Therefore, the complexity
of the algorithm in this paper is 𝑜(𝑛2).

4. Complex Problems

4.1. Placing-In and Transferring Combined and Taking-
Out and Transferring Combined. Placing-in and transferring
combined means that the shunting locomotive transfers
wagons during the process of placing-in wagons and then
returns to the railway station. The subprocedures are choos-
ing wagon-groups, running to goods sites, aligning wagon
location, gathering wagons, transferring wagons, and turning
back.

One transferring operation can be regarded as a com-
bination of one taking-out operation and one placing-in
operation. Transferring operations can reduce the computa-
tional complexity of the algorithm to some extent. Placing-in
and transferring combined and taking-out and transferring
combined could be considered as the shortest circle problems
in a Hamilton graph with visiting priority.

For instance, if we transfer wagons from unloading site
V
𝑘
to loading site V

𝑙
, the shunting locomotive should visit

unloading site V
𝑘
beforehand, and then it can visit site V

𝑙
at

some other time. That is to say, site V
𝑘
has visiting priority

over site V
𝑙
, that is, V

𝑘
≻ V
𝑙
(≻ signifies priority).

The placing-in and transferring combined operation is
composed of placing-in operations and transferring opera-
tions. Assuming that there is a point set which comprises all
placing-in sites, the station, and placing-in sites of all trans-
ferring operations, with the broken circle and connection
method abovewe can obtain a satisfactorywagons’ placing-in
circle for the point set.

Then insert taking-out site of transferring operation
into the segments which is behind its placing-in opera-
tion site in the circle. For example, we need to transfer
wagons from unloading site V

𝑘
to loading site V

𝑙
. It is

assumed that we have already obtained the placing-in order
V
0
V
1
⋅ ⋅ ⋅ V
𝑖
V
𝑗
⋅ ⋅ ⋅ V
𝑙
⋅ ⋅ ⋅ V
𝑛
V
0
. If we insert taking-out site V

𝑘
of the

transferring operation in segment (V
𝑖
, V
𝑗
), its corresponding

route length is increased by Δ𝑡󸀠 = 𝑡
𝑖𝑘
+ 𝑡
𝑘𝑗
− 𝑡
𝑖𝑗
. We select the

circle withminimum increment.Then, a satisfactory placing-
in and transferring combined order is obtained.

The taking-out and transferring combined operation
consists of taking-out operation and transferring operation.
Similarly, we form a point set including all taking-out oper-
ation sites, the station, and all taking-out operation sites of
transferring operations. We can obtain a satisfactory taking-
out circle with the broken circle and connection method
for the point set. Then we insert the placing-in site of
the transferring operation between the end-points of each
segment in front of its taking-out operation site in the circle.
We select the circle with minimum increment in terms of
route length.Thenwe can obtain a satisfactory taking-out and
transferring combined operation order.

4.2. Placing-In and Taking-Out Combined and Placing-In,
Transferring, and Taking-Out Combined. For placing-in and
taking-out combined operations, we first formulate a placing-
in circle and a taking-out circle, respectively, and transform
them into a circle with the broken circle and connection
method above.Then a satisfactory operation order of placing-
in and taking-out combined operation can be obtained. The
placing-in and taking-out operation order gained is relatively
centralized, but it can reduce extra shunting work. Although
it may prolong running time for the locomotive, it fits with
the actual work rather better.

For the placing-in, transferring, and taking-out combined
operation, we form a set which includes all taking-out
sites and all taking-out sites of transferring operations. On
the other hand, we formulate another set which comprises
all placing-in sites and all placing-in sites of transferring
operations.Thenwe can obtain a satisfactory placing-in circle
and a satisfactory taking-out circle with the broken circle and
connection method above. Then we use the method once
again. As a result, only one circle is gained in the end. During
the process of the last broken circle and connection, we only
need to exchange the segments, which are behind the taking-
out sites in the taking-out circle, with the segments in the
placing-in circle. This ensures a visiting priority relation in
which the transferring operation requires and reduces the
computational effort. For instance, there is an assignment
of transferring some wagons from unloading operation site
V
𝑘
to loading site V

𝑙
. On condition that a taking-out circle

V
0
V
1
⋅ ⋅ ⋅ V
𝑘
V
𝑖
V
𝑗
⋅ ⋅ ⋅ V
𝑛
V
0
has been gained, we only need to

exchange segments of section V
𝑘
V
𝑖
V
𝑗
⋅ ⋅ ⋅ V
𝑛
V
0
for segments of

the placing-in circle.

5. Numerical Example

The layout of a railway station is shown in Figure 3. The
station is equipped with a shunting locomotive to deliver
wagons. There are several tasks in terms of wagons’ placing-
in and taking-out to do. The tasks are listed in Table 2. The
corresponding running times in every line are marked in
Figure 3. Now it is necessary to gain the operation order of
the shunting locomotive within the least possible time.
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Figure 3: Layout of a railway station.

Table 2: Tasks of the shunting locomotive.

Serial
number

Operation
sites Operation contents

1 V
1

Placing-in two wagons

2 V
2

Taking-out two empty wagons and
transferring them to site V

4

3 V
3

Taking-out three wagons
4 V

4
Receiving two empty wagons from site V

2

5 V
5

Placing-in one wagon
6 V

6
Taking-out two wagons

7 V
7

Taking-out three empty wagons and
transferring them to site V

10

8 V
8

Placing-in two wagons
9 V

9
Taking-out three wagons

10 V
10

Receiving three empty wagons from site V
7

All operation sites (including the station) are divided into
two groups: placing-in operation site set {V

1
, V
4
, V
5
, V
8
, V
10
}

and taking-out operation site set {V
0
, V
2
, V
3
, V
6
, V
7
, V
9
}. The

priority relations required are V
2
≻ V
4
and V
7
≻ V
10
.

Time coefficients for all sites in the railway station are
calculated and shown in Table 3, where we set 𝑀 = 80.
According to the computational procedure of the Hungarian
algorithm, we can obtain the optimal solution to the assign-
ment problem (relaxation problemof the shortest circle in the
Hamilton graph):𝑥

110
= 1,𝑥

45
= 1,𝑥

54
= 1,𝑥

81
= 1,𝑥

108
= 1,

𝑥
09
= 1, 𝑥

23
= 1, 𝑥

32
= 1, 𝑥

67
= 1, 𝑥

76
= 1, and 𝑥

90
= 1. The

total weight is 316. The corresponding graph of the result is
shown in Figure 4.

After the broken circle and connection process has been
executed three times, we can obtain a placing-in circle and
a taking-out circle and they are shown in Figure 5. Then we
execute the last broken circle and connection procedure and
compare the total weights of all circles. Exchanging edges
(V
2
, V
3
) and (V

8
, V
1
), we can obtain a circle with minimum

weights, as shown in Figure 6.Hence, the satisfactorywagons’
placing-in and taking-out order is V

0
→ V
9
→ V
6
→ V
7
→

V
2
→ V
1
→ V
10
→ V
4
→ V
5
→ V
8
→ V
3
→ V
0
, which

has total weights of 450.

�0

�1
�2

�4

�5

�6
�7

�8

�9

�10

�3

Figure 4: Optimal result of assignment problem.

�0

�1
�2

�4

�5

�6�7

�8

�9

�10

�3

Figure 5: Placing-in circle and taking-out circle (bold lines denote
placing-in circle and thin lines denote taking-out circle).

6. Conclusion

Taking the locomotive running times as weights, the prob-
lem of wagons’ placing-in or taking-out separately can be
regarded as a single machine scheduling problem, 1|𝑝

𝑖𝑗
|𝐶max,

which can be transformed into the shortest circle problem in
a Hamilton graph. The Hungarian algorithm was applied to
obtain the optimal solution to the assignment problem. The
broken circle and connection method was applied to find a
satisfactory order of wagons’ placing-in and taking-out. We
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Table 3: Time coefficients for all sites in railway station.

Origins destinations V
0

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

V
0

80 43 47 41 48 49 52 56 42 41 35
V
1

43 80 20 32 55 56 59 63 49 48 42
V
2

47 20 80 36 59 60 63 67 53 52 46
V
3

41 32 36 80 53 54 57 61 47 46 40
V
4

48 55 59 53 80 21 42 46 48 47 41
V
5

49 56 60 54 21 80 43 47 49 48 42
V
6

52 59 63 57 42 43 80 30 52 51 45
V
7

56 63 67 61 46 47 30 80 56 55 49
V
8

42 49 53 47 48 49 52 56 80 15 21
V
9

41 48 52 46 47 48 51 55 15 80 20
V
10

35 42 46 40 41 42 45 49 21 20 80
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�6�7

�8

�9

�10
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20

41
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21

67
41

51

41

47

42

30

Figure 6: Satisfactory order of wagons’ placing-in and taking-out.

estimated the computational complexity of the algorithm to
be 𝑜(𝑛2).

We extended the model to other operation patterns:
placing-in and transferring combined, taking-out and trans-
ferring combined, placing-in and taking-out combined, and
placing-in, transferring, and taking-out combined. All these
were regarded as the shortest circle problems in a Hamilton
graph with visiting priority and could be solved with the
extended algorithm provided.

Many experiments also proved that the model and algo-
rithm were feasible on condition that other layouts (radial
and mixed goods operation sites) had been converted into
branch-shaped form.

The research also provides a new method for solving the
problem of the shortest circle in aHamilton graph.We gained
a satisfactory solution with the designed algorithm.
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