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Gravitational Search Algorithm (GSA) is a heuristic method based on Newton’s law of gravitational attraction and law of motion.
In this paper, to further improve the optimization performance of GSA, the memory characteristic of Particle SwarmOptimization
(PSO) is employed in GSAPSO for searching a better solution. Besides, to testify the prominent strength of GSAPSO, GSA, PSO,
and GSAPSO are applied for the solution of optimal reactive power dispatch (ORPD) of power system. Conventionally, ORPD is
defined as a problem ofminimizing the total active power transmission losses by setting control variables while satisfying numerous
constraints. Therefore ORPD is a complicated mixed integer nonlinear optimization problem including many constraints. IEEE14-
bus, IEEE30-bus, and IEEE57-bus test power systems are used to implement this study, respectively. The obtained results of
simulation experiments using GSAPSO method, especially the power loss reduction rates, are compared to those yielded by the
other modern artificial intelligence-based techniques including the conventional GSA and PSO methods. The results presented in
this paper reveal the potential and effectiveness of the proposed method for solving ORPD problem of power system.

1. Introduction

Optimal reactive power dispatch (ORPD), as one of the
significant optimization problems in power systemoperation,
is tominimize the given objective function such as total active
power transmission losses (𝑃Loss) by optimizing settings
of control variables while satisfying a set of constraints
during the entire dispatch period. Control variables contain
discrete variables such as tap positions of transformers and
amount of reactive compensation and continuous variables
like generator voltages. Constraints consist of a series of
equality constraints and inequality constraints [1]. Besides,
it is worth noting that the ORPD problem in this paper is
a single-objective optimization problem different from the
study in [1] which researches a multiobjective optimization
problem. In [1], the multiobjective ORPD problem seeks for
a compromise solution for minimization of power losses and
𝐿 index simultaneously, but this paper is required to find out

a global optimal solution for minimization of 𝑃Loss. Thus,
ORPD problem in this paper is a complex mixed integer
nonlinear optimization problemwith a number of constraints
and has the challenge of searching for the global optimal
solution.

Numerous classical approaches including gradient-based
optimization algorithms and many mathematical program-
ming methods [2–5] have been developed and applied for
solving the ORPD problem in the past. However, these
traditional techniques almost only optimize the differentiable
objective functions and they have difficulties in dealing
with the nonconvex, nonlinear, discontinuous functions with
constraints [6, 7]. But now a number of modern artificial
intelligence-based techniques with stochastic optimization
such as Genetic Algorithm (GA) [8], Differential Evolution
(DE) [9], Particle Swarm Optimization (PSO) [10], and
Gravitational Search Algorithm (GSA) have been applied
to solve different ORPD problems efficiently without the
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abovementioned restraints, which overcomes the defects of
conventional techniques. Furthermore, different method has
its peculiar strength; for instance, the process of variation
and hybridization inGA increases the diversity of population,
which contributes to obtain the better solutions; DE uses
the differences between individuals to change the individual
itself, and this operation utilizes the distribution features
of population to improve the search capacity effectively;
PSO gets highlighted by virtue of the memory characteristic
from imitating animals’ predation process containing social
and individual behaviors; the pattern of movement of GSA
contributes significantly to the high efficiency of the search
process. Conversely, every method yet has its own weak-
ness: GA is apt to converge prematurely and the long and
complicated evolution procedures of it increase the running
time; in DE, the individuals’ differences decrease with the
increase of number of iterations, which impacts the increase
of diversity of population directly. PSO tends to be trapped
into prematurity in the latter period of searching, which
directly lessens the possibility of acquiring the better solution;
different from the algorithms based on biology, GSA is a
memoryless algorithm, which is adverse to recording of the
optimal value during the process of searching. According to
these features, the exertion of merging individual superior-
ities into a new algorithm has become wide now in various
engineering fields, which avoids their own disadvantages
by benefiting from each other’s advantages; for example, a
method composed of chaotic embedded Backtracking Search
Optimization Algorithm (BSA) and Binary Charged System
Search (BCSS) algorithm is proposed for solving Short-Term
Hydrothermal Generation Scheduling (SHTGS) in [11]; in
[12], the authors present a new hybrid evolutionary algorithm
based on new fuzzy adaptive PSO algorithm and Nelder-
Mead simplex search method to solve distribution feeder
reconfiguration problem; the combination of the vertical
search algorithm and presented lateral search algorithm is
used to solve the midterm schedule for thermal power plants
problem in [13]. But this paper highly favors the superiorities
of PSO and GSA. On the basis of GSA, PSO is merged with it
as fine tuning to improve the quality of solutions, which forms
GSAPSO method for solving ORPD problem.

Gravitational Search Algorithm (GSA), a heuristic evolu-
tionary optimization algorithm, was proposed by Rashedi et
al. in [14]. GSA deriving from the thought of Newton’s law
stands out depending on the flexible and efficient movement
characteristic, and naturally, its application is wide. GSA-
based Photovoltaic (PV) excitation control strategy is used
for single-phase operation of three-phase wind-turbine cou-
pled induction generator [15]. GSA is applied to coordinate
Power System Stabilizers (PSSs) and Thyristor Controlled
Series Capacitor (TCSC) controllers simultaneously, which
is demonstrated to achieve good robust performance for
damping the low frequency interarea oscillations [16]. GSA
is proposed to find the optimal solution for optimal power
flow problem in a power system [17].

Particle Swarm Optimization (PSO) proposed by
Kennedy and Eberhart [18] owns numerous absorbing
aspects: simple thought, convenient implementation, high
efficiency, powerful search ability, and so on. But what

the most prominent feature is belongs to the memory
peculiarity during the search process, thememory peculiarity
contributing particles to record the global optimum and
individual optimum in every generation. The applications
of PSO are far more than the authors care to mention; for
instance, enhanced PSO approach is applied for optimal
scheduling of hydrosystem [19]; robust PID controller tuning
based on the constrained PSO is researched in [20]; PSO is
used for optimization of acoustic filters [21]; a hybrid Particle
Swarm Optimization algorithm is proposed for solving the
problem of optimal reactive power dispatch within a wind
farm [10].

In this paper, GSAPSO is the combination of GSA and
PSO, which not only retains movement characteristic in
the search process of GSA but also increases capability
of sharing information and memory ability. In this work,
GSA, PSO, and GSAPSO have been examined and tested
in IEEE14-bus, IEEE30-bus, and IEEE57-bus test systems
for the solution of ORPD problem of power system with
the objective minimizing total active power transmission
losses (𝑃Loss). The obtained performances of GSA, PSO, and
GSAPSO are compared. And the power loss reduction rates
of the proposed GSAPSO algorithm are also compared to
those of other optimization methods. The simulation results
reveal that the proposed GSAPSO approach can obtain a
better optimum effect than these compared algorithms and
the results’ distribution of it is more concentrated than
conventional GSA and PSO methods; besides, the proposed
GSAPSO can avoid falling into the local optimum.

The rest of this paper is organized as follows: Section 2
introduces the mathematical modeling of ORPD problem.
GSAPSO algorithm is described in detail in Section 3.
Section 4 presents the calculation process of GSAPSO algo-
rithm for ORPD problem. Some simulation experiments are
shown in Section 5, and Section 6 gives the conclusions.

2. Mathematical Modeling

The mathematical modeling of ORPD problem is composed
of two parts: objectives and constraints.The former provided
in the paper are to minimize 𝑃Loss, and the latter contain
equality constraints and inequality constraints [1].

2.1. Objective Functions. The objective to minimize the total
active power transmission losses in reactive power optimiza-
tion is expressed as follows:

min𝑓

= min
{

{

{

𝑃Loss = ∑
𝑘∈𝑁𝑃

𝑔𝑘 (𝑉
2

𝑖
+ 𝑉
2

𝑗
− 2𝑉𝑖𝑉𝑗 cos 𝛿𝑖𝑗)

}

}

}

,
(1)

where 𝑃Loss represents the total active power losses in trans-
mission lines; 𝑁𝑃 is the number of network branches; 𝑔𝑘 is
the conductance of the 𝑘th branch which connects bus 𝑖 and
bus 𝑗; 𝑉𝑖 and 𝑉𝑗, respectively, denote the voltage magnitude
of the 𝑖th and 𝑗th bus; 𝛿𝑖𝑗 is the voltage phase between buses 𝑖
and 𝑗.
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2.2. System Constraints. The aforementioned objective func-
tion is subject to the system constraints which include the
equality and inequality constraints.

2.2.1. Equality Constraints. There are two equality constraints
describing the active and reactive power balance, which are
expressed as follows:

𝑃𝑔𝑖 − 𝑃𝑙𝑖 − 𝑉𝑖

𝑛

∑
𝑗=1

𝑉𝑗 (𝐺𝑖𝑗 cos 𝛿𝑖𝑗 + 𝐵𝑖𝑗 sin 𝛿𝑖𝑗) = 0

𝑖 ∈ 𝑁

𝑄𝑔𝑖 − 𝑄𝑙𝑖 − 𝑉𝑖

𝑛

∑
𝑗=1

𝑉𝑗 (𝐺𝑖𝑗 cos 𝛿𝑖𝑗 − 𝐵𝑖𝑗 sin 𝛿𝑖𝑗) = 0

𝑖 ∈ 𝑁PQ,

(2)

where 𝑛 is the number of the buses connecting with the 𝑖th
bus;𝑁 is the number of total buses except for swing bus;𝑁PQ
is the number of PQ buses; 𝑃𝑔𝑖 and 𝑃𝑙𝑖 are the active power
of the 𝑖th generator bus and the 𝑖th load bus, respectively;
𝑄𝑔𝑖 and 𝑄𝑙𝑖 are, respectively, the reactive power at the 𝑖th
generator bus and the 𝑖th load bus; 𝐺𝑖𝑗 and 𝐵𝑖𝑗, respectively,
represent the real part and imaginary part of 𝑌𝑖𝑗 which is the
element of the 𝑌-bus matrix (bus admittance matrix) at the
𝑖th row and the 𝑗th column.

Equations (2) are considered as the termination condi-
tions of calculating the Jacobian matrix in Newton-Raphson
load flow calculation.

2.2.2. Inequality Constraints. The descriptions of inequality
constraints are given based on the state variables and control
variables, respectively.

(i) Inequality Constraints of Control Variables

(a) The limit for generator bus voltages:

𝑉
min
𝑔𝑖
≤ 𝑉𝑔𝑖 ≤ 𝑉

max
𝑔𝑖
, 𝑖 ∈ 𝑁PV, (3)

where 𝑁PV denotes the number of PV buses and 𝑉𝑔𝑖
is the voltages at the 𝑖th generator bus.

(b) The limit for tap positions of transformers:

𝑇
min
𝑖
≤ 𝑇𝑖 ≤ 𝑇

max
𝑖
, 𝑖 ∈ 𝑁𝑇, (4)

where𝑁𝑇 is the number of transformers; 𝑇𝑖 is the tap
positions of the 𝑖th transformer, which is a discrete
variable.

(c) The limit for amount of reactive compensation:

𝑄
min
𝑐𝑖
≤ 𝑄𝑐𝑖 ≤ 𝑄

max
𝑐𝑖
, 𝑖 ∈ 𝑁𝐶, (5)

where 𝑁𝐶 is the number of the banks of capacitor
or inductor; 𝑄𝑐𝑖 denotes the reactive compensation
capacity of the 𝑖th bank of capacitor or inductor.

(ii) Inequality Constraints of State Variables
(a) The limit for voltages at PQ bus:

𝑉
min
𝑙𝑖
≤ 𝑉𝑙𝑖 ≤ 𝑉

max
𝑙𝑖
, 𝑖 ∈ 𝑁PQ, (6)

where 𝑉𝑙𝑖 is the voltage at the 𝑖th load bus.
(b) The limit for reactive compensation capacity at PV

bus:
𝑄

min
𝑔𝑖
≤ 𝑄𝑔𝑖 ≤ 𝑄

max
𝑔𝑖
, 𝑖 ∈ 𝑁PV, (7)

where𝑄𝑔𝑖 is the reactive compensation capacity at the
generator 𝑖.

(c) The limit for apparent power of transmission line:
𝑆𝑖𝑗 ≤ 𝑆

max
𝑖𝑗
, 𝑖𝑗 ∈ 𝑁𝑃, (8)

where 𝑆𝑖𝑗 is the apparent power of the transmission
line between buses 𝑖 and 𝑗.

2.3. Handling of Constraints. What is worth mentioning is
that, during the process of optimization, equality constraints
and inequality constraints of control and state variables are
satisfied as the following explanations, respectively.

(i) The two equality constraints are satisfied by Newton-
Raphson power flow algorithm in load flow calcula-
tion.

(ii) The generator bus voltages (𝑉𝑔𝑖), tap positions of
transformers (𝑇𝑖), and amount of reactive compensa-
tion (𝑄𝑐𝑖) are the control variables which can be self-
restricted according to their limits by the algorithm.

(iii) The limits on active power generation at the swing bus
(𝑃𝑔swing), voltages at PQ bus (𝑉𝑙𝑖), reactive compen-
sation capacity at PV bus (𝑄𝑔𝑖), and apparent power
of transmission line (𝑆𝑖𝑗) are state variables which are
restricted by the objective function combining the
penalty function.

2.4. Formulation. In short, the ORPD problem can be for-
mulated as a complex nonlinear constrained optimization
mathematical model, and a compact expression is given in

min 𝑓 = 𝑃Loss

s.t. 𝐺 (𝑐, 𝑠) = 0

𝐻 (𝑐, 𝑠) ≤ 0

𝑐min ≤ 𝑐 ≤ 𝑐max

𝑠min ≤ 𝑠 ≤ 𝑠max,

(9)

where 𝑐 and 𝑠 denote the vector of control variables and
the vector of state variables, respectively; 𝐺(𝑐, 𝑠) and 𝐻(𝑐, 𝑠),
respectively, represent the equality constraints and inequality
constraints of system.

In this paper, 𝑐 and 𝑠 are expressed as follows:

𝑐
𝑇
= [𝑉𝑔1, . . . , 𝑉𝑔𝑁PV , 𝑇1, . . . , 𝑇𝑁𝑇 , 𝑄𝑐1, . . . , 𝑄𝑐𝑁𝐶] , (10)

𝑠
𝑇
= [𝑉𝑙1, . . . , 𝑉𝑙𝑁PQ , 𝑄𝑔1, . . . , 𝑄𝑔𝑁PV , 𝑆𝑖𝑗1, . . . , 𝑆𝑖𝑗𝑁𝑃] , (11)

where “𝑇” denotes transposition.
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3. Description of GSAPSO Algorithm

3.1. Brief Introduction of GSA. GSA proposed by Rashedi et
al. in 2009 is a newly developed stochastic search algorithm
which is inspired by the law of gravity and law of motion [14].
In GSA, a series of agents are considered as objects and their
performances are measured by their masses, and all these
objects attract each other by the gravity force, while this force
causes a global movement of all objects towards the objects
with heavier masses [22]. The description of GSA about how
to solve the problem is as follows.

Assume there are 𝑁 agents distributed in space and the
position of the 𝑖th agent is defined as in

𝑋𝑖 = (𝑥
1

𝑖
, . . . , 𝑥

𝑑

𝑖
, . . . , 𝑥

𝐷

𝑖
) 𝑖 = 1, 2, . . . , 𝑁, (12)

where 𝑥𝑑
𝑖
denotes the position of the 𝑖th agent in the 𝑑th

dimension and𝐷 is the dimension of the search space.
Themass of every agent is computed based on the current

agents’ fitness as follows:

𝑚𝑖 (𝑘) =
fit𝑖 (𝑘) − 𝑓worst (𝑘)
𝑓best (𝑘) − 𝑓worst (𝑘)

,

𝑀𝑖 (𝑘) =
𝑚𝑖 (𝑘)

∑
𝑁

𝑗=1
𝑚𝑗 (𝑘)

,

(13)

where𝑀𝑖(𝑘) and fit𝑖(𝑘) represent themass and fitness value of
the 𝑖th agent at iteration 𝑘; 𝑓best(𝑘) and 𝑓worst(𝑘), respectively,
denote the best and worst fitness value among the 𝑁 agents
at iteration 𝑘, which is defined as follows:

𝑓best (𝑘) = min
𝑖∈{1,...,𝑁}

fit𝑖 (𝑘) ,

𝑓worst (𝑘) = max
𝑖∈{1,...,𝑁}

fit𝑖 (𝑘) .
(14)

In accordance with the law of gravity, the force acting on
agent 𝑖 by agent 𝑗 is computed as follows:

𝐹
𝑑

𝑖𝑗
(𝑘) = 𝐺 (𝑘) ⋅

𝑀𝑖 (𝑘) ⋅ 𝑀𝑗 (𝑘)

𝑅𝑖𝑗 (𝑘) + 𝜀
⋅ (𝑥
𝑑

𝑗
(𝑘) − 𝑥

𝑑

𝑖
(𝑘)) , (15)

where 𝐺(𝑘) is the gravitational constant at iteration 𝑘; 𝜀
represents a small constant which can avoid the denominator
equal to zero; 𝑅𝑖𝑗(𝑘), defined as 𝑅𝑖𝑗(𝑘) = ‖𝑥𝑖(𝑘), 𝑥𝑗(𝑘)‖2,
denotes the Euclidian distance between agent 𝑖 and agent 𝑗.

We always use𝑅𝑖𝑗(𝑘) rather than𝑅𝑖𝑗(𝑘)
2 in (15) because of

the better performance of𝑅𝑖𝑗(𝑘) in most cases based onmany
simulation experiments.The better performance refers to the
lower power losses in this paper. And 𝐺(𝑘) is reduced from
an initial value with iteration 𝑘 as follows:

𝐺 (𝑘) = 𝐺0 ⋅ 𝑒
−𝛼(𝑘/𝑘max), (16)

where 𝐺0 is the initial gravitational constant; 𝛼 is a constant
greater than zero; 𝑘 is the current number of iterations; and
𝑘max represents the maximum number of iterations.

On the basis of (15), the total force acting on agent 𝑖 can
be given as

𝐹
𝑑

𝑖
(𝑘) = ∑

𝑗∈𝑘best , 𝑗 ̸=1

rand ⋅ 𝐹𝑑
𝑖𝑗
(𝑘) , (17)

where rand represents random number drawn uniformly on
(0, 1); 𝑘best denotes the set of the first 𝐾 agents with the
best fitness value and biggest mass, which is a function and
reduced with time from the initial value 𝐾0.

Based on the law of motion, the acceleration of the 𝑖th
agent is computed as follows:

𝑎
𝑑

𝑖
(𝑘) =

𝐹
𝑑

𝑖
(𝑘)

𝑀𝑖 (𝑘)
. (18)

The updates of velocity and position of agent 𝑖 at the next
iteration are computed as follows:

V𝑑
𝑖
(𝑘 + 1) = rand ⋅ V𝑑

𝑖
(𝑘) + 𝑎

𝑑

𝑖
(𝑘) ,

𝑥
𝑑

𝑖
(𝑘 + 1) = 𝑥

𝑑

𝑖
(𝑘) + V𝑑

𝑖
(𝑘 + 1) ,

(19)

where V𝑑
𝑖
(𝑘) and 𝑥𝑑

𝑖
(𝑘) are the velocity and position of agent 𝑖

at iteration 𝑘 in the 𝑑th dimension.

3.2. Memory Characteristic of PSO. Schools of fish and
flocks of birds always find foods, which is attributed to the
communication among individuals and the memory ability
for individual best direction and global best direction. PSO
algorithm simulates the behaviors of animals, whose update
of velocity is defined as follows:

V𝑑
𝑖
(𝑘 + 1) = 𝑤 ⋅ V𝑑

𝑖
(𝑘) + 𝑐1 ⋅ rand ⋅ (𝑃

𝑑

𝑖best − 𝑋
𝑑

𝑖
(𝑘))

+ 𝑐2 ⋅ rand ⋅ (𝑃
𝑑

𝑔best − 𝑋
𝑑

𝑖
(𝑘)) ,

(20)

where 𝑤 is the inertia weight; 𝑐1 and 𝑐2 represent the
acceleration factors; 𝑃𝑑

𝑖best and 𝑃
𝑑

𝑔𝑑
, respectively, denote the

best position of particle 𝑖 and the best position in swarm in
the 𝑑th dimension at iteration 𝑘.

3.3. GSAPSO. Different from PSO, every agent in GSA
determines the direction by the total force from other agents
but lacks the communication with others so as to miss the
memory ability. In this paper, the proposed GSAPSO is an
enhancedGSA-based optimization algorithm, combining the
memory characteristic of PSO based on the GSA, which is
helpful to the agents to move to the global best position. The
difference between GSA and GSAPSO is the update modes
of velocity and position which are crucial for the artificial
intelligence-based algorithms. And the updates of velocity
and position in GSAPSO combining the law of gravity and
memory characteristic of PSO are defined as follows:

V𝑑
𝑖
(𝑘 + 1) = rand ⋅ V𝑑

𝑖
(𝑘) + 𝑎

𝑑

𝑖
(𝑘) + 𝑐1 ⋅ rand

⋅ (𝑃
𝑑

𝑖best − 𝑋
𝑑

𝑖
(𝑘)) + 𝑐2 ⋅ rand

⋅ (𝑃
𝑑

𝑔best − 𝑋
𝑑

𝑖
(𝑘)) ,

(21)

𝑥
𝑑

𝑖
(𝑘 + 1) = 𝑥

𝑑

𝑖
(𝑘) + V𝑑

𝑖
(𝑘 + 1) . (22)

It is worth pointing out that the inertia weight impacting
velocity in (20) is not introduced in (21), because GSA can
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determine the direction by the total force from other agents
and only need to reinforce the impact of the memory for the
best position of every agent and the best position in all the
agents. And the steps of GSAPSO are depicted as follows.

Step 1. Generate the initial population.

Step 2. Compute the fitness of every agent, and record 𝑃𝑑
𝑖best

and 𝑃𝑑
𝑔𝑑
.

Step 3. Update𝐺, 𝑓best, 𝑓worst, and𝑀 of the population based
on (13), (14), and (16).

Step 4. Compute 𝐹 and 𝑎 of every agent according to (15),
(17), and (18).

Step 5. Update the velocity and position by using (21) and
(22).

Step 6 (check stop criterion). Go to the next step if the num-
ber of iterations reaches the maximum number of iterations;
otherwise go back and continue Step 2.

Step 7. Select the solution with the best fitness as the global
best solution.

And the computational flow of the GSAPSO algorithm is
shown in Figure 1.

4. The Calculation Process of
GSAPSO Algorithm for ORPD Problem

In the application of GSAPSO for solving theORPDproblem,
the fitness value of every agent is the objective function
value (𝑃Loss), and the position of the agent is the solution
which is a set of control variables containing the generator
bus voltages, tap positions of transformers, and amount of
reactive compensation. These control variables are applied
in Newton-Raphson load flow calculation to obtain the total
active power transmission losses, constraint violations of
variables, reactive compensation capacity at PV bus, and
so on. The optimization procedures of GSAPSO for ORPD
problem are as follows.

Step 1. Set the parameters of power system and those of
GSAPSO.

Step 2. Generate the initial population.

The vector of control variables expressed in (10) is as an
agent to represent a potential solution for ORPD problem in
GSAPSO. The initial population is made up of𝑁 agents, and
the 𝑗th particle in the 𝑑th dimension is generated based on

𝑐𝑗,𝑑 = 𝑐min,𝑑 + rand ⋅ (𝑐max,𝑑 − 𝑐min,𝑑)

𝑗 ∈ [1,𝑁] , 𝑑 ∈ [1, 𝐷] ,
(23)

where 𝑁 is the size of population, 𝐷 is the dimension of
control variables, and𝑁 × 𝐷 can represent the dimension of

the population. Besides, the initial velocity of population is
set as a zero matrix with𝑁 × 𝐷 dimension.

Step 3. Compute the objective function value (𝑃Loss) of
every agent by Newton-Raphson load flow calculation, and
compare those of agents, and then record 𝑃𝑑

𝑖best and 𝑃
𝑑

𝑔𝑑
as

follows:

if

(𝑖).Obj < pBJ(𝑖).Obj;
%(𝑖).Obj represents the objective value of agent 𝑖
pBJ(𝑖).Position = 𝑝(𝑖).Positon;

%pBJ(𝑖).Position represents the 𝑃𝑑
𝑖best

end
if

gB.Obj < gBJ.Obj
gBJ(𝑖).Position = gB.Positon;

%gBJ(𝑖).Position represents the 𝑃𝑑
𝑔𝑑

end

Step 4. Update𝐺, 𝑓best, 𝑓worst, and𝑀 of the population based
on (13), (14), and (16).

Step 5. Compute 𝐹 and 𝑎 of every agent according to (15),
(17), and (18).

Step 6. Update the velocity and position by using (21) and
(22), and generate a new population.

Step 7 (check stop criterion). Go to the next step if the num-
ber of iterations reaches the maximum number of iterations;
otherwise go back and continue Step 2.

Step 8. The solution with the best fitness (the lowest 𝑃Loss) is
the global best solution.

5. Simulation Experiments

In order to verify the effectiveness of the proposed GSAPSO
algorithm compared to the traditional GSA and PSO, they
have been examined and tested, respectively, in three IEEE
test systems to solve theORPDproblem of power systemwith
the objective minimizing total active power transmission
losses (𝑃Loss). The system data of test systems is depicted in
Table 1. All the code of the abovementioned algorithms is
written byMATLAB R2013b programming language and run
on PCwith Intel(R) Core 2 Duo CPU E7500@ 2.93GHz with
2GB RAM.

5.1. Descriptions of Test Systems

5.1.1. IEEE14-Bus System. The IEEE14-bus test system is taken
from [23], whose single-line diagram is shown in Figure 2.
The reactive power limits of generators are given in Table 2,
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Figure 1: Computational flow of the GSAPSO algorithm.

Table 1: System data of test systems.

Variables IEEE14-bus system IEEE30-bus system IEEE57-bus system
Active power of generators (MW) 272.39 289.23 1278.66
Reactive power of generators (MVAr) 82.44 139.10 321.08
Active power demands (MW) 259.00 283.40 1250.80
Reactive power demands (MVAr) 73.50 126.20 336.40
Active power losses (MW) 13.393 5.832 27.864
Reactive power losses (MVAr) 54.54 30.23 121.67

andTable 3 lists the settings of control variables.This network
consists of 20 branches, 3 transformers, and 1 capacitor bank.
The capacitor bank is set at bus 9. The 3 transformers are
connected to branches 4–7, 4–9, and 5-6. In the 14 buses of this
test system, bus 1 is the swing bus, 2, 3, 6, and 8 are regarded
as the PV buses, and the remaining 9 are the PQ buses.

5.1.2. IEEE30-Bus System. The IEEE30-bus test system is
taken as the second test system, whose detailed data is given
in [24, 25]. As shown in Figure 3, this network consists of 41
branches, 4 transformers which are connected to branches 6–
9, 6–10, 4–12, and 28-27, and 9 capacitor banks which are set
at buses 10, 12, 15, 17, 20, 21, 23, 24, and 29.This test system has
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Figure 2: The single-line diagram of IEEE14-bus test system.
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Figure 3: The single-line diagram of IEEE30-bus test system.

Table 2: Limits of reactive power of generators in IEEE14-bus test
system.

Bus number 𝑄𝑔𝑖max (MVAr) 𝑄𝑔𝑖min (MVAr)
1 10 0
2 50 −40
3 40 0
6 24 −6
8 24 −6

30 buses. Bus 1 is the swing bus, 2, 5, 8, 11, and 13 are taken as
PVbuses, and the remaining 24 are the PQbuses.The reactive
power limits of generators are seen inTable 4, andTable 5 lists
the settings of control variables.
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Figure 4: The single-line diagram of IEEE57-bus test system.

Table 3: Settings of control variables in IEEE14-bus test system.

— Max. Min. Step
𝑉𝑔 (p.u.) 1.1 0.9 Continuous
𝑇 1.1 0.9 0.02
𝑄𝑐 (p.u.) 0.05 0 0.005

Table 4: Limits of reactive power of generators in IEEE30-bus test
system.

Bus number 𝑄𝑖max (MVAr) 𝑄𝑖min (MVAr)
1 200 −20
2 100 −20
5 80 −15
8 60 −15
11 50 −10
13 60 −15

5.1.3. IEEE57-Bus System. In order to verify the applicability
of the proposed GSAPSO algorithm for the larger scale
system, it has been applied in the IEEE57-bus system whose
detailed data is given in [23]. As shown in Figure 4, the
network has 80 branches, 17 transformers, and 3 capacitor
banks which are set at buses 8, 25, and 53.The 17 transformers
are connected to branches 4–18, 4–18, 21-20, 24-25, 24-25, 24–
26, 7–29, 34–32, 11–41, 15–45, 14–46, 10–51, 13–49, 11–43, 40–
56, 39–57, and 9–55. In the 57 buses of this system, bus 1 is
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Figure 5: The average convergence curves of different algorithms for IEEE14-bus test system.

Table 5: Settings of control variables in IEEE30-bus test system.

— Max. Min. Step
𝑉𝑔 (p.u.) 1.1 0.9 Continuous
𝑇 1.1 0.9 0.02
𝑄𝑐 (p.u.) 0.05 0 0.005

Table 6: Limits of reactive power of generators in IEEE57-bus test
system.

Bus number 𝑄𝑖max (MVAr) 𝑄𝑖min (MVAr)
1 200 −140
2 130 −17
3 120 −10
6 55 −8
8 200 −170
9 70 −3
12 240 −150

the swing bus, 2, 3, 6, 8, 9, and 12 are taken as PV buses, and
the remaining 50 are PQ buses. The modified reactive power
limits of generators are listed in Table 6, and the settings of
control variables are seen in Table 7.

5.2. Parameter Settings. Based on the reduplicative experi-
ments, we find that the smaller population size of particles
cannot guarantee the diversity of particle, and the larger
population size of particles increases the computational
complexity and total computing time. Therefore, by synthe-
sizing each kind of factor, the parameter settings of different
algorithms for test systems are listed in Table 8.

Table 7: Settings of control variables in IEEE57-bus test system.

— Max. Min. Step
𝑉𝑔 (p.u.) 1.1 0.9 Continuous
𝑇 1.1 0.9 0.01
𝑄𝑐1 (p.u.) 0.2 0.0 0.005
𝑄𝑐2 (p.u.) 0.18 0.0 0.006
𝑄𝑐3 (p.u.) 0.18 0.0 0.006

5.3. Simulation Results and Comparison. GSA, PSO, and
GSAPSO algorithms, respectively, run 30 times for the above-
mentioned three test systems. The comparisons of average
convergence curves for these test systems are, respectively,
shown as Figures 5–7. The distributions of the results for
the test systems are shown in Figures 8–10, respectively.
The best objective function values and solutions of different
algorithms for test systems as well as CPU times are listed in
Tables 9–15. Besides, the power loss reduction rates (𝑃save) of
the compared algorithms are also seen in Tables 9–11.

As seen in Figures 5–7, the proposed GSAPSO can obtain
better searching effect than PSO and GSA. For example,
in IEEE14-bus test system, PSO, GSA, and GSAPSO get
converged, respectively, at about the 20th, 120th, and 300th
iteration, which indicates PSO and GSA easily get into the
local optimum. And in test systems, compared with PSO and
GSA, the proposed GSAPSO can find the solution with lower
power losses. In Tables 9–11, the power loss reduction rates
of GSAPSO in IEEE14-bus, IEEE30-bus, and IEEE57-bus test
systems are 7.05%, 17.69%, and 19.51%, respectively, which
denotes that the proposed GSAPSO method has a better
optimum effect for ORPD problem than other modern arti-
ficial intelligence-based techniques including conventional
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Table 8: Parameter settings.

Parameter IEEE14-bus system IEEE30-bus system IEEE57-bus system
GSA PSO GSAPSO GSA PSO GSAPSO GSA PSO GSAPSO

𝑁 30 30 30 30 30 30 30 30 30
𝑘max 1000 1000 1000 1000 1000 1000 1000 1000 1000
𝐺0 100 — 100 100 — 100 100 — 100
𝛼 20 — 20 20 — 20 20 — 20
𝑐1 — 2 2 — 2 2 — 2 2
𝑐
2

— 2 2 — 2 2 — 2 2

Table 9: Comparison of power losses of different algorithms for IEEE14-bus test systems.

Compared item SARGA [8] DE [9] GSA PSO GSAPSO
Initial 𝑃Loss (MW) 13.49 13.49 13.393 13.393 13.393
Best 𝑃Loss (MW) 13.216 13.239 12.64782 12.46522 12.44901
𝑃save (%) 2.03 1.86 5.56 6.92 7.05

Table 10: Comparison of power losses of different algorithms for IEEE30-bus test systems.

Compared item DE [9] HAS [26] GSA PSO GSAPSO
Initial 𝑃Loss (MW) 5.660 5.934 5.832 5.832 5.832
Best 𝑃Loss (MW) 5.011 4.902 5.009544 4.915779 4.800533
𝑃save (%) 11.47 17.39 14.10 15.71 17.69

Table 11: Comparison of power losses of different algorithms for IEEE57-bus test systems.

Compared item DE [9] SOA [27] GSA PSO GSAPSO
Initial 𝑃Loss (MW) 27.864 28.462 27.864 27.864 27.864
Best 𝑃Loss (MW) 25.048 24.625 22.76482 24.22017 22.42592
𝑃save (%) 10.11 13.48 18.30 13.08 19.51

Table 12: CPU time of different algorithms for test system (s).

— IEEE14-bus test system IEEE30-bus test system IEEE57-bus test system
GSA PSO GSAPSO GSA PSO GSAPSO GSA PSO GSAPSO

CPU time 120.2959 124.3201 120.7331 149.7679 150.943 149.165 253.080 255.977 251.296

Table 13: Best solutions of different algorithms for IEEE14-bus test system.

Control
variables

IEEE14-bus test system
GSA PSO GSAPSO

𝑉𝑔1 (p.u.) 1.100000 1.100000 1.100000
𝑉𝑔2 (p.u.) 1.076398 1.077022 1.076853
𝑉𝑔3 (p.u.) 1.052355 1.046782 1.046118
𝑉𝑔6 (p.u.) 1.008185 1.020621 1.025647
𝑉𝑔8 (p.u.) 1.049006 1.071699 1.096356
𝑇
1

1.04 1.02 0.96
𝑇2 1.02 1.00 1.1
𝑇3 1.00 1.04 1.04
𝑄𝑐1 (p.u.) 0.035 0.000 0.045
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Table 14: Best solutions of different algorithms for IEEE30-bus test
system.

Control
variables

IEEE30-bus test system
GSA PSO GSAPSO

𝑉𝑔1 (p.u.) 1.085932 1.074271 1.084864
𝑉𝑔2 (p.u.) 1.077857 1.065482 1.075632
𝑉𝑔5 (p.u.) 1.043181 1.043299 1.053589
𝑉𝑔8 (p.u.) 1.051025 1.043186 1.053907
𝑉𝑔11 (p.u.) 1.071938 1.030075 1.100000
𝑉𝑔13 (p.u.) 1.021988 1.076433 1.051037
𝑇1 0.98 1.10 1.10
𝑇2 1.00 0.90 0.90
𝑇
3

1.02 1.10 0.96
𝑇4 0.98 1.00 1.00
𝑄𝑐1 (p.u.) 0.030 0.050 0.050
𝑄𝑐2 (p.u.) 0.035 0.000 0.000
𝑄𝑐3 (p.u.) 0.030 0.050 0.015
𝑄
𝑐4
(p.u.) 0.005 0.050 0.050

𝑄𝑐5 (p.u.) 0.020 0.000 0.035
𝑄𝑐6 (p.u.) 0.040 0.050 0.050
𝑄𝑐7 (p.u.) 0.030 0.050 0.050
𝑄𝑐8 (p.u.) 0.025 0.050 0.050
𝑄
𝑐9
(p.u.) 0.050 0.025 0.045

Generation k
0 200 300100 400 600 700500 800 900 1000

4.5

5

5.5

6

6.5

7

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
es

 (M
W

)

PSO
GSA
GSAPSO

Figure 6: The average convergence curves of different algorithms
for IEEE30-bus test system.

PSO and GSA algorithms. Furthermore, the CPU times
shown in Table 12 make it clear that the run times of three
different algorithms are not much different for these test
systems, which shows that the effectiveness of the proposed
method does not mean the low efficiency. Owning to the
higher complexity of IEEE57-bus test system, its CPU time is

Table 15: Best solutions of different algorithms for IEEE57-bus test
system.

Control
variables

IEEE30-bus test system
GSA PSO GSAPSO

𝑉𝑔1 (p.u.) 1.100000 1.100000 1.100000
𝑉
𝑔2
(p.u.) 1.100000 1.100000 1.100000

𝑉𝑔3 (p.u.) 1.089813 1.100000 1.085288
𝑉𝑔6 (p.u.) 1.084215 1.100000 1.080974
𝑉𝑔8 (p.u.) 1.100000 1.100000 1.100000
𝑉𝑔9 (p.u.) 1.084676 1.100000 1.081252
𝑉
𝑔12

(p.u.) 1.080065 1.100000 1.075432

T1 1.10 1.10 0.90
T2 1.01 1.10 1.10
T3 1.10 1.10 1.02
T4 1.10 0.90 1.10
T5 0.97 1.10 0.90
T6 1.10 0.98 0.99
T7 1.10 0.99 0.99
T8 0.90 0.94 0.90
T9 0.90 1.10 1.10
T10 0.98 1.01 0.97
T11 0.97 1.02 0.97
T12 0.98 1.10 0.98
T13 0.94 1.02 0.94
T14 1.09 1.10 0.94
T15 1.03 0.99 1.10
T16 1.10 0.97 1.01
T17 1.10 1.10 1.00
𝑄𝑐1 (p.u.) 0.000 0.200 0.180
𝑄𝑐2 (p.u.) 0.156 0.180 0.108
𝑄𝑐3 (p.u.) 0.150 0.180 0.180

longer than that of IEEE14-bus and IEEE30-bus test systems.
Besides, according to Figures 8–10, it is obvious that the
distribution of the results of GSAPSOwasmore concentrated
in a smaller range than that of PSO andGSA, whichmanifests
that the result uniformity of the proposed GSAPSO is better
than GSA and PSO.

6. Conclusions

GSAPSO is a novel heuristic stochastic optimization algo-
rithm, which combined the memory characteristic of PSO
based on the traditional GSA algorithm. The proposed
GSAPSO, PSO, and GSA algorithms have been successfully
introduced to solve the ORPD problem based on IEEE14-
bus, IEEE30-bus, and IEEE57-bus test power systems in this
paper. The simulation results demonstrate the potential and
effectiveness of the proposed GSAPSO approach for solving
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Figure 7: The average convergence curves of different algorithms for IEEE57-bus test system.
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Figure 8: The distribution of the results of different algorithms for
IEEE14-bus test system.

ORPD problem of power system, especially in the larger
IEEE57-bus test system. The proposed GSAPSO method can
obtain bigger power loss reduction rates than the compared
algorithms, and its results’ distribution is more concentrated
compared to that of GSA and PSO under the condition
that these algorithms take almost the same computing time.
Besides, the proposed GSAPSO can avoid falling into the
local optimum.
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Figure 9: The distribution of the results of different algorithms for
IEEE30-bus test system.
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