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We present a new method for solving the fractional differential equations of initial value problems by using neural networks
which are constructed from cosine basis functions with adjustable parameters. By training the neural networks repeatedly the
numerical solutions for the fractional differential equationswere obtained.Moreover, the technique is still applicable for the coupled
differential equations of fractional order. The computer graphics and numerical solutions show that the proposed method is very
effective.

1. Introduction

Recently, fractional differential equations have gained con-
siderable importance due to their frequent appearance appli-
cations in fluid flow, rheology, dynamical processes in self-
similar and porous structures, diffusive transport akin to dif-
fusion, electrical networks, probability and statistics, control
theory of dynamical systems, viscoelasticity, electrochemistry
of corrosion, chemical physics, optics and signal processing
[1–7], and so on. These applications in interdisciplinary sci-
ences motivate us to try to find out the analytic or numerical
solutions for the fractional differential equations. But for
most ones it is difficult to find out or even have exact solu-
tions.Thus, necessarily, the numerical techniques are applied
to the fractional differential equations.

Now, many effective methods for solving fractional
differential equations have been presented, such as nonlinear
functional analysis method including monotone iterative
technique [8, 9], topological degree theory [10], and fixed
point theorems [11–13]. Also, numerical solutions are
obtained by the following methods: random walk [2], matrix
approach [14], the Adomian decomposition method and
variational iteration method [15], HAM [16–19], homotopy
perturbationmethod (HPM) [20], and so forth. Not long ago,
in [21], Raja et al. by applying Particle Swarm Optimization

(PSO) algorithm along with feedforward ANN obtained
the numerical solutions for fractional differential equations.
But the convergence of the algorithm has not been proven,
and this method is only applied to the single fractional
differential equations. In this paper, we construct two dif-
ferent neural networks based on cosine functions and obtain
the conditions of algorithm convergence.

The first neural network (NU) is applied to linear and
nonlinear fractional differential equations of the form

𝐷
𝛼

0+
𝑦 (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , 0 < 𝑥 ≤ 1, 0 < 𝛼 ≤ 1 (1)

with initial condition as follows:

𝑦 (0) = 𝐶, (2)

where 𝐷
𝛼

0+
is the Caputo fractional derivatives of order 𝛼.

The second neural network (NU) is applied to the frac-
tional coupled differential equations of the form

𝐷
𝛼

0+
𝑦 (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥) , 𝑧 (𝑥)) ,

0 < 𝑥 ≤ 1, 0 < 𝛼 ≤ 1,

𝐷
𝛼

0+
𝑧 (𝑥) = 𝑔 (𝑥, 𝑦 (𝑥) , 𝑧 (𝑥)) ,

(3)
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with initial conditions as follows:

𝑦 (0) = 𝐶
1
,

𝑧 (0) = 𝐶
2
,

(4)

where 𝐷
𝛼

0+
is the Caputo fractional derivatives of order 𝛼.

The solutions for the above two problems are written as
cosine basis functions, whose parameters can be adjusted
to minimize an appropriate error function. So we need
to compute the gradient of the error with respect to the
network parameters. By adjusting the parameters repeatedly,
we obtain the numerical solutions when the error values are
less than the required accuracy or the training times reach
maximum.

2. Definitions and Lemma

Definition 1 (see [22]). The Riemann-Liouville fractional
integral of order 𝛼 ∈ 𝑅, 𝛼 > 0 of a function𝑓(𝑥) ∈ 𝐶

𝜇
, 𝜇 ≥ −1

is defined as

(𝐼
𝛼

0+
𝑓 (𝑡)) (𝑥) :=

1

Γ (𝛼)
∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡

(𝑥 − 𝑡)
1−𝛼

, (𝑥 > 0) . (5)

Definition 2 (see [22]). The Riemann-Liouville and Caputo
fractional derivatives of order 𝛼 ∈ 𝑅, 𝛼 > 0 are given by

RL
𝐷
𝛼

0+
𝑓 (𝑥) := (

𝑑

𝑑𝑥
)

𝑛

𝐼
𝑛−𝛼

0+
𝑓 (𝑥)

=
1

Γ (𝑛 − 𝛼)
(

𝑑

𝑑𝑥
)

𝑛

∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡

(𝑥 − 𝑡)
𝛼−𝑛+1

,

𝐷
𝛼

0+
𝑓 (𝑥) := 𝐼

𝑛−𝛼

0+
(

𝑑

𝑑𝑥
)

𝑛

𝑓 (𝑥)

=
1

Γ (𝑛 − 𝛼)
∫

𝑥

0

(𝑑/𝑑𝑡)
𝑛

𝑓 (𝑡) 𝑑𝑡

(𝑥 − 𝑡)
𝛼−𝑛+1

,

(6)

where (𝑛 = [𝛼] + 1, 𝑥 > 0).

Definition 3 (see [22]). The classical Mittag-Leffler function
is defined by

E
𝛼
(𝑥) :=

∞

∑

𝑘=0

𝑥
𝑘

Γ (𝛼𝑘 + 1)
, (𝑥 ∈ 𝐶, 𝛼 > 0) . (7)

The generalized Mittag-Leffler function is defined by

E
𝛼,𝛽

(𝑥) :=

∞

∑

𝑘=0

𝑥
𝑘

Γ (𝛼𝑘 + 𝛽)
, (𝑥, 𝛽 ∈ 𝐶, 𝛼 > 0) . (8)

Definition 4. The functions Sin
𝛼,𝛽

(𝑥), Cos
𝛼,𝛽

(𝑥) (𝑥, 𝛽 ∈

𝐶, 𝛼 > 0) are defined by

Sin
𝛼,𝛽

(𝑥) =

∞

∑

𝑘=1

(−1)
𝑘+1

𝑥
2𝑘−1

Γ (𝛼 (2𝑘 − 1) + 𝛽)
,

Cos
𝛼,𝛽

(𝑥) =

∞

∑

𝑘=0

(−1)
𝑘

𝑥
2𝑘

Γ (𝛼 (2𝑘) + 𝛽)
.

(9)

Obviously, Euler’s equations have the following forms:

E
𝛼,𝛽

(𝑖𝑥) = Cos
𝛼,𝛽

(𝑥) + 𝑖Sin
𝛼,𝛽

(𝑥) ,

E
𝛼,𝛽

(−𝑖𝑥) = Cos
𝛼,𝛽

(𝑥) − 𝑖Sin
𝛼,𝛽

(𝑥) .

(10)

Lemma 5. If Sin
𝛼,𝛽

(𝑥) and Cos
𝛼,𝛽

(𝑥) are defined as in
Definition 4, then

𝐷
𝛼

𝑎+
(𝑥 − 𝑎)

𝛽−1 Sin
𝜇,𝛽

[𝜆 (𝑥 − 𝑎)
𝜇

]

= (𝑥 − 𝑎)
𝛽−𝛼−1 Sin

𝜇,𝛽−𝛼
[𝜆 (𝑥 − 𝑎)

𝜇

] ,

(11)

𝐷
𝛼

𝑎+
(𝑥 − 𝑎)

𝛽−1 Cos
𝜇,𝛽

[𝜆 (𝑥 − 𝑎)
𝜇

]

= (𝑥 − 𝑎)
𝛽−𝛼−1 Cos

𝜇,𝛽−𝛼
[𝜆 (𝑥 − 𝑎)

𝜇

] .

(12)

Proof. Thebeta functionwas defined by 𝛽(𝑝, 𝑞) := ∫
1

0

𝑥
𝑝−1

(1−

𝑥)
𝑞−1

𝑑𝑥, and we have the following equation:

𝛽 (𝑝, 𝑞) =
Γ (𝑝) Γ (𝑞)

Γ (𝑝 + 𝑞)
. (13)

Then according to the definition of Caputo fractional deriva-
tives, we have

𝐷
𝛼

𝑎+
(𝑥 − 𝑎)

𝛽−1 Sin
𝜇,𝛽

[𝜆 (𝑥 − 𝑎)
𝜇

] =
1

Γ (𝑛 − 𝛼)
∫

𝑥

𝑎+

(𝑑/𝑑𝑡)
𝑛

(𝑡 − 𝑎)
𝛽−1 Sin

𝜇,𝛽
[𝜆 (𝑡 − 𝑎)

𝜇

]

(𝑥 − 𝑡)
𝛼−𝑛+1

𝑑𝑡

=
1

Γ (𝑛 − 𝛼)
∫

𝑥−𝑎

0+

(𝑑/𝑑𝜉)
𝑛

𝜉
𝛽−1Sin

𝜇,𝛽
[𝜆𝜉
𝜇

]

(𝑥 − 𝜉 − 𝑎)
𝛼−𝑛+1

𝑑𝜉 (𝜉 = 𝑡 − 𝑎)

=
1

Γ (𝑛 − 𝛼)
∫

1

0+

(𝑑/𝑑𝑡)
𝑛

𝑡
𝛽−1

(𝑥 − 𝑎)
𝛽−1 Sin

𝜇,𝛽
[𝜆𝑡
𝜇

(𝑥 − 𝑎)
𝜇

]

(𝑥 − 𝑎)
𝑛

(𝑥 − 𝑎)
𝛼−𝑛+1

(1 − 𝑡)
𝛼−𝑛+1

(𝑥 − 𝑎) 𝑑𝑡 (𝜉 = 𝑡 (𝑥 − 𝑎))
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=
(𝑥 − 𝑎)

𝛽−𝛼−1

Γ (𝑛 − 𝛼)
∫

1

0+

(𝑑/𝑑𝑡)
𝑛

𝑡
𝛽−1

∑
∞

𝑘=1
((−1)

𝑘+1

[𝜆𝑡
𝜇

(𝑥 − 𝑎)
𝜇

]
2𝑘−1

/Γ (𝜇 (2𝑘 − 1) + 𝛽))

(1 − 𝑡)
𝛼−𝑛+1

𝑑𝑡

=
(𝑥 − 𝑎)

𝛽−𝛼−1

Γ (𝑛 − 𝛼)

∑
∞

𝑘=1
(−1)
𝑘+1

[𝜆 (𝑥 − 𝑎)
𝜇

]
2𝑘−1

Γ (𝜇 (2𝑘 − 1) + 𝛽)
∫

1

0+

(𝑑/𝑑𝑡)
𝑛

𝑡
𝛽−1+𝜇(2𝑘−1)

(1 − 𝑡)
𝛼−𝑛+1

𝑑𝑡

=
(𝑥 − 𝑎)

𝛽−𝛼−1

Γ (𝑛 − 𝛼)

∑
∞

𝑘=1
(−1)
𝑘+1

[𝜆 (𝑥 − 𝑎)
𝜇

]
2𝑘−1

Γ (𝜇 (2𝑘 − 1) + 𝛽)

𝑛

∏

𝑖=1

[𝛽 − 𝑖 + 𝜇 (2𝑘 − 1)] ∫

1

0+

𝑡
𝛽−1+𝜇(2𝑘−1)−𝑛

(1 − 𝑡)
𝛼−𝑛+1

𝑑𝑡

=
(𝑥 − 𝑎)

𝛽−𝛼−1

Γ (𝑛 − 𝛼)

∑
∞

𝑘=1
(−1)
𝑘+1

[𝜆 (𝑥 − 𝑎)
𝜇

]
2𝑘−1

Γ (𝜇 (2𝑘 − 1) + 𝛽 − 𝑛)
𝛽 (𝛽 + 𝜇 (2𝑘 − 1) − 𝑛, 𝑛 − 𝛼)

=
(𝑥 − 𝑎)

𝛽−𝛼−1

Γ (𝑛 − 𝛼)

∑
∞

𝑘=1
(−1)
𝑘+1

[𝜆 (𝑥 − 𝑎)
𝜇

]
2𝑘−1

Γ (𝜇 (2𝑘 − 1) + 𝛽 − 𝑛)

Γ (𝛽 + 𝜇 (2𝑘 − 1) − 𝑛) Γ (𝑛 − 𝛼)

Γ (𝛽 + 𝜇 (2𝑘 − 1) − 𝛼)

= (𝑥 − 𝑎)
𝛽−𝛼−1

∞

∑

𝑘=1

(−1)
𝑘+1

[𝜆 (𝑥 − 𝑎)
𝜇

]
2𝑘−1

Γ (𝜇 (2𝑘 − 1) + 𝛽 − 𝛼)
= (𝑥 − 𝑎)

𝛽−𝛼−1 Sin
𝜇,𝛽−𝛼

[𝜆 (𝑥 − 𝑎)
𝜇

] .

(14)

Then (11) holds. Similarly, we obtain (12). In particular, when
𝛽 = 1, 𝜇 = 1, we have

𝐷
𝛼

𝑎+
Sin
1,1

[𝜆 (𝑥 − 𝑎)]

= 𝐷
𝛼

𝑎+
sin [𝜆 (𝑥 − 𝑎)]

= (𝑥 − 𝑎)
−𝛼 Sin

1,1−𝛼
[𝜆 (𝑥 − 𝑎)] ,

𝐷
𝛼

𝑎+
Cos
1,1

[𝜆 (𝑥 − 𝑎)]

= 𝐷
𝛼

𝑎+
cos [𝜆 (𝑥 − 𝑎)]

= (𝑥 − 𝑎)
−𝛼 Cos

1,1−𝛼
[𝜆 (𝑥 − 𝑎)] .

(15)

3. Illustration of the Method and Application

3.1. The First Neural Network. To describe the method, we
consider (1) with initial condition𝑦(0) = 𝐶.The 𝑗th trial solu-
tion satisfying the initial condition is written as

𝑦
𝑗
(𝑥) =

M

∑

𝑖=1

𝑤
𝑖,𝑗
cos (𝑖𝑥)

+ (𝐶 −

M

∑

𝑖=1

𝑤
𝑖,𝑗
) cos ((M + 1) 𝑥) ,

(16)

where M represents the number of neurons and 𝑤
𝑖,𝑗

are
unknown weights of the network determined in training
procedures to reduce the error function:

𝐽 =
1

2


𝐸
𝑗



2

2

=
1

2

N

∑

𝑘=1

(𝑒
𝑗
(𝑘))
2

,

𝐸
𝑗
= (𝑒
𝑗
(1) , 𝑒
𝑗
(2) , . . . , 𝑒

𝑗
(N))
𝑇

,

(17)

where N represents the number of sample points, ‖ ⋅ ‖
2
is

Euclidean norm, and

𝑒
𝑗
(𝑘) = 𝑓 (𝑥

𝑘
, 𝑦
𝑗
(𝑥
𝑘
)) − 𝐷

𝛼

0+
𝑦
𝑗
(𝑥
𝑘
)

= 𝑓 (𝑥
𝑘
, 𝑦
𝑗
(𝑥
𝑘
)) − 𝑥

−𝛼

𝑘
(

M

∑

𝑖=1

𝑤
𝑖,𝑗
Cos
1,1−𝛼

(𝑖𝑥
𝑘
)

+ (𝐶 −

M

∑

𝑖=1

𝑤
𝑖,𝑗
)Cos

1,1−𝛼
((M + 1) 𝑥

𝑘
)) ,

(18)

where 𝑘 = 1, 2, . . . ,N; then we can adjust the weights 𝑤
𝑖,𝑗
by

the following equation:

𝑤
𝑖,𝑗+1

= 𝑤
𝑖,𝑗

+ Δ𝑤
𝑖,𝑗
, (19)

where

Δ𝑤
𝑖,𝑗

= −𝜇
𝜕𝐽

𝜕𝑤
𝑖,𝑗

= −𝜇

N

∑

𝑘=1

𝜕𝐽

𝜕𝑒
𝑗
(𝑘)

𝜕𝑒
𝑗
(𝑘)

𝜕𝑤
𝑖,𝑗

= −𝜇

N

∑

𝑘=1

𝑒
𝑗
(𝑘) 𝑓
𝑦
(𝑥
𝑘
, 𝑦
𝑗
(𝑥
𝑘
))

⋅ (cos (𝑥
𝑘
) − cos ((M + 1) 𝑥

𝑘
)) − (𝑥

𝑘
)
−𝛼

𝑒
𝑗
(𝑘)

⋅ (Cos
1,1−𝛼

𝑥
𝑘
− Cos

1,1−𝛼
((M + 1) 𝑥

𝑘
)) .

(20)

3.2. Convergence of the Algorithm

Theorem A. Let 𝜇 represent learning rate, letN represent the
number of sample points, and let M represent the number of
neurons: 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥N), 𝛿 < 𝑥

𝑖
< 1, 1 ≤ 𝑖 ≤ 𝑁.

Suppose |𝑓
𝑦
| ≤ 𝐿

1
, |Cos

1,1−𝛼
(𝑥)| ≤ 𝐿

2
on the interval (𝛿, 1)

for 0 < 𝛿 < 1. (From Figure 10, we see that the function
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Cos
1,1−𝛼

(𝑥) is bounded when 0 ≤ 𝛼 ≤ 1.) Then the neural
network is convergent on the interval (𝛿, 1) when

0 < 𝜇 <
N + 1

4MN (𝐿
1
+ 𝛿−𝛼𝐿

2
)
2
. (21)

Proof. Let 𝑊
𝑗

= (𝑤
1𝑗
, 𝑤
2𝑗
, . . . , 𝑤M𝑗), and then we denote

𝑦
𝑗
(𝑋) by

𝑦
𝑗
(𝑋) = 𝑊

𝑗
⋅ 𝐺 − (𝐶 − 𝑊

𝑗
⋅ 𝐼
1
) cos ((M + 1)𝑋) , (22)

where 𝐺 = (cos(𝑋), cos(2𝑋), . . . , cos(M𝑋))
𝑇 and 𝐼

1
=

(

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, 1, . . . , 1 )

𝑇. Then according to (17), we have

𝐸
𝑗

= (𝑒
𝑗
(1) , 𝑒
𝑗
(2) , . . . , 𝑒

𝑗
(N))

= 𝑓 (𝑋, 𝑦
𝑗
(𝑋)) − 𝐷

𝛼

0+
𝑦
𝑗
(𝑋)

= 𝑓 (𝑋, 𝑦
𝑗
(𝑋))

− 𝑋
𝛼

(𝑊
𝑗
𝐻 + (𝐶 − 𝑊

𝑗
𝐼
1
)Cos
1,1−𝛼

((M + 1)𝑋)) ,

(23)

where𝐻 = (Cos
1,1−𝛼

(𝑋),Cos
1,1−𝛼

(2𝑋), . . . ,Cos
1,1−𝛼

(M𝑋))
𝑇.

Then we have

𝜕𝐸
𝑗

𝜕𝑊
𝑗

= 𝑓
𝑦
(𝐺 − 𝐼

1
cos ((M + 1)𝑋))

− 𝑋
𝛼

(𝐻 − 𝐼
1
Cos
1,1−𝛼

((M + 1)𝑋)) .

(24)

Noting 𝐽 = (1/2)‖𝐸
𝑗
‖
2

2
, then we get

Δ𝑊
𝑗
= −𝜇

𝜕𝐽

𝜕𝐸
𝑗

𝜕𝐸
𝑗

𝜕𝑊
𝑗

= −𝜇𝐸
𝑗

𝜕𝐸
𝑗

𝜕𝑊
𝑗

. (25)

Define Lyapunov function 𝑉
𝑗
= (1/2)‖𝐸

𝑗
‖
2

2
; we have

Δ𝑉
𝑗
=

1

2


𝐸
𝑗+1



2

2

−
1

2


𝐸
𝑗



2

2

. (26)

Suppose

𝐸
𝑗+1

= 𝐸
𝑗
+ Δ𝐸
𝑗
= 𝐸
𝑗
+ (

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)

𝑇

Δ𝑊
𝑗
, (27)

and then in accordance with (25) that yields

𝐸
𝑗+1

= (𝐼 − 𝜇(

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)

𝑇

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)𝐸
𝑗
, (28)

where

𝐼 = (

1

d

1

)

N×N

. (29)

Thus,

Δ𝑉
𝑗
=

1

2



(𝐼 − 𝜇(

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)

𝑇

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)𝐸
𝑗



2

2

−
1

2


𝐸
𝑗



2

2

≤
1

2
(



(𝐼 − 𝜇(

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)

𝑇

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)



2

𝐹

− 1)

𝐸
𝑗



2

2

,

(30)

where ‖⋅‖
𝐹
is Frobeniusmatrix norm, defined by ‖(𝑎

𝑖𝑗
)
𝑛×𝑛

‖
𝐹

=

(∑
𝑛

𝑖=1
∑
𝑛

𝑗=1
𝑎
2

𝑖𝑗
)
1/2. Since ‖𝐸

𝑗
‖
2

2
> 0, in order to make this neu-

ral network converge, we have



𝐼 − 𝜇(

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)

𝑇

𝜕𝐸
𝑗

𝜕𝑊
𝑗



2

𝐹

< 1, (31)

which yields



𝐼 − 𝜇(

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)

𝑇

𝜕𝐸
𝑗

𝜕𝑊
𝑗

𝐹

< 1. (32)

Hence,

1 >



𝐼 − 𝜇(

𝜕𝐸
𝑗

𝜕𝑊
𝑗

)

𝑇

𝜕𝐸
𝑗

𝜕𝑊
𝑗

𝐹

≥ 𝜇



𝜕𝐸
𝑗

𝜕𝑊
𝑗



2

𝐹

− ‖𝐼‖
𝐹

= 𝜇



𝜕𝐸
𝑗

𝜕𝑊
𝑗



2

𝐹

− N.

(33)

In accordance with 0 < 𝜇 < 1, we obtain

0 < 𝜇 <
N + 1


𝜕𝐸
𝑗
/𝜕𝑊
𝑗



2

𝐹

. (34)

By calculating (25), we get



𝜕𝐸
𝑗

𝜕𝑊
𝑗



2

𝐹

≤



(

2 (𝐿
1
+ 𝛿
−𝛼

𝐿
2
) ⋅ ⋅ ⋅ 2 (𝐿

1
+ 𝛿
−𝛼

𝐿
2
)

.

.

.
.
.
.

2 (𝐿
1
+ 𝛿
−𝛼

𝐿
2
) ⋅ ⋅ ⋅ 2 (𝐿

1
+ 𝛿
−𝛼

𝐿
2
)

)

M×N



2

𝐹

= 4MN (𝐿
1
+ 𝛿
−𝛼

𝐿
2
)
2

.

(35)

Finally, we have

0 < 𝜇 <
N + 1

4MN (𝐿
1
+ 𝛿−𝛼𝐿

2
)
2
. (36)
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Table 1: Weights (×10
−4) obtained along with the solution of Examples 1, 2, and 3.

𝛼
Example 1 Example 2 Example 3

1 0.7 0.5 1 0.7 0.5 1 0.7 0.5

𝑤
1

4857 6310 6665 8226 9941 8880 5415 4070 5101
𝑤
2

−0506 −3466 −4424 4080 0219 2914 −1589 0680 −1582

𝑤
3

−4434 −2721 −1362 −3468 −0621 −3593 −5771 −5800 −3972

𝑤
4

−3170 −3110 −4990 1680 1372 3715 −1309 −2908 −4142

𝑤
5

1896 4204 5290 −1455 −1468 −3147 3295 3947 6096
𝑤
6

5534 −0926 0222 1895 0482 1372 2815 2901 −0121

𝑤
7

−6316 0182 −2151 −1350 0424 0273 −4609 −4203 −2015

Learning curve

Exact solution
Sample points

1
x

0

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.4

0.6

0.8

1.0

1.2

1.4

y
=
x
2

Figure 1: The learning curve for Example 1.

3.3. Example

3.3.1. Example 1. We first consider the following linear frac-
tional differential equation:

𝐷
𝛼

0+
𝑦 (𝑥) = 𝑥

2

+
2

Γ (3 − 𝛼)
𝑥
2−𝛼

− 𝑦 (𝑥) , (37)

with condition 𝑦(0) = 0. The exact solution is 𝑦(𝑥) = 𝑥
2.

This equation also can be solved by the following methods:
Genetic Algorithm (GA) [21], Grünwald-Letnikov classical
numerical technique (GL) [23], and Particle Swarm Opti-
mization (PSO) algorithm [23]. We set the parameters 𝜇 =

0.001, M = 7, and N = 10 and train the neural network
4500 times, and the weights of the network for Example
1 are given in Table 1. Figure 1 shows that sample points
are on the exact solution curve after training is completed.
Then we check whether the other points also match well
with the exact solution (see Figure 2). From Figure 3 we see
the error values decrease rapidly. Tables 2(a) and 2(b) show
the numerical solutions and accuracy for Example 1 by the
different methods. In this paper, all numerical experiments

1

Inspection curve

x

Exact solution
Checkpoint

0

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.4

0.6

0.8

1.0

1.2

1.4

y
=
x
2

Figure 2: The inspection curve for Example 1.

are done by using LenovoT400, Intel Core 2DuoCPUP8700,
2.53GHz, and Matlab version R2010b. The neural networks
with cosine basis functions have taken about 850 s, but the
other algorithms mentioned above need to run about 2,240 s.

3.3.2. Example 2. We secondly consider the following linear
fractional differential equation:

𝐷
𝛼

0+
𝑦 (𝑥) = cos (𝑥) + 𝑥

−𝛼Cos
1,1−𝛼

(𝑥) − 𝑦 (𝑥) , (38)

with condition 𝑦(0) = 1. The exact solution is 𝑦(𝑥) = cos(𝑥).
We set the parameters 𝜇 = 0.001, M = 7, and N = 10 and
train the neural network 1000 times, and the weights of the
network for Example 2 are given in Table 1. Figures 4, 5, and
6 show that the neural network is still applicable when 𝐶 ̸= 0.
Table 3 shows the exact solution, approximate solution, and
accuracy for Example 2.
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Figure 3: The error curve for Example 1.
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Figure 4: The learning curve for Example 2.

3.3.3. Example 3. We thirdly consider the following nonlin-
ear fractional differential equation:

𝐷
𝛼

0+
𝑦 (𝑥) = 𝑥

6

+
Γ (3.5)

Γ (3.5 − 𝛼)
𝑥
2.5−𝛼

− 𝑥𝑦
2

(𝑥) , (39)

with condition𝑦(0) = 0.The exact solution is𝑦(𝑥) = 𝑥
5/2.We

set the parameters 𝜇 = 0.001,M = 7, andN = 10 and train
the neural network 1000 times, and theweights of the network
for Example 2 are given in Table 1. Table 4 shows the exact
solution, approximate solution, and accuracy for Example 3.
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Figure 5: The inspection curve for Example 2.
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Figure 6: The error curve for Example 2.

3.4. The Second Neural Network. To describe the method, we
consider (3) with initial conditions 𝑦(0) = 𝐶

1
and 𝑧(0) = 𝐶

2
.

The 𝑗th trial solutions for the problem are written as

𝑦
𝑗
(𝑥) =

M

∑

𝑖=1

𝑤
𝑖,𝑗
cos (𝑖𝑥)

+ (𝐶
1
−

M

∑

𝑖=1

𝑤
𝑖,𝑗
) cos ((M + 1) 𝑥) ,

𝑧
𝑗
(𝑥) =

M

∑

𝑖=1

𝑞
𝑖,𝑗
cos (𝑖𝑥)

+ (𝐶
2
−

M

∑

𝑖=1

𝑞
𝑖,𝑗
) cos ((M + 1) 𝑥) ,

(40)
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Table 2: (a) Comparison of results for the solution of Example 1 for 𝛼 = 0.5. (b) Comparison of results for the solution of Example 1 for
𝛼 = 0.75.

(a)

𝑥 𝑦(𝑥)
Numerical solution Accuracy

GL PSO GA NU GL PSO GA NU
0.1 0.01 0.0101 10

−4

0.2 0.04 0.0401 0.0404 0.0396 0.0407 10
−4

10
−4

10
−4

10
−4

0.3 0.09 0.0901 0.0907 0.0917 10
−4

10
−4

10
−3

0.4 0.16 0.1601 0.1604 0.1596 0.1621 10
−4

10
−4

10
−4

10
−3

0.5 0.25 0.2501 0.2496 0.2505 10
−4

10
−4

10
−4

0.6 0.36 0.3602 0.3583 0.3573 0.3571 10
−3

10
−3

10
−3

10
−3

0.7 0.49 0.4902 0.4869 0.4853 10
−3

10
−3

10
−3

0.8 0.64 0.6402 0.6362 0.6352 0.6397 10
−3

10
−3

10
−3

10
−4

0.9 0.81 0.8102 0.8069 0.8186 10
−3

10
−3

10
−3

1 1 0.1001 0.1000 0.1004 0.1003 10
−4

10
−5

10
−4

10
−3

(b)

𝑥 𝑦(𝑥)
Numerical solution Accuracy

GL PSO NU GL PSO NU
0.1 0.01 0.0107 0.0103 0.0092 10

−4

10
−4

10
−4

0.2 0.04 0.0413 0.0414 0.0377 10
−3

10
−3

10
−3

0.3 0.09 0.0918 0.0928 0.0875 10
−3

10
−3

10
−3

0.4 0.16 0.1622 0.1636 0.1592 10
−3

10
−3

10
−4

0.5 0.25 0.2527 0.2538 0.2511 10
−3

10
−3

10
−3

0.6 0.36 0.3631 0.3631 0.3609 10
−3

10
−3

10
−4

0.7 0.49 0.4934 0.4918 0.4884 10
−3

10
−3

10
−3

0.8 0.64 0.6438 0.6402 0.6373 10
−3

10
−4

10
−3

0.9 0.81 0.8141 0.8091 0.8106 10
−3

10
−4

10
−4

1 1 1.0044 0.9991 1.0020 10
−3

10
−4

10
−3

Table 3: Exact solution, approximate solution, and accuracy for
Example 2.

𝛼 Numerical solution Accuracy
𝑥 cos(𝑥) 1 0.7 0.5 1 0.7 0.5

0.1 0.9950 0.9945 0.9967 0.9972 10
−4

10
−3

10
−3

0.2 0.9800 0.9788 0.9852 0.9867 10
−3

10
−3

10
−3

0.3 0.9553 0.9538 0.9620 0.9638 10
−3

10
−3

10
−3

0.4 0.9210 0.9203 0.9249 0.9256 10
−4

10
−3

10
−3

0.5 0.8775 0.8777 0.8758 0.8747 10
−4

10
−3

10
−3

0.6 0.8253 0.8254 0.8196 0.8176 10
−4

10
−3

10
−3

0.7 0.7648 0.7639 0.7607 0.7601 10
−4

10
−3

10
−3

0.8 0.6967 0.6951 0.6990 0.7016 10
−3

10
−3

10
−3

0.9 0.6216 0.6213 0.6286 0.6328 10
−4

10
−3

10
−2

1 0.5403 0.5414 0.5414 0.5405 10
−3

10
−3

10
−4

where N represents the number of sample points and 𝑤
𝑖,𝑗

and 𝑞
𝑖,𝑗
are unknown weights of the network determined in

training procedures to reduce error function:

𝐽
𝑦+𝑧

=
1

2


𝐸
𝑦+𝑧

𝑗



2

2

=
1

2

N

∑

𝑘=1

(𝑒
𝑦

𝑗
(𝑘))
2

+
1

2

N

∑

𝑘=1

(𝑒
𝑧

𝑗
(𝑘))
2

, (41)

Table 4: Exact solution, approximate solution, and accuracy for
Example 3.

𝛼 Numerical solution Accuracy
𝑥 𝑥

5/2

1 0.7 0.5 1 0.7 0.5

0.1 0.0031 0.0022 0.0055 0.0066 10
−4

10
−3

10
−3

0.2 0.0178 0.0133 0.0234 0.0266 10
−3

10
−3

10
−3

0.3 0.0492 0.0426 0.0566 0.0603 10
−3

10
−3

10
−3

0.4 0.1011 0.0972 0.1075 0.1093 10
−3

10
−3

10
−3

0.5 0.1767 0.1773 0.1783 0.1772 10
−4

10
−3

10
−4

0.6 0.2788 0.2797 0.2733 0.2711 10
−4

10
−3

10
−3

0.7 0.4099 0.4055 0.4010 0.4009 10
−3

10
−3

10
−3

0.8 0.5724 0.5643 0.5712 0.5738 10
−3

10
−3

10
−3

0.9 0.7684 0.7670 0.7832 0.7847 10
−3

10
−2

10
−2

1 1 1.0064 1.0105 1.0056 10
−3

10
−2

10
−3

where

𝐸
𝑦+𝑧

𝑗
= (𝑒
𝑦

𝑗
(1) , 𝑒
𝑦

𝑗
(2) , . . . , 𝑒

𝑦

𝑗
(N) , 𝑒

𝑧

𝑗
(1) , 𝑒
𝑧

𝑗
(2) , . . . ,

𝑒
𝑧

𝑗
(N))
𝑇

,

𝑒
𝑦

𝑗
(𝑘) = 𝑓 (𝑥

𝑘
, 𝑦
𝑗
(𝑥
𝑘
) , 𝑧
𝑗
(𝑥
𝑘
)) − 𝐷

𝛼

0+
𝑦
𝑗
(𝑥
𝑘
)
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= 𝑓 (𝑥
𝑘
, 𝑦
𝑗
(𝑥
𝑘
) , 𝑧
𝑗
(𝑥
𝑘
))

− 𝑥
−𝛼

(

M

∑

𝑖=1

𝑤
𝑖,𝑗
Cos
1,1−𝛼

(𝑖𝑥
𝑘
) + (𝐶

1
−

M

∑

𝑖=1

𝑤
𝑖,𝑗
)

⋅Cos
1,1−𝛼

((M + 1) 𝑥
𝑘
)) ,

𝑒
𝑧

𝑗
(𝑘) = 𝑔 (𝑥

𝑘
, 𝑦
𝑗
(𝑥
𝑘
) , 𝑧
𝑗
(𝑥
𝑘
)) − 𝐷

𝛼

0+
𝑧
𝑗
(𝑥
𝑘
)

= 𝑔 (𝑥
𝑘
, 𝑦
𝑗
(𝑥
𝑘
) , 𝑧
𝑗
(𝑥
𝑘
))

− 𝑥
−𝛼

(

M

∑

𝑖=1

𝑞
𝑖,𝑗
Cos
1,1−𝛼

(𝑖𝑥
𝑘
) + (𝐶

2
−

M

∑

𝑖=1

𝑞
𝑖,𝑗
)

⋅Cos
1,1−𝛼

((M + 1) 𝑥
𝑘
)) .

(42)

Then we adjust the weights 𝑤
𝑖,𝑗
and 𝑞
𝑖,𝑗
by the following two

equations:

𝑤
𝑖,𝑗+1

= 𝑤
𝑖,𝑗

+ Δ𝑤
𝑖,𝑗
,

𝑞
𝑖,𝑗+1

= 𝑞
𝑖,𝑗

+ Δ𝑞
𝑖,𝑗
,

(43)

where

Δ𝑤
𝑖,𝑗

= −𝜇
𝜕𝐽
𝑦+𝑧

𝜕𝑤
𝑖,𝑗

= −𝜇(

N

∑

𝑘=1

𝜕𝐽
𝑦+𝑧

𝜕𝑒
𝑦

𝑗
(𝑘)

𝜕𝑒
𝑦

𝑗
(𝑘)

𝜕𝑤
𝑖,𝑗

+

N

∑

𝑘=1

𝜕𝐽
𝑦+𝑧

𝜕𝑒
𝑧

𝑗
(𝑘)

𝜕𝑒
𝑧

𝑗
(𝑘)

𝜕𝑤
𝑖,𝑗

) = −𝜇

N

∑

𝑘=1

𝑒
𝑦

𝑗
(𝑘)

⋅ (𝑓
𝑦
(𝑥
𝑘
, 𝑦
𝑗
(𝑥
𝑘
) , 𝑧
𝑗
(𝑥
𝑘
))

⋅ (cos (𝑥
𝑘
) − cos ((M + 1) 𝑥

𝑘
)) − (𝑥

𝑘
)
(−𝛼)

⋅ (Cos
1,1−𝛼

𝑥
𝑘
− Cos

1,1−𝛼
((M + 1) 𝑥

𝑘
)))

− 𝜇

N

∑

𝑘=1

𝑒
𝑧

𝑗
(𝑘) 𝑔
𝑦
(𝑥
𝑘
, 𝑦
𝑗
(𝑥
𝑘
) , 𝑧
𝑗
(𝑥
𝑘
))

⋅ (cos (𝑥
𝑘
) − cos ((M + 1) 𝑥

𝑘
)) ,

Δ𝑞
𝑖,𝑗

= −𝜇
𝜕𝐽
𝑦+𝑧

𝜕𝑞
𝑖,𝑗

= −𝜇(

N

∑

𝑘=1

𝜕𝐽
𝑦+𝑧

𝜕𝑒
𝑧

𝑗
(𝑘)

𝜕𝑒
𝑧

𝑗
(𝑘)

𝜕𝑞
𝑖,𝑗

+

N

∑

𝑘=1

𝜕𝐽
𝑦+𝑧

𝜕𝑒
𝑦

𝑗
(𝑘)

𝜕𝑒
𝑦

𝑗
(𝑘)

𝜕𝑞
𝑖,𝑗

) = −𝜇

N

∑

𝑘=1

𝑒
𝑧

𝑗
(𝑘)

⋅ (𝑔
𝑧
(𝑥
𝑘
, 𝑦
𝑗
(𝑥
𝑘
) , 𝑧
𝑗
(𝑥
𝑘
))

⋅ (cos (𝑥
𝑘
) − cos ((M + 1) 𝑥

𝑘
)) − (𝑥

𝑘
)
(−𝛼)

⋅ (Cos
1,1−𝛼

𝑥
𝑘
− Cos

1,1−𝛼
((M + 1) 𝑥

𝑘
)))

− 𝜇

N

∑

𝑘=1

𝑒
𝑦

𝑗
(𝑘) 𝑓
𝑧
(𝑥
𝑘
, 𝑦
𝑗
(𝑥
𝑘
) , 𝑧
𝑗
(𝑥
𝑘
)) (cos (𝑥

𝑘
)

− cos ((M + 1) 𝑥
𝑘
)) .

(44)

3.5. Convergence of the Algorithm

Theorem B. Let 𝜇 represent learning rate, letN represent the
number of sample points, and let M represent the number of
neurons:𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥N), 𝛿 < 𝑥

𝑖
< 1, 1 ≤ 𝑖 ≤ N. Suppose

|𝑓
𝑦
| ≤ 𝐿
𝑦

1
, |𝑓
𝑧
| ≤ 𝐿
𝑧

1
, |𝑔
𝑦
| ≤ 𝐿
𝑦

3
, |𝑔
𝑧
| ≤ 𝐿
𝑧

3
, |Cos

1,1−𝛼
(𝑥)| ≤ 𝐿

2

on the interval (𝛿, 1) for 0 < 𝛿 < 1. Then the neural network is
convergent on the interval (𝛿, 1) when

0

< 𝜇

<
2N + 1

4MN ((𝐿
𝑦

1
+ 𝐿
𝑦

3
+ 𝛿−𝛼𝐿

2
)
2

+ (𝐿
𝑧

1
+ 𝐿
𝑧

3
+ 𝛿−𝛼𝐿

2
)
2

)

.

(45)

Proof. Let 𝑊𝑦+𝑧
𝑗

= (𝑤
1𝑗
, 𝑤
2𝑗
, . . . , 𝑤M𝑗, 𝑞1𝑗, 𝑞2𝑗, . . . , 𝑞M𝑗), and

then we denote 𝑦
𝑗
(𝑋) and 𝑧

𝑗
(𝑋) by

𝑦
𝑗
(𝑋) = 𝑊

𝑦+𝑧

𝑗
𝐺
1,0

+ (𝐶
1
− 𝑊
𝑦+𝑧

𝑗
𝐼
1,0

1
) cos ((M + 1)𝑋) ,

(46)

𝑧
𝑗
(𝑋) = 𝑊

𝑦+𝑧

𝑗
𝐺
0,1

+ (𝐶
2
− 𝑊
𝑦+𝑧

𝑗
𝐼
0,1

1
) cos ((M + 1)𝑋) ,

(47)

respectively, where

𝐸
𝑦+𝑧

𝑗
= (𝑒
𝑦

𝑗
(1) , 𝑒
𝑦

𝑗
(2) , . . . , 𝑒

𝑦

𝑗
(N) , 𝑒

𝑧

𝑗
(1) , 𝑒
𝑧

𝑗
(2) , . . . ,

𝑒
𝑧

𝑗
(N)) = (𝑓 (𝑋, 𝑦

𝑗
(𝑋) , 𝑧

𝑗
(𝑋)) − 𝐷

𝛼

0+
𝑦
𝑗
(𝑋) ,

𝑔 (𝑋, 𝑦
𝑗
(𝑋) , 𝑧

𝑗
(𝑋)) − 𝐷

𝛼

0+
𝑧
𝑗
(𝑋)) = 𝑓 (𝑋,

𝑦
𝑗
(𝑋) , 𝑧

𝑗
(𝑋)) − 𝑋

𝛼

(𝑊
𝑦+𝑧

𝑗
𝐻
1,0

+ (𝐶
1
− 𝑊
𝑦+𝑧

𝑗
𝐼
1,0

1
)Cos
1,1−𝛼

((M + 1)𝑋)) + 𝑔 (𝑋,

𝑦
𝑗
(𝑋) , 𝑧

𝑗
(𝑋)) − 𝑋

𝛼

(𝑊
𝑦+𝑧

𝑗
𝐻
0,1

+ (𝐶
2
− 𝑊
𝑦+𝑧

𝑗
𝐼
0,1

1
)Cos
1,1−𝛼

((M + 1)𝑋)) ,
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𝐻
1,0

= (Cos
1,1−𝛼

(𝑋) ,Cos
1,1−𝛼

(2𝑋) , . . . ,

Cos
1,1−𝛼

(M𝑋) ,

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)

𝑇

,

𝐻
0,1

= (

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0,Cos

1,1−𝛼
(𝑋) ,Cos

1,1−𝛼
(2𝑋) , . . . ,

Cos
1,1−𝛼

(M𝑋))

𝑇

,

𝐺
1,0

= (cos (𝑋) , cos (2𝑋) , . . . , cos (M𝑋) ,

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)

𝑇

,

𝐺
0,1

= (

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0, cos (𝑋) , cos (2𝑋) , . . . ,

cos (M𝑋))

𝑇

,

𝐼
1,0

1
= (

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, 1, . . . , 1,

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)

𝑇

,

𝐼
0,1

1
= (

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0,

M
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, 1, . . . , 1)

𝑇

.

(48)

Then we have

𝜕𝐸
𝑦+𝑧

𝑗

𝜕𝑊
𝑦+𝑧

𝑗

= 𝑓
𝑦
(𝐺
1,0

− 𝐼
1,0

1
cos ((M + 1)𝑋))

+ 𝑓
𝑧
(𝐺
0,1

− 𝐼
0,1

1
cos ((M + 1)𝑋))

− 𝑋
𝛼

(𝐻
1,0

− 𝐼
1,0

1
Cos
1,1−𝛼

((M + 1)𝑋))

+ 𝑔
𝑧
(𝐺
0,1

− 𝐼
0,1

1
cos ((M + 1)𝑋))

+ 𝑔
𝑦
(𝐺
1,0

− 𝐼
1,0

1
cos ((M + 1)𝑋))

− 𝑋
𝛼

(𝐻
0,1

− 𝐼
0,1

1
Cos
1,1−𝛼

((M + 1)𝑋)) . (49)

Define Lyapunov function 𝑉
𝑦+𝑧

𝑗
= (1/2)‖𝐸

𝑦+𝑧

𝑗
‖
2

2
; then simi-

larly to the proof of Theorem A we get

0 < 𝜇 <
2N + 1


𝜕𝐸
𝑦+𝑧

𝑗
/𝜕𝑊
𝑦+𝑧

𝑗



2

𝐹

. (50)

By simply calculating 𝜕𝐸
𝑦+𝑧

𝑗
/𝜕𝑊
𝑦+𝑧

𝑗
, we have



𝜕𝐸
𝑦+𝑧

𝑗

𝜕𝑊
𝑦+𝑧

𝑗



2

𝐹

≤



2(

A ⋅ ⋅ ⋅ A B ⋅ ⋅ ⋅ B

.

.

.
.
.
.

.

.

.
.
.
.

A ⋅ ⋅ ⋅ A B ⋅ ⋅ ⋅ B

)

M×2N



2

𝐹

= 4MN (A
2

+ B
2

) ,

(51)

whereA = 𝐿
𝑦

1
+ 𝐿
𝑦

3
+ 𝛿
−𝛼

𝐿
2
andB = 𝐿

𝑧

1
+ 𝐿
𝑧

3
+ 𝛿
−𝛼

𝐿
2
, and

finally we obtain

0

< 𝜇

<
2N + 1

4MN ((𝐿
𝑦

1
+ 𝐿
𝑦

3
+ 𝛿−𝛼𝐿

2
)
2

+ (𝐿
𝑧

1
+ 𝐿
𝑧

3
+ 𝛿−𝛼𝐿

2
)
2

)

.

(52)

This completes the proof.

3.6. Example

3.6.1. Example 4. We first consider the following linear cou-
pled fractional differential equations:

𝐷
𝛼

0+
𝑦 (𝑥) = 𝑥

2

+ 𝑥
3

+
2

Γ (3 − 𝛼)
𝑥
2−𝛼

− 𝑦 (𝑥) − 𝑧 (𝑥) ,

0 < 𝑥 ≤ 1, 0 < 𝛼 ≤ 1,

𝐷
𝛼

0+
𝑧 (𝑥) = 𝑥

2

+ 𝑥
3

+
6

Γ (4 − 𝛼)
𝑥
3−𝛼

− 𝑦 (𝑥) − 𝑧 (𝑥) ,

(53)

with initial condition as follows:

𝑦 (0) = 0,

𝑧 (0) = 0.

(54)

The exact solution is 𝑦(𝑥) = 𝑥
2 and 𝑧(𝑥) = 𝑥

3. We set the
parameters 𝛼 = 0.9, 𝜇 = 0.001,M = 7, andN = 10 and train
the neural network 2000 times, and the weights of the
network for Example 4 are given in Table 5. Figures 7 and
8 show that the sample points and checkpoints are in well
agreement with the exact solutions for the problem. Figure 9
shows that the error of the numerical solutions decreases
rapidly within the first 50 training times. Table 6 shows
the exact solution, approximate solution, and accuracy for
Example 4.
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Table 5: Weights obtained along with the solution of Examples 4

and 5.

𝛼 = 0.9 Example 4 Example 5

𝑤
1
/𝑞
1

0.5307/0.4494 0.8215/0.7682

𝑤
2
/𝑞
2

−0.0592/0.0013 0.3545/ − 0.7084

𝑤
3
/𝑞
3

−0.6414/ − 0.7451 −0.1512/ − 0.2292

𝑤
4
/𝑞
4

0.0052/ − 0.0392 −0.1342/ − 0.1116

𝑤
5
/𝑞
5

0.0559/0.3705 0.1657/0.3582

𝑤
6
/𝑞
6

0.3998/0.2282 −0.0815/0.0781

𝑤
7
/𝑞
7

−0.4141/ − 0.4014 0.0533/ − 0.2259
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Figure 7: The learning curve for Example 4.

3.6.2. Example 5. We second consider the following nonlin-
ear fractional coupled differential equations:

𝐷
𝛼

0+
𝑦 (𝑥) = 𝑥

6

+ cos (𝑥) +
6

Γ (4 − 𝛼)
𝑥
3−𝛼

− (𝑦 (𝑥))
2

− 𝑧 (𝑥) , 0 < 𝑥 ≤ 1, 0 < 𝛼 ≤ 1,

𝐷
𝛼

0+
𝑧 (𝑥) = 𝑥

3

+ cos (𝑥) + 𝑥
−𝛼Cos

1,1−𝛼
(𝑥) − 𝑦 (𝑥)

− 𝑧 (𝑥) ,

(55)

with initial conditions as follows:

𝑦 (0) = 0,

𝑧 (0) = 1,

(56)

The exact solution is 𝑦(𝑥) = 𝑥
3 and 𝑧(𝑥) = cos(𝑥). We set

the parameters 𝛼 = 0.9, 𝜇 = 0.001, M = 7, and N = 10.
Numerical solutions in Table 7 show that this network can
also be applied to the nonlinear fractional coupled differential
equations but we need more time to train the network.

Inspection curve
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Figure 8: The inspection curve for Example 4.
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Figure 9: The error curve for Example 4.

4. Conclusion

In this paper, by using the neural network, we obtained the
numerical solutions for single fractional differential equa-
tions and the systems of coupled differential equations of
fractional order. The computer graphics demonstrates that
numerical results are in well agreement with the exact
solutions. In (1), suppose that 𝑓(𝑥, 𝑦(𝑥)) = 𝐴(𝑥) + 𝐵(𝑥)𝑦+

𝐶(𝑥)𝑦
2; then the problem transformed into Fractional Riccati

Equations (Example 3 in this paper). In (3), suppose that
𝑓(𝑥, 𝑦(𝑥)) = 𝑦(𝑥)(𝑟 − 𝑎𝑦(𝑥) − 𝑏𝑧(𝑥)) and 𝑔(𝑥, 𝑧(𝑥)) =

𝑧(𝑥)(−𝑑 + 𝑐𝑦(𝑥)); then the problem transformed into
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Figure 10: The graphics of the function Cos
𝛼,1−𝛼

(𝑥).

Table 6: Exact solution, approximate solution, and accuracy for
Example 4.

𝛼 = 0.9 Numerical solution Accuracy
𝑥 𝑦(𝑥) 𝑧(𝑥) 𝑦(𝑥) 𝑧(𝑥) 𝑦(𝑥) 𝑧(𝑥)

0.1 0.01 0.001 0.0101 0.0020 10
−4

10
−3

0.2 0.04 0.008 0.0408 0.0104 10
−4

10
−3

0.3 0.09 0.027 0.0926 0.0301 10
−3

10
−3

0.4 0.16 0.064 0.1641 0.0664 10
−3

10
−3

0.5 0.25 0.125 0.2529 0.1233 10
−3

10
−3

0.6 0.36 0.216 0.3584 0.2071 10
−3

10
−3

0.7 0.49 0.343 0.4847 0.3290 10
−3

10
−2

0.8 0.64 0.512 0.6389 0.5033 10
−3

10
−3

0.9 0.81 0.729 0.8215 0.7361 10
−2

10
−3

1 1 1 1.0126 1.0076 10
−2

10
−3

fractional-order Lotka-Volterra predator-prey system. We
will consider this problem in another paper. The neural net-
work is a powerful method and is effective for the above two
problems, which should be also able to solve fractional partial
differential equations.
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