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A nonsmooth neuron model with periodic excitation which can reproduce spiking and bursting behavior of cortical neurons is
investigated in this paper. Based on nonsmooth bifurcation analysis, the mechanism of the bursting behavior induced by slow-
changing periodical stimulation as well as the associated evolution with the variation of the stimulation is explored.Themodulating
character of the external excitation and the effect of the bifurcation occurring at the switching boundary of the vector field are
presented.

1. Introduction

Recently, understanding of the brain and its behavior has
been a research focus for its importance and various appli-
cations. As primary building blocks of brain, innumerable
neurons compose the very complex information network.
It can encode, transfer, and integrate information by firing
activities [1]. Therefore, deep exploration of single neuron’s
behavior is necessary to reveal how brain works.

The neuron is one of the most sophisticated nonlinear
dynamical systems. A series of dynamical models which
can describe the corresponding action potential shapes for
different neuronal cell types has been developed [2–4]. In
general, these models can be assigned to two classes [5]. One
category are conductance-based models with high dimen-
sional and high biological precision such as Hodgkin-Huxley
and Morris-Lecar models. These models can imitate most
experimental measurements to a high degree of accuracy,
but they are mostly complicated and difficult to physically
implement [6]. The second are one-dimensional integrate-
and-fire (IF) type models, which are often advocated since
they are easy to analyze. However, they do not quite capture
the dynamics of a truly excitable systemwith gating variables.
Thus it is natural to search for planar models possessing

one voltage and one gating variable that can mimic the
behavior of high dimensional conductance-basedmodels [7].
The FitzHugh-Nagumo model is a typical example. And
piecewise linear (PWL) nullcline is introduced inspired by
this to build a series of PWL models that can describe the
dynamical behavior of many common cell types, such as
rich spiking and bursting dynamics [8, 9]. Although many
conclusions have been achieved, most work is confined to
the autonomous case. Period sensory irritation is common in
natural environment yet [10], and the periodical stimulation
is confirmed to have an effect on information handling in the
cortex on larger scale compared with aperiodic one [11].

To explore the influences of periodical stimulation on
the dynamical behavior of the neuron, a two-dimensional
PWL neuron model is discussed in this paper. We tackle the
case with slowly varying periodic excitation and investigate
the evolution of the bursting dynamics based on bifurcation
analysis.

2. The PWL Model and Periodic Bursting

This model is developed from a PWL modification of the
Izhikevich model [1], which approximates the quadratic part
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Figure 1: Periodic bursting and time series of system (1) for (a) 𝐼
0
= 1.0 and (b) 𝐼

0
= 1.4.

of the Izhikevich model with two crossed lines [12]. This
approximation can be formulated as

V̇ = 𝑘
1

󵄨󵄨󵄨󵄨V + 𝑘
2

󵄨󵄨󵄨󵄨 − 𝑘
3
− 𝑢 + 𝐼,

𝑢̇ = 𝑎 (𝑏V − 𝑢) ,

(1)

where V represents themembrane potential of the neuron and
u represents a membrane recovery variable, which accounts
for the activation of K+ ionic currents and inactivation of
Na+ ionic currents and it provides negative feedback to V.
Parameters 𝑎 and 𝑏 are constant values, describing neuron
type. 𝑘

1
, 𝑘
2
, and 𝑘

3
are constant values also [12].

Here, we focus on the case with a periodic stimulation;
that is, the stimulation in model (1) is set as 𝐼 = 𝐼

0
cos(𝜔

0
𝑡).

In order to reveal the dynamical behaviors of this system
under the influence of stimulation, the parameters are fixed
at 𝑎 = 1.8, 𝑏 = 2.06, 𝑘

1
= 2.8, 𝑘

2
= 3.0, and 𝑘

3
= 7.5, and

the value of the angular frequency of the stimulation is set at

𝜔
0
= 0.02. With the amplitude of the simulation being seen

as a modulating parameter, the periodic bursting for 𝐼
0
= 1.0

and 𝐼
0
= 1.4 can be observed by numerical simulation (seen

in Figure 1), the oscillating amplitude of which is noticed to
be amplified with the increase of 𝐼

0
and the duration time of

spiking state is longer in the case that 𝐼
0
= 1.4.

Remark 1. The transient states in these two cases are both
eliminated.

Demonstrated as the red curve in Figure 1(a), time-
dependence of the stimulation is superimposed on the time
series of V to investigate the internal connection. It could be
seen obviously that the transition between a rest state and a
spiking state of the model is closely related to the variation
of the periodic stimulation. In other words, the variable V
in system (1) oscillates with two frequencies and the value
of the small one depends on the frequency of the periodic
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stimulation. In the following, mechanisms of the behavior
presented above will be discussed quantitatively based on
bifurcation analysis.

3. Nonsmooth Bifurcation Mechanism

System (1) is a nonautonomous system since the value of
𝐼 changes periodically with 𝑡. Based on dynamical system
theory, any 𝑛-dimensional nonautonomous system, that is,
𝑥̇
𝑖
= 𝑓
𝑖
(𝑡, 𝑥
1
, . . . , 𝑥

𝑛
), 𝑖 = 1, . . . , 𝑛, can be transformed into

a (𝑛+1)-dimensional autonomous system which is described
as system (2) by introducing a variable quantity 𝜃 = 𝜃(𝑡) = 𝑡:

𝑥̇
𝑖
= 𝑓
𝑖
(𝜃, 𝑥
1
, . . . , 𝑥

𝑛
) , 𝑖 = 1, . . . , 𝑛,

𝜃̇ = 1.

(2)

Thus, system (1) could be written in an autonomous form,
namely (3)–(5), by introducing the transformation 𝜔

0
𝑡 = 𝜃,

where 0 < 𝜔
0
≪ 1 for the slowly varying periodic excitation:

V̇ = 𝑘
1

󵄨󵄨󵄨󵄨V + 𝑘
2

󵄨󵄨󵄨󵄨 − 𝑘
3
− 𝑢 + 𝐼

0
cos (𝜃) , (3)

𝑢̇ = 𝑎 (𝑏V − 𝑢) , (4)

𝜃̇ = 𝜔
0
. (5)

Since the value of𝜔
0
is small, (5) represents dynamics of a

relatively slowly changing process while (3) and (4) describe
the relatively fast ones. The full system can be divided into
slow and fast subsystems. The slow subsystem is given by
(5), while the fast subsystem is given by (3) and (4). Thus 𝜃
and even 𝐼 = 𝐼

0
cos(𝜃) could be treated as a slow-varying

parameter of the fast subsystem. That is, the fast subsystem
is an autonomous system at a certain moment which could
be described as follows:

V̇ = 𝑘
1
𝑓 (V) − 𝑘

3
− 𝑢 + 𝐼

0
,

𝑢̇ = 𝑎 (𝑏V − 𝑢) ,

(6)

where 𝑓(V) = {−V − 𝑘
2
, V < −𝑘

2
; V + 𝑘

2
, V > −𝑘

2
} and 𝐼

0
is a

fixed parameter.
For this PWL autonomous system, one switching bound-

ary exists, denoted by ∑ : V = −𝑘
2
. Thus, two cases of

equilibria can be obtained for a given value of 𝐼
0
, which can

be expressed as

𝐸
1
: {V = −

𝑘
1
𝑘
2
+ 𝑘
3
− 𝐼
0

𝑏 + 𝑘
1

, 𝑢 = −
𝑏 (𝑘
1
𝑘
2
+ 𝑘
3
− 𝐼
0
)

𝑏 + 𝑘
1

} ,

for V < −𝑘
2
,

𝐸
2
: {V =

𝑘
1
𝑘
2
+ 𝑘
3
− 𝐼
0

𝑏 + 𝑘
1

, 𝑢 =
𝑏 (𝑘
1
𝑘
2
+ 𝑘
3
− 𝐼
0
)

𝑏 + 𝑘
1

} ,

for V > −𝑘
2
.

(7)

Further analysis indicates that the number of equilibrium
points is not constant under the above parameters due to
piecewise linearity of 𝑓(V). Specifically speaking, there is a
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Figure 2: Distribution of the equilibria of system (6) with different
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.

critical value of 𝐼
0
; that is, two equilibria could be observed

for 𝐼
0
< 1.32, only one equilibrium could be found for 𝐼

0
=

1.32, and no equilibrium could be obtained for 𝐼
0
> 1.32.

For example, Figure 2 shows the distribution of the equilibria
with a few different values of 𝐼

0
.

The stabilities of these equilibria of the associated
autonomous systems are determined by the eigenvalues of
the related linearization matrix. Here, we take the case of
𝐼
0

= 1.0 as an example. The equilibria are calculated as
𝐸
1
{−3.0658, −6.3156} and𝐸

2
{−2.5676, −5.2892}.The stability

of 𝐸
1
and 𝐸

2
is determined by the eigenvalues of 𝐽

1
and 𝐽
2
,

respectively, which are expressed as follows with the above
parameters:

𝐽
1
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑘
1
−1

𝑎𝑏 −𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−2.8 −1

3.708 −1.8

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(8)

with eigenvalues 𝜆
1
= −2.3 + 1.8596𝑖 and 𝜆

2
= −2.3 + 1.8596𝑖

and

𝐽
2
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘
1
−1

𝑎𝑏 −𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2.8 −1

3.708 −1.8

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(9)

with eigenvalues 𝜆󸀠
1
= 1.7578 and 𝜆󸀠

2
= −0.7578.

Obviously, the equilibrium point 𝐸
1
is a stable focus,

while 𝐸
2
is an unstable node.

Now we focus on the full system (3)–(5) which is
equivalent to system (1) describing the nonautonomous case.
From the analysis above, though the initial system (1) is a
nonautonomous system, it can be regarded as an autonomous
one at any certain moment and the associated solution for
which at the moment still could be described as formula
(7). What is special is that the value of 𝐼

0
in (7) is variable

periodically and the solution will vary with it. That is, the
full system, as well as system (1), could be regarded as a
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“generalized autonomous system” and the related solution
could be regarded as a “generalized equilibrium point” as
well [13]. Next, we investigate the evolution mechanism of
this periodic bursting via bifurcation of these “generalized
equilibria.”

Due to the linear structure of the system, though nons-
mooth, the generalized solution for system (1) can be assumed
as the following form and the related coefficient can be
calculated by substituting this “solution” into system (1):

{(V, 𝑢) | V = 𝑐
11
sin (𝜃) + 𝑐

12
cos (𝜃) + 𝑐

10
, 𝑢

= 𝑐
21
sin (𝜃) + 𝑐

22
cos (𝜃) + 𝑐

20
} , where 𝜃 = 𝜔

0
𝑡.

(10)

The details can be described as follows:

(1) For V < −𝑘
2

𝑐
11

=

(𝑎
2
− 𝑎𝑏 + 𝜔

2

0
) 𝜔
0
𝐼
0

(𝑎2𝑏2 + 2𝑎2𝑏𝑘
1
+ 𝑎2𝑘
2

1
+ 𝑎2𝜔

2

0
− 2𝑎𝑏𝜔

2

0
+ 𝑘
2

1
𝜔
2

0
+ 𝜔
4

0
)
,

𝑐
12

=

𝐼
0
(𝑎
2
𝑏 + 𝑎
2
𝑘
1
+ 𝑘
1
𝜔
2

0
)

(𝑎2𝑏2 + 2𝑎2𝑏𝑘
1
+ 𝑎2𝑘
2

1
+ 𝑎2𝜔

2

0
− 2𝑎𝑏𝜔

2

0
+ 𝑘
2

1
𝜔
2

0
+ 𝜔
4

0
)
,

𝑐
21

=
𝜔
0
𝐼
0
𝑎𝑏 (𝑎 + 𝑘

1
)

(𝑎2𝑏2 + 2𝑎2𝑏𝑘
1
+ 𝑎2𝑘
2

1
+ 𝑎2𝜔

2

0
− 2𝑎𝑏𝜔

2

0
+ 𝑘
2

1
𝜔
2

0
+ 𝜔
4

0
)
,

𝑐
22

=

𝐼
0
𝑎𝑏 (𝑎𝑏 + 𝑎𝑘

1
− 𝜔
2

0
)

(𝑎2𝑏2 + 2𝑎2𝑏𝑘
1
+ 𝑎2𝑘
2

1
+ 𝑎2𝜔

2

0
− 2𝑎𝑏𝜔

2

0
+ 𝑘
2

1
𝜔
2

0
+ 𝜔
4

0
)
,

𝑐
10
= −

(𝑘
1
𝑘
2
+ 𝑘
3
)

(𝑏 − 𝑘
1
)

,

𝑐
20
= −

𝑏 (𝑘
1
𝑘
2
+ 𝑘
3
)

(𝑏 + 𝑘
1
)

.

(11)

(2) For V > −𝑘
2

𝑐
11

=

(𝑎
2
− 𝑎𝑏 + 𝜔

2

0
) 𝜔
0
𝐼
0

(𝑎2𝑏2 − 2𝑎2𝑏𝑘
1
+ 𝑎2𝑘
2

1
+ 𝑎2𝜔

2

0
− 2𝑎𝑏𝜔

2

0
+ 𝑘
2

1
𝜔
2

0
+ 𝜔
4

0
)
,

𝑐
12

=

𝐼
0
(𝑎
2
𝑏 − 𝑎
2
𝑘
1
− 𝑘
1
𝜔
2

0
)

(𝑎2𝑏2 − 2𝑎2𝑏𝑘
1
+ 𝑎2𝑘
2

1
+ 𝑎2𝜔

2

0
− 2𝑎𝑏𝜔

2

0
+ 𝑘
2

1
𝜔
2

0
+ 𝜔
4

0
)
,

𝑐
21

=
𝜔
0
𝐼
0
𝑎𝑏 (𝑎 − 𝑘

1
)

(𝑎2𝑏2 − 2𝑎2𝑏𝑘
1
+ 𝑎2𝑘
2

1
+ 𝑎2𝜔

2

0
− 2𝑎𝑏𝜔

2

0
+ 𝑘
2

1
𝜔
2

0
+ 𝜔
4

0
)
,

𝑐
22

=

𝐼
0
𝑎𝑏 (𝑎𝑏 − 𝑎𝑘

1
− 𝜔
2

0
)

(𝑎2𝑏2 − 2𝑎2𝑏𝑘
1
+ 𝑎2𝑘
2

1
+ 𝑎2𝜔

2

0
− 2𝑎𝑏𝜔

2

0
+ 𝑘
2

1
𝜔
2

0
+ 𝜔
4

0
)
,

𝑐
10
=
(𝑘
1
𝑘
2
− 𝑘
3
)

(𝑏 − 𝑘
1
)

,

𝑐
20
=
𝑏 (𝑘
1
𝑘
2
− 𝑘
3
)

(𝑏 − 𝑘
1
)

.

(12)

The “solution” expressed by (10) is just the “generalized
equilibrium point” of the “generalized autonomous system”
mentioned above, the respective stability of which shows
a coincidence with that of the genuine equilibrium of the
associated autonomous system because the expression of the
Jacobian matrixes of the solution is irrelevant to the value of
𝐼. It means that the “solution” is a stable focus for V < −𝑘

2
,

while it is an unstable node for V > −𝑘
2
. The case of 𝐼

0
= 1.0

is still taken as an example.The distribution of the “solutions”
for system (1) is presented in Figure 3, where the red segment
in region (I) denotes the stable “solutions” while the pink
segment in region (II) represents the unstable “solutions.”The
green line 𝑢

𝑛
is the nullcline of 𝑢. Above (below) 𝑢

𝑛
, we have

𝑢̇
𝑛
< 0 (𝑢̇

𝑛
> 0).

Remark 2. The set of the “generalized equilibrium points” is
not straight lines but piecewise curves (seen in the magnifi-
cation of the curves).

It should be pointed out that the classical continuous Jaco-
bian matrix cannot be obtained due to the nonsmoothness
of the vector filed of this system. According to differential
inclusions, we can use the generalized differential of Clarke
to set up a “generalized Jacobian matrix” to explore the
bifurcation of the equilibrium at the switching boundary and
the “generalized Jacobian matrix” of system is expressed by
𝐽
𝐺
(𝑞) = {𝑞𝐽

1
+ (1 − 𝑞)𝐽

2
, ∀𝑞 ∈ [0, 1]} [14]. The eigenvalues of

𝐽
𝐺
(𝑞), denoted by 𝜆

𝐺1,2
, are set-valued and form a path in the

complex plane with 𝑞 as path parameter.
Figure 4 described the path of eigenvalues of the gener-

alized Jacobian at the switching boundary ∑ : V = −3.0 for
𝐼
0
= 1.0, from which it may be found that the eigenvalues

of 𝐽
𝐺
(𝑞) are purely imaginary for 𝑞 = 0.8214. The path

of the eigenvalues of 𝐽
𝐺
(𝑞) shows that discontinuous Hopf

bifurcation occurring at the switching boundary [14]. And
the oscillating frequency generated from this bifurcation is
indicated at 𝜔

𝑡
= 0.665.

Now we explain the mechanism of the periodic bursting
based on nonsmooth bifurcation theory. For this purpose,
the phase portrait shown in Figure 1 is projected onto the
distribution diagram of the “generalized equilibrium” of the
nonautonomous system demonstrated in Figure 3 (shown in
Figure 5).

In Figure 5, the stable “generalized solution” located in
region (I) is observed to match the phase portraits exactly
while the “solution” in region (II) does not agree with the
portraits.
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Figure 3: The “generalized solution” for system (1).
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Figure 4: Set of eigenvalues of the generalized Jacobian of the
system.

The “generalized equilibrium points” are stable ones in
region (I), and they lose their stability at the switching bound-
ary∑with the variation of the value of stimulation 𝐼.Thus the
trajectory diffuses and oscillateswith the frequency generated
from the discontinuous Hopf bifurcation (demonstrated in
Figure 4), which is much higher than that of stimulation. In
other words, this bifurcation leads the system transfer from
rest state to spiking state. Based on the qualitative analysis, the
oscillation of the system in one period is described in detail
quantitatively as follows.

Point 𝑃 located on the portrait in region (I) is set as the
starting point, which is above the nullcline of 𝑢. At this point,
the values of 𝑢 will decrease since 𝑢̇

𝑛
< 0. It means that

the trajectory runs downward at point 𝑃. The anticlockwise
direction of the trajectory can be demonstrated by the time
series plotted in Figure 1.

The orbit may move down exactly along the stable “solu-
tion” with the variation of the stimulation, that is, the angular
frequency 𝜔

0
= 0.02, until it turns around as the stimulation

reaches its extremum value. Then the trajectory continues

to move up along the “stable solution” with the variation of
𝐼. When the orbit crosses the switching boundary ∑, the
stable focus loses its stability through the discontinuousHopf
bifurcation occurring at the boundary.Thus the trajectory no
longer follows the unstable “generalized solutions” in region
(II) but oscillates with the frequency generated from the
bifurcation; namely, 𝜔

𝑡
= 0.665, which approaches the value

𝜔
𝑠
= 2𝜋/11 ≈ 0.571 calculated from the numerical simula-

tion (shown in Figure 1(a)). Note that this passage is much
faster relative to that described previously. It can be called
spiking state while the passage along the “stable solutions” is
the slow rest state. At the same time, the value of stimulation
still varies periodically with its own frequency during this
oscillation process. Thus, the orbit converges with the slowly
varying stimulation until it meets the stable “solution” at the
switching boundary∑.Then the trajectorymoves along these
“solutions” slowly again and another period starts.

We now account for the evolution of the phase portrait
with the increases of the stimulation amplitude.

For the purpose of comparison, Figure 6 presents the par-
tial enlarged structures of the phase portraits for 𝐼

0
= 1.0 and

𝐼
0
= 1.4. For description convenience, a pair of most remote

intersections of the trajectory and the switching boundary,
that is,𝐴

𝑖
and 𝐵

𝑖
(𝑖 = 1, 2), is introduced here. As the analysis

presented above, the stability and dynamical properties of the
“generalized equilibriumpoints” are irrelevant to the external
stimulation. That means that the eigenvalue of the associated
equilibrium points for 𝐼

0
= 1.4 remains the same as that

for 𝐼
0
= 1.0. It is worth pointing out that, with the increase

of the stimulation amplitude, the “equilibrium points” may
disappear when the value of the stimulation exceeds the
threshold 1.32. It leads to the divergency of the orbit to
some extent. Due to the periodicity of the stimulation, the
trajectory still could converge to the “stable solution” again
with the stimulation varying. Thus the oscillation amplitude
for 𝐼
0
= 1.4 is enlarged. Thus, the distance from 𝐴

2
to 𝐵
2
is

larger than that from 𝐴
1
to 𝐵
1
with the increase of 𝐼

0
. On the

other hand, the imaginary parts as well as the real parts of the
complex eigenvalues keep constant for different 𝐼

0
. It means

that the oscillating frequency of the trajectory as well as the
related convergence rate is constant. It is exactly the reason
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Figure 5: Overlap of the “solution” and the phase portraits of system (1).
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Figure 6: Partial enlarged detail of phase portraits of system (1) for (a) 𝐼
0
= 1.0 and (b) 𝐼

0
= 1.4.

for the duration time increase of the spiking state with the
increase of 𝐼

0
.

4. Conclusions

This paper focuses on a nonautonomous piecewise linear
neuron model. Bursting behavior in this system as well as the
associated evolution induced by the slow-varying periodic
stimulation is discussed by means of the dynamical bifurca-
tion analysis. Due to the nonsmoothness of the vector field,
discontinuous Hopf bifurcation occurring at the switching
boundary is pointed out to induce a much higher frequency
relative to the stimulation frequency and to connect the
fast spiking state and the slow quiescent state. Periodic
stimulation is suggested to be an important element related
to bursting phenomenon closely. The method applied in
this paper may be considered as a possible way to analyze
the effects of periodic input on the information processing
pattern of neuron.
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