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We have proved here that the expected number of real zeros of a random hyperbolic polynomial of the form 𝑦 = 𝑃
𝑛
(𝑡) =

√(
𝑛

1
)𝑎
1
cosh 𝑡 + √( 𝑛

2
)𝑎
2
cosh 2𝑡 + ⋅ ⋅ ⋅ + √( 𝑛

𝑛
)𝑎
𝑛
cosh 𝑛𝑡, where 𝑎

1
, . . . , 𝑎

𝑛
is a sequence of standard Gaussian random variables, is

√𝑛/2+𝑜
𝑝
(1). It is shown that the asymptotic value of expected number of times the polynomial crosses the level y = K is also√𝑛/2

as long as 𝐾 does not exceed √2𝑛𝑒𝜇(𝑛), where 𝜇(𝑛) = 𝑜(𝑛). The number of oscillations of 𝑃
𝑛
(𝑡) about 𝑦 = 𝐾 will be less than √𝑛/2

asymptotically only if𝐾 = √2𝑛𝑒𝜇(𝑛), where 𝜇(𝑛) = 𝑂(𝑛) or 𝑛−1𝜇(𝑛) → ∞. In the former case the number of oscillations continues
to be a fraction of √𝑛 and decreases with the increase in value of 𝜇(𝑛). In the latter case, the number of oscillations reduces to
𝑜
𝑝
(√𝑛) and almost no trace of the curve is expected to be present above the level 𝑦 = 𝐾 if 𝜇(𝑛)/(𝑛 log 𝑛) → ∞.

1. Introduction

Let (Ω, 𝐴,Pr) be a fixed probability space and let {𝑎
𝑘
(𝜔)}
𝑗=𝑛

𝑘=1
be a sequence of independent random variables defined on
Ω. The sum 𝑎0(𝜔)𝑓1(𝑡) + 𝑎2(𝜔)𝑓2(𝑡) + ⋅ ⋅ ⋅ + 𝑎𝑛(𝜔)𝑓𝑛(𝑡) is
traditionally known as a random algebraic polynomial if
𝑓
𝑖
(𝑡) = 𝑡

𝑖, a random trigonometric polynomial if 𝑓
𝑖
(𝑡) =

cos(𝑖𝑡) or sin(𝑖𝑡), and a random hyperbolic polynomial if
𝑓
𝑖
(𝑡) = cosh(𝑖𝑡) or sinh(𝑖𝑡). One can have useful information

about the behaviour of these ensembles of polynomials if the
average number of times these polynomials oscillate about
the line 𝑦 = 𝐾 is known.The reader is referred to the book by
Farahmand [1] where an exhaustive account of progressmade
in study of random polynomials has been presented. It is to
be noted that there is significantly more published literature
on random algebraic and random trigonometric polynomials
than that of random hyperbolic polynomials. Let

𝑦 = 𝑄
𝑛
(𝑡) =

𝑛

∑

𝑘=1
𝑎
𝑘
(𝜔) cosh 𝑘𝑡, (1)

where 𝑎
𝑘
(𝜔) are normally distributed random variables with

mean zero and variance one. One knows that Das [2] first
calculated the expected number of real zeros of𝑄

𝑛
(𝑡). Farah-

mand [3] calculated the asymptotic estimate of oscillations
of 𝑄
𝑛
(𝑡) about 𝑦 = 𝐾 if 𝐾 = 𝑜(√𝑛). Some of the other

works in this direction are due to Mahanti [4–6]. Wilkins [7]
determined real zeros of 𝑄

𝑛
(𝑡) when var(𝑎

𝑘
(𝜔)) = 𝑘

𝑝, 𝑝 ≥ 0.
We observe that the asymptotic value of the oscillations of
randomhyperbolic polynomials is (2/𝜋) log 𝑛 in each of these
cases.

One is tempted to ask whether 𝑄
𝑛
(𝑡) has more than

(2/𝜋) log 𝑛 oscillations under certain conditions. In this con-
text, we are reminded of a recent work of Edelman and Kost-
lan [8] where it has been found out that the expected number
of real zeros of random algebraic polynomials increases
significantly if the variance of the coefficients changes from
unity to √( 𝑛

𝑘
). Therefore, we examine what effect this new

assumption on variance of the coefficients has on number of
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oscillations of𝑄
𝑛
(𝑡). In other words, we calculate the number

of oscillations of the polynomial

𝑦 = 𝑃
𝑛
(𝑡) =

𝑛

∑

𝑘=1
𝑎
𝑘
(𝜔)√(

𝑛

𝑘
) cosh 𝑘𝑡, (2)

where 𝑎
𝑘
(𝜔) are normally distributed random variables with

mean zero and variance one.
InTheorem 1we have shown that the number of real zeros

of 𝑃
𝑛
(𝑡) is substantially larger than that of 𝑄

𝑛
(𝑡). Moreover,

there is a significant difference in the way real zeros of
𝑃
𝑛
(𝑡) and 𝑄

𝑛
(𝑡) lie on the 𝑡-axis. Most of the real zeros

of 𝑄
𝑛
(𝑡) are confined to the interval [−1, 1] and there are

negligible numbers of them if |𝑡| > 1 (see [4]). But there
are large numbers of real zeros of 𝑃

𝑛
(𝑡) outside [−1, 1]. This

phenomenon can be deduced from the formula given in (26)
and Lemma 10. In fact, the number of real zeros of𝑃

𝑛
(𝑡) in the

region |𝑡| > 𝛼, 𝛼 > 1/√𝑛, is dependent on 𝛼. The real zeros
decrease in number with increase in 𝛼 in the region |𝑡| > 𝛼
and there are negligible numbers of themonlywhen𝛼 → ∞.

Let 𝜇(𝑛) be any function of 𝑛 such that 𝜇(𝑛)/𝑛 → 0. In
Theorem 2 we have shown that the number of oscillations of
𝑃
𝑛
(𝑡) about the line 𝑦 = 𝐾, where𝐾 ≤ √2𝑛𝑒𝜇(𝑛), is equal to its

axis crossings. Thus, for all these values of𝐾 one can say that
most of the oscillations of 𝑃

𝑛
(𝑡) that cross the 𝑡-axis reach up

to the level 𝑦 = 𝐾. If 𝜇(𝑛) = 𝑂(𝑛) or 𝑛−1𝜇(𝑛) → ∞, we have
proved in the theorem that the asymptotic value of number
of oscillations of 𝑃

𝑛
(𝑡) about 𝑦 = 𝐾 = √2𝑛𝑒𝜇(𝑛) is less than

√𝑛/2. If 𝜇(𝑛) = 𝑂(𝑛) the number of oscillations continues to
be a fraction of√𝑛 and decreases with the increase in value of
𝜇(𝑛). If 𝑛−1𝜇(𝑛) → ∞ the number of oscillations is reduced
to 𝑜
𝑝
(√𝑛). Inequality (35) together with Lemma 14 provides

a glimpse of the manner in which the number of oscillations
decreases with increase in value of 𝐾. Inequality (35) also
shows that there is hardly any trace of the curve 𝑃

𝑛
(𝑡) above

the level 𝑦 = 𝐾 = √2𝑛𝑒𝜇(𝑛) if 𝜇(𝑛)/(𝑛 log 𝑛) → ∞.
Let the coefficients {𝑎

𝑘
(𝜔)}
𝑘=𝑛

𝑘=1 of𝑃𝑛(𝑡) be standard normal
random variables. The expected number of oscillations of
𝑃
𝑛
(𝑡) about the line 𝑦 = 𝐾, 𝑡 ∈ (𝛼, 𝛽), has been denoted by us

as EN
𝑛,𝐾
(𝛼, 𝛽) in the following two theorems.

Theorem 1. For sufficiently large 𝑛,

EN
𝑛,0 (−∞,∞) =

√𝑛

2
+𝑂
𝑝
(𝑛
−1/2 log 𝑛) . (3)

Theorem 2. For sufficiently large 𝑛,
(i) EN

𝑛,𝐾
(−∞,∞) = √𝑛/2 +𝑂

𝑝
(𝑛
−1/2 log 𝑛) if𝐾2

/2𝑛 →
𝑜,

(ii) EN
𝑛,𝐾
(−∞,∞) = √𝑛/2 + (2/√𝜋)erf(𝐾/√2𝑛) +

𝑂
𝑝
(𝑛
−1/2 log 𝑛) if 𝐾2

= 𝑂(2𝑛),

(iii) EN
𝑛,𝐾
(−∞,∞) = √𝑛/2 − 𝑛−1/2𝜇(𝑛)/(2𝜋) + 2/√𝜋 +

𝑂
𝑝
(𝑛
−1/2 log 𝑛) if 𝜇(𝑛)/𝑛 → 0, 𝜇(𝑛) → ∞, and 𝐾 =

√2𝑛𝑒𝜇(𝑛),
(iv) EN

𝑛,𝐾
(−∞,∞) = (√𝑛/𝜋)sin−1(𝑒−𝑛

−1
𝜇(𝑛)

/√2) +
2/√𝜋 + 𝑂

𝑝
(𝑛
−1/2 log 𝑛) if 𝜇(𝑛) = 𝑂(𝑛) and 𝐾 =

√2𝑛𝑒𝜇(𝑛),

(v) EN
𝑛,𝐾
(−∞,∞) = √𝑛𝑒

−𝑛
−1
𝜇(𝑛)

/(2√2) + 2/√𝜋 +

𝑂
𝑝
(𝑛
−1/2 log 𝑛) if 𝜇(𝑛)/𝑛 → ∞ and 𝐾 = √2𝑛𝑒𝜇(𝑛).

Two more differences in behaviour of 𝑃
𝑛
(𝑡) and 𝑄

𝑛
(𝑡) are

noteworthy. In what follows we will find out that most of the
axis crossings of 𝑃

𝑛
(𝑡) reach the level √2𝑛𝑒𝜇(𝑛). However, the

branches of𝑄
𝑛
(𝑡) that cross the axis do not travel beyond 𝑦 =

𝐾, where 𝐾 = 𝑂(√𝑛) (see Mahanti and Sahoo [6]). Almost
all of the polynomial 𝑄

𝑛
(𝑡) lie below the level 𝐾, where

𝑛
−1log(𝐾/√𝑛) → ∞ (Mahanti and Sahoo [6]). However, a

large part of 𝑃
𝑛
(𝑡) stretches above this level.

2. Formula for the Proof of the Theorems

Theproof of the theorem is based on the formula for expected
number of level crossings given by Crammer and Leadbetter
[9, page 285]. Using it for 𝑃

𝑛
(𝑡) − 𝐾 = 0 in the interval (𝛼, 𝛽)

we can show that

EN
𝑛,𝐾
(𝛼, 𝛽) = ∫

𝛽

𝛼

√𝐴
𝑛
𝐶
𝑛
− 𝐵2
𝑛

𝐴
𝑛

𝜙(−
𝐾

√𝐴
𝑛

)

⋅ [2𝜙 (𝜂) + 𝜂 {2Φ(𝜂) − 1}] 𝑑𝑡,

(4)

where𝐴
𝑛
= var{𝑃

𝑛
(𝑡)−𝐾},𝐵

𝑛
= cov[{𝑃

𝑛
(𝑡)−𝐾}, 𝑃

󸀠

𝑛
(𝑡)], 𝐶

𝑛
=

var{𝑃󸀠
𝑛
(𝑡)}, Φ(𝑡) = (1/√2𝜋) ∫𝑡

−∞

exp(−𝑥2/2)𝑑𝑥, 𝜙(𝑡) =

(1/√2𝜋)exp(−𝑥2/2), and 𝜂 = −𝐵
𝑛
𝐾/√𝐴

𝑛
√𝐴
𝑛
𝐶
𝑛
− 𝐵2
𝑛
.

Since the coefficients of 𝑃
𝑛
(𝑡) are independent and var(𝑎

𝑗
) =

√(
𝑛

𝑘
), it is easy to derive using little algebra that

𝐴
𝑛
=

𝑛

∑

𝑘=1
√(

𝑛

𝑘
)cosh2𝑘𝑡 = 2𝑛−1 (cosh 𝑛𝑡 cosh𝑛𝑡 + 1) , (5)

𝐵
𝑛
=
1
2

𝑛

∑

𝑘=1
𝑘√(

𝑛

𝑘
) sinh 2𝑘𝑡 = 2𝑛−2𝑛 sinh (𝑛 + 1) 𝑡

⋅ cosh𝑛−1𝑡,

(6)

𝐶
𝑛
=

𝑛

∑

𝑘=1
𝑘
2
√(

𝑛

𝑘
)sinh2𝑘

= 2𝑛−3 [(𝑛2 cosh (𝑛 + 2) 𝑡 + 𝑛 cosh 𝑛𝑡) cosh𝑛−2𝑡

− 𝑛
2
− 𝑛] .

(7)

Let

𝐷
𝑛
= 𝐴
𝑛
𝐶
𝑛
−𝐵

2
𝑛
= 22𝑛−4 (𝑛2 (cosh2𝑛𝑡 − 1)

+ (𝑛
2
− 𝑛) cosh𝑛−2𝑡 cosh 𝑛𝑡 sinh2𝑡

+ 2𝑛2cosh𝑛−1𝑡 sinh 𝑛𝑡 sinh 𝑡

+ 𝑛 (cosh2𝑛−2𝑡 cosh2𝑛𝑡 − 1)) .

(8)
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Formula (4) now can be written as

EN
𝑛,𝐾
(𝛼, 𝛽) = 𝐼1 (𝛼, 𝛽) + 𝐼2 (𝛼, 𝛽) , (9)

where

𝐼1 (𝛼, 𝛽) =
1
𝜋
∫

𝛽

𝛼

𝜙
𝑛
(𝑡) exp{−

𝐾
2
𝐶
𝑛

2𝐷
𝑛

}𝑑𝑡,

𝐼2 (𝛼, 𝛽)

= ∫

𝛽

𝛼

√2𝐾𝐵
𝑛

𝜋𝐴
3/2
𝑛

exp{− 𝐾
2

2𝐴
𝑛

} erf (
𝐾𝐵
𝑛

√2𝐴
𝑛
𝐷
𝑛

)𝑑𝑡,

𝜙
𝑛
(𝑡) =

√𝐷
𝑛

𝐴
𝑛

.

(10)

As a special case, we can also obtain the famous Kac-Rice
formula [10] for expected number of zeros of 𝑃

𝑛
(𝑡) by putting

𝐾 = 0 in (9). Thus we have

EN
𝑛,0 (𝛼, 𝛽) =

1
𝜋
∫

𝛽

𝛼

𝜙
𝑛
(𝑡) 𝑑𝑡. (11)

3. Preliminary Analysis

To evaluate the integrals in (9) and (11) we need to find
out the dominant terms of 𝐴

𝑛
, 𝐵
𝑛
, and 𝐶

𝑛
. The inequalities

mentioned in Lemmas 4–7will be helpful for the purpose.We
first mention the following form of L’Hôpital’s Rule which we
use to derive some of the inequalities.

Lemma 3 (the monotonic form of L’Hôpital’s Rule [11]). For
−∞ < 𝑎 < 𝑏 < ∞, let 𝑔, ℎ : [𝑎, 𝑏] → 𝑅 be continuous
on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏) with ℎ󸀠(𝑡) ̸= 0 on (𝑎, 𝑏).
If 𝑔󸀠(𝑡)/ℎ󸀠(𝑡) is increasing or decreasing on (𝑎, 𝑏), then so are
(𝑔(𝑡) − 𝑔(𝑎))/(ℎ(𝑡) − ℎ(𝑎)) and (𝑔(𝑡) − 𝑔(𝑏))/(ℎ(𝑡) − ℎ(𝑏)). If
𝑔
󸀠

(𝑡)/ℎ
󸀠

(𝑡) is strictly monotone, then the monotonicity of the
above two quotients is also strict.

Lemma4. If 0 ≤ 𝑡 < 𝜋/2, then 𝑒𝑛𝑡
2
/2−𝑛𝑡4/8

≤ (cosh 𝑡)𝑛 ≤ 𝑒𝑛𝑡
2
/2.

In particular in the interval (0, 𝑛−1/2)

1+ 𝑛 sinh
2
𝑡

2
+
𝑛 (𝑛 − 2) sinh4𝑡

8
< (cosh 𝑡)𝑛

< 1+ 𝑛 sinh
2
𝑡

2
+
𝑛
2sinh4𝑡
4

.

(12)

Thus (cosh 𝑡)𝑛 = 1 + 𝑂(𝑛𝑡2) if 𝑡 = 𝑜(𝑛−1/2).

Proof. The series representation of tanh 𝑡 is given by [12, page
42] tanh 𝑡 = ∑

∞

𝑘=1 𝑠𝑘𝑡
2𝑘−1, where 𝑠

𝑘
= 22𝑘(4𝑘 − 1)𝐵2𝑘/(2𝑘)!.

Using the fact that 𝜁(2𝑘) = 22𝑘−1𝜋2𝑘|𝐵2𝑘|/(2𝑘)! [12, page 1038],
we have |𝑠

𝑘
|𝑡
2𝑘−1

= 𝜋
−2𝑘
(2𝑡)2𝑘−1(1 − 2−2𝑘)𝜁(2𝑘).

Now, (1 − 2−𝑛)𝜁(𝑛) = ∑∞
𝑗=0(2𝑗 + 1)−𝑛 is a monotonically

decreasing function of 𝑛. Therefore, the power series of
tanh 𝑡 converges absolutely and uniformly for 0 ≤ 𝑡 <

𝜋/2. Integrating term by term we have the alternative series

log cosh 𝑡 = ∑
∞

𝑘=1(2𝑘)
−1
𝑠
𝑘
𝑡
2𝑘 for 0 ≤ 𝑡 < 𝜋/2. Since the

coefficients of 𝑡2𝑘 are monotonically decreasing, we find that
the first part of the lemma is true.

Let ℎ1(𝑡) = 𝑟1(𝑡)/𝑟2(𝑡), where 𝑟1(𝑡) = (cosh 𝑡)𝑛 − 1 and
𝑟2(𝑡) = 𝑛 sinh

2
𝑡/2 + 𝑛2sinh4𝑡/4, with 𝑟1(0) = 𝑟2(0) = 0. Then

(
𝑟
󸀠

1 (𝑡)

𝑟󸀠2 (𝑡)
)

󸀠

= [(𝑛 − 2) (𝑛2 − 4𝑛) (cosh 𝑡)𝑛−3 sinh 𝑡

⋅ {sinh2𝑡 − (𝑛 + 2)
(𝑛2 − 4𝑛)

}] {2 (1+ 𝑛 sinh2𝑡)
2
}

−1
.

(13)

It is easy to verify that 𝑡 + 𝑡3/5 < (𝑛 + 2)/(𝑛2 − 4𝑛) if 𝑡 ≤ 𝑛−1/2.
Using the series representation of sinh 𝑡 we find that

𝑡 +
𝑡
3

5
− sinh 𝑡 = 𝑡

3

30
−

∞

∑

𝑘=2

𝑡
2𝑘+1

(2𝑘 + 1)!

≥ 𝑡
3
(

1
30
−

∞

∑

𝑘=2

1
(2𝑘 + 1)!

) ≥ 0.

(14)

Therefore sinh2𝑡 − (𝑛 + 2)/(𝑛2 − 4𝑛) < 0 if 𝑡 ∈ (0, 𝑛−1/2). As a
consequence, 𝑟󸀠1(𝑡)/𝑟

󸀠

2(𝑡) is strictly decreasing in the interval
(0, 𝑛−1/2). By Lemma 3, ℎ1(𝑡) is decreasing in (0, 𝑛−1/2) and
by L’Hôpital’s Rule ℎ1(0+) = 1. Therefore, 𝑟1(𝑡) < 𝑟2(𝑡). Let
ℎ2(𝑡) = 𝑟3(𝑡)/𝑟4(𝑡), where 𝑟3(𝑡) = (cosh 𝑡)

𝑛

− 1 − (𝑛 sinh2𝑡)/2
and 𝑟4(𝑡) = (𝑛

2sinh4𝑡)/4 with 𝑟3(0) = 𝑟4(0) = 0. Then
𝑟
󸀠

3(𝑡)/𝑟
󸀠

4(𝑡) = (cosh
𝑛−2
𝑡 − 1)(𝑛 sinh2𝑡)−1 = 𝑟5(𝑡)/𝑟6(𝑡), where

𝑟5(𝑡) = (cosh 𝑡)𝑛−2 − 1 and 𝑟6(𝑡) = 𝑛 sinh2𝑡 with 𝑟5(0) =
𝑟6(0) = 0. Now 𝑟

󸀠

5(𝑡)/𝑟
󸀠

6(𝑡) = (𝑛 − 2)(cosh 𝑡)𝑛−4/(2𝑛), which
is increasing. So, by Lemma 3, ℎ2(𝑡) is strictly increasing. By
L’Hôpital’s Rule we find that ℎ2(0+) = (𝑛−2)/(2𝑛).Therefore,

1+ 𝑛 sinh
2
𝑡

2
+
𝑛 (𝑛 − 2) sinh4𝑡

8
< (cosh 𝑡)𝑛 . (15)

Lemma 5. If 𝑡 → 0, then 𝜋/4 + 𝑡/2 − 𝑡3/12 < tan−1𝑒𝑡 <
𝜋/4 + 𝑡/2 − 𝑡3/12 + 𝑡5/48.

Proof. Let 𝑟7(𝑡) = tanh−1𝑒𝑡 − 𝜋/4, 𝑟8(𝑡) = 𝑡/2 − 𝑡3/12, and
𝑟9(𝑡) = 𝑡/2 − 𝑡3/12 + 𝑡5/48. Observe that 𝑟7(0) = 𝑟8(0) =
𝑟9(0) = 0. Let ℎ3(𝑡) = 𝑟7(𝑡)/𝑟8(𝑡) and ℎ4(𝑡) = 𝑟7(𝑡)/𝑟9(𝑡).
Then 𝑟󸀠7(𝑡)/𝑟

󸀠

8(𝑡) = sec ℎ𝑡 is a monotonically decreasing and
𝑟
󸀠

7(𝑡)/𝑟
󸀠

9(𝑡) = 2 sec ℎ𝑡/(2 − 𝑡2) is monotonically increasing
function of 𝑡. By L’Hôpital Rule ℎ3(0+) = ℎ4(0+) = 1.
Therefore, by Lemma 3, 𝑟7(𝑡) < 𝑟8(𝑡) and 𝑟9(𝑡) < 𝑟7(𝑡) for
𝑡 > 0.

Lemma 6. Let 𝑚 ≥ 0, 𝑝 ≥ 1. Then
sinh𝑝𝑡(sinh 𝑛𝑡)−1(cosh 𝑡)−𝑚 is a monotonically decreasing
function of 𝑡 in (0,∞) if 𝑝 = 1 and is a monotonically
decreasing function of 𝑡 in (𝑝/𝑛,∞) if 𝑝 ≥ 2 and
𝑛 > √𝑝{3(1 − tanh𝑝)}−1/2.
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Proof. Since

(sinh𝑝𝑡 (sinh 𝑛𝑡)−1 (coth 𝑡)−𝑚)
󸀠

= sinh𝑝−1𝑡

⋅ (cosh 𝑡)𝑚+1 cosh 𝑛𝑡

⋅ (𝑝 tanh 𝑛𝑡 − 𝑛 tanh 𝑡 −𝑚 tanh 𝑛𝑡 tanh2𝑡) ,

(16)

to prove the lemma we show that 𝑝 tanh 𝑛𝑡 − 𝑛 tanh 𝑡 < 0
under the conditions mentioned in the lemma. We first note
that (tanh 𝑛𝑡−𝑛 tanh 𝑡)󸀠 = 𝑛(sec ℎ2𝑛𝑡−sec ℎ2𝑡) < 0.Therefore,
if 𝑝 = 1 and 𝑡 > 0, 𝑝 tanh 𝑛𝑡 − 𝑛 tanh 𝑡 < 0 since its value is
zero at 𝑡 = 0.

Now let 𝑝 ≥ 2. Let 𝑞(𝑡) = 𝑟1(𝑡)/𝑟2(𝑡), where 𝑟1(𝑡) =
tanh 𝑡 and 𝑟2(𝑡) = 𝑡 with 𝑟1(0) = 0, 𝑟2(0) = 0. As
𝑟
󸀠

1(𝑡)/𝑟
󸀠

2(𝑡) = sec ℎ2𝑡 is a decreasing function of 𝑡, it follows
from Lemma 3 that 𝑡−1 tanh 𝑡 is monotonically decreasing.
Therefore, for a fixed𝑝, (𝑝/𝑛)−1tanh(𝑝/𝑛) increaseswith 𝑛. As
𝑙𝑡
𝑛→∞

(𝑝/𝑛)
−1 tanh(𝑝/𝑛) = 1 and tanh𝑝 < 1, there exists an

integer 𝑛0 such that, for 𝑛 > 𝑛0, (𝑝/𝑛)
−1 tanh(𝑝/𝑛) > tanh𝑝.

In other words, for 𝑛 > 𝑛0, 𝑝 tanh 𝑛𝑡 − 𝑛 tanh 𝑡 < 0 at

𝑡 = 𝑝/𝑛. Since (tanh 𝑛𝑡 − 𝑛 tanh 𝑡)󸀠 < 0, we conclude that
𝑝 tanh 𝑛𝑡−𝑛 tanh 𝑡 < 0 if 𝑡 ≥ 𝑝/𝑛 and 𝑛 > 𝑛0. We can find out
𝑛0 in the following manner.

We note that 𝑡−1 tanh 𝑡−1+𝑡2/3 > 0 as (tanh 𝑡−𝑡+𝑡3/3)󸀠 =
𝑡
2 sec ℎ2𝑡(cosh2𝑡−𝑡−2sinh2𝑡) > 0 and tanh 𝑡−𝑡+𝑡3/3 is zero at
𝑡 = 0. So (𝑝/𝑛)−1tanh(𝑝/𝑛) > tanh𝑝 if 1−𝑝2/(3𝑛2) > tanh𝑝;
that is, 𝑛 > 𝑛0 = √𝑝{3(1 − tanh𝑝)}−1/2.

Lemma 7. If 0 ≤ 𝑥 ≤ 1/√2, then

(𝜋/2) 𝑥√1 − 𝑥2

(1 + 2−1 (1 − 2𝑥2))1.27...
< sin−1𝑥

<
(𝜋/2) 𝑥√1 − 𝑥2

(1 + 2−1 (1 − 2𝑥2))1.1137. . .
.

(17)

Proof. Let𝑥 = sin 𝜃 and𝛼 = 2𝜃. Let 𝑟10(𝜃) = log(1+2−1 cos𝛼)
and 𝑟11(𝜃) = log(𝜋 sin𝛼/(2𝛼)). We observe that 𝑟10(𝜋/2) =
𝑟11(𝜋/2) = 0. After differentiation we have

(
𝑟
󸀠

11 (𝜃)

𝑟󸀠10 (𝜃)
)

󸀠

= (
(2 + cos𝛼) (𝛼−1 − cot𝛼)

sin𝛼
)

󸀠

=
2 [(2 + cos𝛼) (cos 𝑒𝑐2𝛼 − 𝛼−2) sin𝛼 + (cot𝛼 − 𝛼−1) (1 + 2 cos𝛼)]

sin2𝛼
. (18)

We now use the following power series representation
(see [12]) convergent for |𝑡| < 𝜋

2, 𝑡−1 − cot 𝑡 =

∑
∞

𝑘=1(2
2𝑘
|𝐵2𝑘|/(2𝑘)!)𝑡

2𝑘−1, where 𝐵2𝑘 is the Bernoulli number
of degree 2𝑘.

Then,

sin2𝛼(
𝑟
󸀠

11 (𝜃)

𝑟󸀠10 (𝜃)
)

󸀠

= 2
∞

∑

𝑘=1

22𝑘 󵄨󵄨󵄨󵄨𝐵2𝑘
󵄨󵄨󵄨󵄨

(2𝑘)!
(𝛼)

2𝑘−2

⋅ ((2𝑘 − 1) (2+ cos𝛼) sin𝛼−𝛼 (1+ 2 cos𝛼)) .

(19)

We observe that (2+ cos𝛼) sin 2𝜃−𝛼(1+2 cos𝛼) is nonnega-
tive in (0, 𝜋/4) since it vanishes at zero and its derivative, that
is, 2(𝛼 sin𝛼 − sin2𝛼) is positive.

It follows from (19) that (𝑟󸀠11(𝜃)/𝑟
󸀠

10(𝜃) is a nondecreasing
function in (0, 𝜋/4) since

(2𝑘 − 1) (2+ cos𝛼) sin𝛼−𝛼 (1+ 2 cos𝛼)

≥ (2+ cos𝛼) sin 2𝜃 − 𝛼 (1+ 2 cos𝛼) .
(20)

𝑙𝑡
𝜃→ 0𝑟11(𝜃)/𝑟10(𝜃) = ln(𝜋/2)/ln(3/2) = 1.1137 . . . and by

L’Hôpital’s Rule 𝑙𝑡
𝜃→𝜋/4𝑟11(𝜃)/𝑟10(𝜃) = 4/𝜋 = 1.27 . . ., we

obtain the proof of Lemma 7 using Lemma 3.

Lemma 8. Consider

𝑏0 − 𝑏1 <
√𝜋

2
∫

V

0
𝑒
−𝑞

2
𝑥
2
erf (𝑥) 𝑑𝑥 < 𝑏0, (21)

where

𝑏
𝑘
=

(1 − 𝑒−(𝑞V)
2
∑
𝑘

𝑗=0 ((𝑞V)
2𝑗
/𝑗!))

(2 (2𝑘 + 1) 𝑞2𝑘+2)
, 𝑞 > 1. (22)

Proof. Consider the following power series representation of
erf(𝑥) [12, eq. 3.321.1] erf(𝑥) = (2/√𝜋)∑𝑘=∞

𝑘=0 (−1)
𝑘

𝑥
2𝑘+1

/

(𝑘!(2𝑘 + 1)). The power series converges absolutely and
uniformly for 𝑥 ∈ 𝑅. Hence [12, page 346]

√𝜋

2
∫

V

0
𝑒
−𝑞

2
𝑥
2
erf (𝑥) 𝑑𝑥

=

𝑘=∞

∑

𝑘=0
(−1)𝑘

∫
V
0 𝑥

2𝑘+1
𝑒
−𝑞

2
𝑥
2
𝑑𝑥

𝑘! (2𝑘 + 1)

=

𝑘=∞

∑

𝑘=0
(−1)𝑘

𝛾 (𝑘 + 1, 𝑞2V2)
2𝑞2𝑘+2𝑘! (2𝑘 + 1)

=

𝑘=∞

∑

𝑘=0
(−1)𝑘 𝑏

𝑘
,

(23)

where 𝑏
𝑘
= (1 − 𝑒−(𝑞V)

2
∑
𝑘

𝑗=0((𝑞V)
2𝑗
/𝑗!))/(2(2𝑘 + 1)𝑞2𝑘+2). It is

easy to see that 𝑏
𝑘
is nonincreasing and 𝑏

𝑘
→ 0 as 𝑘 → ∞.

Thus, the statement of the lemma is true.

Lemma 9. Let 𝑢
𝑛
= 𝑜(𝑛
−1/2

); then

∫

𝑢
𝑛

0
𝜙
𝑛
(𝑡) 𝑑𝑡 = 𝑂 (𝑢

𝑛
√𝑛) . (24)
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Proof. By Lemma 4,𝐷
𝑛
defined in (8) can be written as

𝐷
𝑛
= 22𝑛−4𝑛 sinh2𝑛𝑡

⋅ {(𝑛 − 1) sinh2𝑡 cos 𝑒𝑐ℎ2𝑛𝑡 (cosh2𝑛𝑡 − cosh 𝑛𝑡)

+ (𝑛 sinh 𝑡 cos 𝑒𝑐ℎ𝑛𝑡 + 1)2} (1+𝑂 (𝑛𝑡)2) .

(25)

By Lemma 6 we find that (𝑛 sinh 𝑡 cos 𝑒cℎ𝑛𝑡 + 1)2 = 𝑂(1)
in (0,1) and (sinh 𝑡 cos 𝑒𝑐ℎ𝑛𝑡)2cosh2𝑛𝑡 = 𝑂(𝑛−1) if 𝑛𝑡 = 𝑂(1).
Also, sinh2𝑡coth2𝑛𝑡 = 𝑂(𝑡

2
) if 𝑛𝑡 → ∞ and 𝑡 ∈ (0, 1). So,

(22𝑛−4𝑛sinh2𝑛𝑡)−1𝐷
𝑛
∼ 𝐶1, 1 ≤ 𝐶1 ≤ 2. Also using Lemma 4

and (5) we find that𝐴
𝑛
/2𝑛−1 ∼ cosh 𝑛𝑡+1. By (11), we see that

Lemma 9 is valid.

Lemma 10. If 𝛽 > 𝛼 ≥ 2𝑛−1 log 𝑛, then

∫

𝛽

𝛼

𝜙
𝑛
(𝑡) 𝑑𝑡 = √𝑛 (tan−1𝑒𝛽 − tan−1𝑒𝛼)

+𝑂 (𝑛
3/2 sinh𝛼 exp (−𝑛𝛼)) .

(26)

Proof. Using Lemmas 6 and 4 we obtain from (8) that 𝐷
𝑛
=

22𝑛−4𝑛 cosh2𝑛−2𝑡 cosh2𝑛𝑡(1+𝑂(𝑛 sinh 𝑢 exp(−𝑛𝑢))) and 𝐴
𝑛
=

2𝑛−1 cosh 𝑛𝑡cosh𝑛𝑡(1 + 𝑂(exp(−𝑛𝑢))). The conclusion of the
lemma follows now from (11).

4. Proof of Theorem 1

If 𝑢
𝑛
is taken as 2𝑛−1 log 𝑛 we can derive from Lemmas 9 and

10 the following relations:

EN
𝑛,0 (0, 2𝑛

−1 log 𝑛) = 𝑂
𝑝
(𝑛
−1/2 log 𝑛) ,

EN
𝑛,0 (2𝑛

−1 log 𝑛,∞)

=
√𝑛

2
−
√𝑛 tan−1𝑒2𝑛

−1 log 𝑛

𝜋
+𝑂
𝑝
(𝑛
−1/2

) .

(27)

Since the integrand in (11) is an even function of 𝑡, we have

EN
𝑛,0 (−∞,∞) = 2EN

𝑛,0 (0,∞) . (28)

Using Lemma 5 to approximate tan−1𝑒2𝑛
−1 log 𝑛, we see that

Theorem 1 is true.

5. Proof of Theorem 2

To determine EN
𝑛,𝐾
(−∞,∞) we need to calculate

𝐼1(−∞,∞) and 𝐼2(−∞,∞) for different ranges of values of𝐾
as both quantities depend on magnitude of 𝐾. In Lemma 14
we have calculated 𝐼2(−∞,∞). Value of 𝐼1(−∞,∞) for three
different ranges of value of𝐾 has been calculated in Lemmas
11–13. The relations (32), (34), and (35) and Lemma 14
establish Theorem 2. Note that we only need to calculate
𝐼1(0,∞) and 𝐼2(0,∞) since 𝐼1(𝛼, 𝛽) and 𝐼2(𝛼, 𝛽) are even
functions of 𝑡.

Since 𝐼1(𝛼, 𝛽) ≤ EN
𝑛,0(𝛼, 𝛽), by Lemma 9 we have

𝐼1 (0, 2𝑛
−1 log 𝑛) = 𝑂

𝑝
(𝑛
−1/2 log 𝑛) . (29)

In order to calculate 𝐼1(2𝑛
−1 log 𝑛,∞), we need the dominant

term of 𝐶
𝑛
/𝐷
𝑛
, which can be calculated with the help of

Lemmas 4 and 6 as

𝐶
𝑛

𝐷
𝑛

= 𝑛 (2𝑛−1 cosh 𝑛𝑡cosh𝑛𝑡)
−1

(1+𝑂 (𝑛−1)) . (30)

For brevity, we have written 𝐾󸀠 = 𝐾
2
/2𝑛 in the following

lemmas.

Lemma 11. As long as 𝐾󸀠 does not exceed 𝑒𝜇(𝑛), where 𝜇(𝑛) =
𝑜(√𝑛),

𝐼1 (0,∞) =
√𝑛

4
+𝑂
𝑝
(𝑛
−1/2 log 𝑛) . (31)

Proof. Let 𝐾󸀠 ≤ 𝑛
𝛼, 𝛼 > 0. Then by Lemma 9 we find

that 𝐼1(0, 𝑛
−1
(𝛼 + 2) log 𝑛) = 𝑂

𝑝
(𝑛
−1/2 log 𝑛). Using (30) and

Lemma 10, we obtain that 𝐼1(𝑛
−1
(𝛼 + 2) log 𝑛,∞) = √𝑛/4 +

𝑂
𝑝
(𝑛
−1/2 log 𝑛). Hence 𝐼1(0,∞) = √𝑛/4 + 𝑂

𝑝
(𝑛
−1/2 log 𝑛).

Now let 𝐾󸀠 ≥ 𝑛
𝛼, 𝛼 ≥ 2, and 𝑛−1/2log(𝐾󸀠) = 𝑜(1). It

follows from (30) that the maximum value of 𝑒−𝐾
󸀠

𝐶
𝑛

𝐷
−1
𝑛 in

(2𝑛−1 log 𝑛, 𝑛−1log(𝑛𝐾󸀠2/ log 𝑛)) is 𝑂(𝑛−1).
Hence 𝐼1((2𝑛

−1 log 𝑛, 𝑛−1log(𝑛𝐾󸀠2/ log 𝑛))) = 𝑂
𝑝
(𝑛
−1/2

).
As the integrand of 𝐼1(𝑎, 𝑏) is bounded, we have
𝐼1(𝑛
−1log(𝑛𝐾󸀠/ log 𝑛), 𝑛−1log(𝐾󸀠2𝑛2)) = 𝑂

𝑝
(𝑛
−1/2

). By
Lemma 10 and (30) we find that 𝐼1(𝑛

−1log(𝐾󸀠𝑛2),∞) =

√𝑛/4 + 𝑂
𝑝
(𝑛
−1/2

). Taking into account (29) we see that (31)
is true.

Lemma 12. Let 𝑛−1/2 log𝐾󸀠 = 𝜇(𝑛), where either 𝜇(𝑛) = 𝑂(1)
or 𝜇(𝑛) → ∞, but 𝜇(𝑛) = 𝑜(√𝑛); then

𝐼1 (0,∞) =
√𝑛

2
−
𝜇 (𝑛)

2𝜋
+𝑂
𝑝
(𝑛
−1/2 log 𝑛) . (32)

Proof. By Lemma 10 and (30) we find that the following
relations are true:

𝐼1 (2𝑛
−1 log 𝑛, (2𝑛)−1 log 𝑛 + 𝜇 (𝑛) 𝑛−1/2 −

𝜇
2

(𝑛)

2
)

= 𝑂
𝑝
(√𝑛𝑒
−√𝑛

) ,

𝐼1 (2𝑛
−1 log 𝑛 + 𝜇 (𝑛) 𝑛−1/2 −

𝜇
2

(𝑛)

2
,∞) =

√𝑛

4

−
𝜇 (𝑛)

𝜋
+𝑂
𝑝
(𝑛
−1/2

) ,

𝐼1 ((2𝑛)
−1 log 𝑛 + 𝜇 (𝑛) 𝑛−1/2 −

𝜇
2

(𝑛)

2
, 2𝑛−1 log 𝑛

+ 𝜇 (𝑛) 𝑛
−1/2

−
𝜇
2

(𝑛)

2
) = 𝑂

𝑝
(𝑛
−1/2 log 𝑛) .

(33)

These relations and (29) yield (32).
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Lemma 13. Let log𝐾󸀠 = 𝑛𝜇(𝑛), where𝜇(𝑛) = 𝑂(1) or𝜇(𝑛) →
∞. Then

𝐼1 (0,∞) = (
2√𝑛
𝜋
) sin−1 (𝑒

−𝜇(𝑛)

√2
)

+𝑂
𝑝
(𝑛
−1/2 log 𝑛) .

(34)

For large values of 𝑛

√𝑛𝑥√1 − 𝑥2

4 (1 + √1 − 𝑥2 + 𝑥4)
1.27. . . < 𝐼1 (0,∞)

<
√𝑛𝑥√1 − 𝑥2

4 (1 + √1 − 𝑥2 + 𝑥4)
1.1137. . . ,

(35)

where 𝑥 = 𝑒−𝜇(𝑛)/√2.
Moreover, 𝐼1(0,∞) = 𝑂

𝑝
(1) if 𝜇(𝑛) = 𝑂(𝑛 log 𝑛) and

𝐼1(0,∞) = 𝑜
𝑝
(1) if 𝜇(𝑛)/(𝑛 log 𝑛) → ∞.

Proof. Let 𝑡1 and 𝑡2 be the points in 𝑅where (exp(2𝑡)+1)𝑛/2𝑛
assumes the values (𝑛/ log 𝑛)exp(𝑛𝜇(𝑛)) and 𝑛2exp(𝑛𝜇(𝑛)),
respectively. It follows from (30) and Lemma 10 that

𝐼1 (2𝑛
−1 log 𝑛, 𝑡1) = 𝑂𝑝 (𝑛

−1/2
) . (36)

Let 𝑧 = ln((𝑒2𝑡 + 1)/2) and 𝑠 = 2𝑒𝑧.
Then ∫ sec ℎ𝑡 𝑑𝑡 = ∫(𝑑𝑧/√2𝑒𝑧 − 1) = ∫(𝑑𝑠/𝑠√𝑠 − 1) =

−2sin−1(𝑠−1/2). Therefore, by (30) and the definition of
𝐼1(𝛼, 𝛽), we have 𝐼1(𝑡1, 𝑡2) = 𝑂𝑝(𝑛

−1/2 log 𝑛) and 𝐼1(𝑡2,∞) =

√𝑛 sin−1(𝑒−𝜇(𝑛)/√2) + 𝑂
𝑝
(𝑛
−1/2)

). We obtain (34) if (29) is
also considered. Inequality (35) follows immediately from
Lemma 7. From this inequality the other two estimates of
𝐼1(0,∞) valid for 𝜇(𝑛) = 𝑂

𝑝
(𝑛 log 𝑛) and 𝜇(𝑛) such that

𝜇(𝑛)/(𝑛 log 𝑛) → ∞ follow.

Lemma 14. Thedependence of 𝐼2(−∞,∞) on𝐾 is given by the
following relations:

(i) if 𝐾2
= 𝑜(2𝑛), then 𝐼2(−∞,∞) = 𝑜

𝑝
(1),

(ii) if 𝐾2
= 𝑂(2𝑛), then 𝐼2(−∞,∞) = (2/√𝜋)erf(𝑢) +

𝑂
𝑝
(𝑒
−𝑛

),

(iii) if 𝐾2
/2𝑛 → ∞, then 𝐼2(−∞,∞) = (2/√𝜋) +

𝑂
𝑝
(𝑒
−𝐾

2
/2𝑛
),

where 𝑢 = √𝐾󸀠.

Proof. Using Lemma 4 we find that in (0, 𝑢
𝑛
)

𝐷
𝑛
= 22𝑛−4𝑛 sinh2𝑛𝑡 (1+ 2𝑛 sinh 𝑡 cos 𝑒𝑐ℎ𝑛𝑡 + 𝑜 (1)) ,

𝐵
𝑛
= 2𝑛−2𝑛 sinh2𝑛𝑡 (1+ 𝑜 (1)) .

(37)

Hence, 𝐵
𝑛
/√𝐷
𝑛
∼ √𝑛/𝑐, where 1 ≤ 𝑐 ≤ √3.

On the other hand, using Lemma 6 and the definitions
of 𝐵
𝑛
and 𝐷

𝑛
in (𝑢
𝑛
,∞), where 𝑢

𝑛
> 2𝑛−1 log 𝑛, we have

𝐵
𝑛
/√𝐷
𝑛
∼ √𝑛𝑒

𝑡.
Let 𝑠 = 𝐾/√2𝐴

𝑛
. It is not difficult to see that (𝐾/𝑠)1/𝑛 ∼ 𝑒𝑡

in the interval (𝑢
𝑛
,∞)

𝐼2 (−∞,∞) = 2𝐼2 (0,∞)

= (
4
𝜋
)∫

𝑢

0
exp (−𝑠2) erf (𝑠𝑝) 𝑑𝑠

= (
2
√𝜋

) erf (𝑢𝑝) erf (𝑢)

− 4𝑝∫
𝑢

0
exp (−𝑝2𝑠2) erf (𝑠) 𝑑𝑠,

(38)

where√𝑛/√3 ≤ 𝑝 ≤ √𝑛𝑒𝜇(𝑛).
Clearly 𝐼2(−∞,∞) = 𝑜

𝑝
(1) if 𝐾2

= 𝑜(2𝑛). The other two
parts of the lemma are found to be true by virtue of Lemma 8.
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