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Network anomaly detection and localization are of great significance to network security. Comparedwith the traditionalmethods of
host computer, single link and single path, the network-wide anomaly detection approaches have distinctive advantageswith respect
to detection precision and range. However, when facing the actual problems of noise interference or data loss, the network-wide
anomaly detection approaches also suffer significant performance reduction or may even become unavailable. Besides, researches
on anomaly localization are rare. In order to solve the mentioned problems, this paper presents a robust multivariate probabilistic
calibration model for network-wide anomaly detection and localization. It applies the latent variable probability theory with
multivariate t-distribution to establish the normal trafficmodel. Not only does the algorithm implement network anomaly detection
by judging whether the sample’s Mahalanobis distance exceeds the threshold, but also it locates anomalies by contribution analysis.
Both theoretical analysis and experimental results demonstrate its robustness and wider use. The algorithm is applicable when
dealing with both data integrity and loss. It also has a stronger resistance over noise interference and lower sensitivity to the change
of parameters, all of which indicate its performance stability.

1. Introduction

Network traffic anomalies are unusual and significant
changes at network’s traffic level. Intrusions such as DDos
attacks and zombie networks significantly jeopardize the
Internet security, and network jams and malfunctions have
unpleasant impact on service quality; therefore it is critical
to detect and locate network anomalies for both network
operators and end users. It is a challenging task to detect
and locate them because one must extract and interpret
anomalous patterns from large amounts of high-dimensional,
intricate, and noisy background traffic data.

There are a great number of researches on anomaly detec-
tion. Host-based anomaly detection system monitors and
analyzes the internals of a computing system by applying data
mining of the system logs and audit records [1, 2]; another
detection method based on performance measurement data

such as end to end round-trip time and packet loss probability
in a single path can be implemented by single variable time
series analysis [3, 4]; network anomaly detection based on
traffic measurements from single link can be implemented
by applying machine learning and signal analysis [5, 6].
All of these methods have their limits, because they only
concentrate on a part of the information and their detection
area is limited. When the scale of network enlarges and
data transfer rate speeds up, many network anomalies often
exhibit strong network-wide characteristics [7, 8], and their
impact may always spread to multiple links, while their local
characteristics may not be that obvious. It is difficult to
conduct network-wide analysis with abovemethods and their
accuracy cannot be guaranteed.

In order to solve the problemsmentioned above, Lakhina
et al. come up with network-wide anomaly detection based
on subspace construction via PCA [9]. This method employs

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 923792, 26 pages
http://dx.doi.org/10.1155/2015/923792



2 Mathematical Problems in Engineering

network traffic of many Origin-Destination (OD) flows to
establish a model of normal behavior and detects anomalies
by measuring deviations from that model. With the concept
of network-wide detection, researches are conducted in
space-time expansibility [10–13], robustness [14–16], real-
time processing [17, 18], and anomaly measure [19, 20],
which enrich network-wide anomaly detection. This kind of
methods uses whole-network traffic data, which has huge
performance advantages over single point, single path, and
single link. At the same time, compared with other methods,
it sets up normal behavior model which enables us to
avoid building anomalous feature library. Thus it can be
implemented to detect known anomalies as well as unknown
anomalies, and it can be used widely. Network-wide anomaly
detection improves detection performance by introducing
wider and multidimensional network information, but it
also faces some real problems when implemented in large
scale and high speed backbone network. Firstly, because of
its wider collection area, more collection equipment, and
faster network speed, it might not be applicable if collected
data were lost during collection or transfer process [21];
secondly, traffic flows in backbone network continue to grow
in volume and complexity, and hidden noise like anomalous
traffic could degrade performance of the anomaly detection
algorithms [22], while some of the attacks might even pollute
the detectors [14–16]; thirdly, the above anomaly detection
methods can only find when anomalies happen, but they still
have some defects on locating those anomalies [22].

Therefore, we propose an approach named RMPCM
based on robust multivariate probabilistic calibration model
to overcome these problems discussed above. This anomaly
detection and locating algorithm introduces a latent variable
probabilistic model based on 𝑡-distribution instead of a
Gaussian distribution to establish a normal traffic model. By
judging if the sample’sMahalanobis distance from the normal
model exceeds the threshold, traffic anomaly detection is
achieved. Locating anomalies is attained with contribution
analysis. RMPCM approach is more robust; not only can it be
widely used for processing complete data as well as missing
data, but also it acquires stronger robustness under the noise
interference and lower sensibility of model parameters. The
contributions of this paper consist of following 4 aspects; the
RMPCM approach can

(1) solve anomaly detection problem when data loss
occurs by establishing a latent variable probabilistic model,

(2) increase detection accuracy by introducing multivari-
ate 𝑡-distribution to relieve noise interference inmodeling the
normal traffic behavior,

(3) correctly locate the underlying Origin-Destination
(OD) flows being the source of the anomaly,

(4) reduce the amount of work involved in implementing
complicated parameter testing, because RMPCMhas a better
stability and lower sensibility for model parameters.

This paper is organized as follows. We begin in Section 2
with a discussion of the related work.We describe data source
model and problems that need to be solved in Section 3. In
Section 4, we describe the RMPCM approach in detail and
solve three problems raised in Section 3. We validate our
approach in three different ways of experiments and contrast

our RMPCM with existing approach on traffic anomaly
detection in Section 5. A discussion of several details is
presented in Section 6. Concluding remarks and our ongoing
work are presented in Section 7.

2. Related Work

Back in 1987 Denning had demonstrated statistic model for
detecting network anomalies [23]. And it is becoming more
and more important with the development of the Internet.
There are many traditional anomaly detection approaches
based on host computer, single path, and single link.
Researches in [7] indicated the generation and development
of network anomalies have exhibited a tendency of network-
wide characteristic. They found that the performance of
the anomaly detectors increases with enlarging the range of
detection beyond linear growth, which sets up the foundation
for network-wide anomaly detection. The authors of [9]
proposed network-wide anomaly detection algorithm based
on network traffic for the first time, which illustrated low
dimensionality of OD flows. They also integrated traffic
statistics of multiple OD flows to build up a model of normal
behavior and detected anomalies by measuring deviations
from that model. The authors of [11] came along to improve
the anomaly detection approach based on PCA by applying
stochastic matrix perturbation theory and proposed a PCA-
based distributed approach for network-wide anomaly detec-
tion. Reference [13] expanded the classical PCA and proposed
the Karhunen-Loeve expansion for network-wide anomaly
detection. Reference [17] proposed an online anomaly detec-
tion approach using kernel recursive least squares algorithm
to solve the problem of online detection. All of them did
not address the problems of how to detect anomalies in the
condition of noise interference and data loss and how to
locate the anomalies in the actual network environment.

The authors of [22] took in-depth study on the influence
of anomalous traffic on the performance of detector and
indicated that large anomalies may cause the offset of normal
model based on PCA, which increased the false positive rate
(FPR) of anomaly detection. References [14, 15] took further
steps to study poisoning attacks on anomaly detectors and
evaluated poisoning techniques and developed defense. The
authors of [16] listed 3 mechanisms of poisoning attacks
and proposed defense based on robust PCA with projection
pursuit. All of the above only focus on the poisoning and
defense techniques based on PCAdetector, but there is lack of
researches on common modeling approaches in the intricate
and noisy environment.

Data loss is very common inmany fields, and the question
of how to get enough information frommissing data needs to
be answered. The authors of [24, 25] proposed an algorithm
to solve the problem of goodness-of-fit test for varying
coefficient models with missing data. The authors of [21]
gave their opinion on data loss problem when network
traffic flows were measured in large scale and high speed
backbone network; they proposed an approach of sparsity
regularized matrix factorization (SRMF) to make the data
complete. This is applicable in traffic engineering, capacity
planning, forecasting, and so forth, but it did not research
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deeply in network anomaly detection when facing data
loss.

Network anomaly detection can determine when anoma-
lies take place, but locating anomaly is an extremely chal-
lenging task. The authors of [22] point out the deficiency of
network-wide detection algorithm based on PCA in locating
anomaly. Reference [26] then proposed an approach of Basis-
Detect for network-wide anomaly detection and locating, but
it could only locate anomalies to border router; it was unable
to pinpoint the position.

In this paper we propose a network-wide anomaly detec-
tion algorithm based on RMPCM, which will later be proved
to have a better performance in solving problems of noise
interference, data loss, and locating anomalies.

3. Data Model and Problems Description

3.1. Data Model. Conventionally the researches of the Inter-
net traffic flow mainly focused on temporal characteristics
of data package on a single link, which help in devel-
oping concepts of self-similar stochastic processes, long-
range dependence, and so forth. One ISP (Internet service
provider), however, consists of hundreds of those links
which are connected all over, and the Internet contains
several thousand ISPs. In such a vast background the spatial
characteristics of network traffic come to people’s attention
inevitably. However, it is difficult to analyze traffic flow data
of all links in the network simultaneously, because it amplifies
the complexity of modeling traffic on a single link which is
itself a complicated task. As compact and elegant descriptions
of traffic flows between nodes in a certain network structure,
traffic matrix is a constantly employed model to conduct
explorations on the spatiotemporal component of network-
wide traffic. Traffic matrix is an overview of network-wide
traffic. Instead of studying traffic on all links, applying traf-
fic matrix provides more straightforward and fundamental
insights into network-wide traffic study [8].We employ traffic
matrix at PoP (point of presence) level as data source in our
research.

Traffic matrix at PoP level: assume that an autonomous
system (AS) has 𝑛 PoPs. Continuous measuring of the traffic
between each PoP pair at a certain period can obtain the
traffic ofOrigin-Destination (OD) flows. AnODflowdenotes
the collection of all traffic that enters the network from an
ingress node and departs from an egress node. Arranging
these point-to-point measured values in 𝑁 × 𝐷 matrix can
obtain this AS’s traffic matrix X. As shown in Figure 1,
𝑁 denotes the number of measurement periods, and 𝐷

denotes the number of measured value of OD flows at each
measurement (𝐷 = 𝑛 × 𝑛). The element 𝑥

𝑖𝑗
in X denotes

the volume of a certain traffic measure at the 𝑖th period and
the 𝑗th OD. Traffic volume (the number of bytes, packets, or
flows) is adopted as a traffic measure in this paper.

3.2. Problem Description

3.2.1. Data Loss. In the process of collecting data, data
loss may occur. This is because massive data in high
speed backbone network may increase burden of collecting
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Figure 1: Schematic diagram of traffic matrix.

equipment and reduce its stability. Another reason is due to
network congestion, equipment or link malfunctions when
transferring data.

Traffic data loss is not all completely random, and many
of the cases are highly structural. In order to describe the
scenario of data loss in the process of data collection and
transfer, four kinds of loss mechanisms are adopted.

(1) PureRandLoss. The elements in 𝑋 are missing indepen-
dently at random with probability 𝑝. This may be due to
unexpected congestion by chance inmeasuring equipment or
unreliable transfer mechanism.

(2) PeriodRandLoss. The rows of traffic matrix X are cor-
responding to measurement periods, and PeriodRandLoss
means the rows in 𝑋 are missing at random with probability
𝑝. The reason of this type of structured loss may be that
storage devices are overloaded or programbreaks downwhen
centralized processing large number ofmeasured data during
this period.

(3) ODRandLoss. The columns of traffic matrix X are corre-
sponding to OD flows, and ODRandLoss means the columns
in X are missing at random with probability 𝑝. This type
of structured loss could stem from OD identification error
caused by either flow filtration or links/routers’ malfunction.

(4) PieceRandLoss. PieceRandLoss means the submatrixes in
𝑋 are missing at random with probability 𝑝. This type of
structured loss may be caused when storage devices are full
but they are still keeping collecting data for several periods
or devices’ breakdown for some time, which is corresponding
to data loss of traffic matrix multiple adjacent columns. Note
that the case single row PieceRandLoss corresponds to Peri-
odRandLoss, and single column PieceRandLoss corresponds
to ODRandLoss.

3.2.2. Noise Interference. Model parameter estimation often
uses maximum likelihood estimation (MLE) when samples
are known, and the probability distribution of the samples
is needed. However, it is very troublesome to accurately
describe the distribution of data; therefore it is always
assumed that the data generally follows the Gaussian dis-
tribution because its nice analytical property always yields
tractable algorithms. The MLE is equivalent to the least
square estimation in the linear Gaussian regression model
which is noted for its unduly sensitive to atypical samples
such as outliers and it would affect the accuracy of the
model [27]. In real network measurement collected traffic
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Figure 2: Relation schema of RMPCM.

data contains anomalous traffic which is outliers and will
have a huge interference in the establishment of model if
a Gaussian noise mode is selected. The question of how to
set up a more accurate model of normal traffic under this
circumstance needs to be addressed promptly.

3.2.3. Anomaly Localization. The time at which anomalies
take place can be determined by implementing network
anomaly detection, but locating anomalies is crucial if we
want to pinpoint and solve security problems more precisely.
Locating anomalies in this paper is corresponding to pointing
out the intersections of the rows and columns of traffic
matrix X when anomalies occur. The row of X corresponds
to the time of anomaly occurrence, and the column of X
corresponds to the position where anomaly occurs (i.e., on
one OD or a few OD).

4. RMPCM

The relationship between anomalous event generation and
its detection and localization is shown in Figure 2. Anomaly
events will affect part of traffic flows in a network and
thus cause changes of corresponding statistics of overall
network traffic. The network anomaly detectors can analyze
these changes of statistics and raise an alarm; then network
administrators can analyze anomalous traffic by locating
anomalies to determine anomaly event. RMPCM which we
propose consists of the process of anomaly detection and
localization: firstly, model normal traffic with collected traffic
data and then determine whether or not this sample is an
anomaly by judging if the sample’s Mahalanobis distance
exceeds the threshold. Secondly, contribution analysis is
applied to anomalous samples in order to locate anomalies.
The RMPCM method can be divided into 3 steps in detail
which include normal traffic modeling, anomaly detection,
and anomaly localization.

4.1. Introducing theModel. Applying network anomaly detec-
tion algorithm in the real world may encounter difficulties
such as data loss in the process of transferring and collecting
and modeling deviation caused by noise interference.

Traditional network anomaly detection algorithms will
not be applicable any longer in the condition of incomplete
data. It is considered to adopt Bayes method, but because of
the complexity of network traffic data posteriormean estima-
tion and asymptotic variance cannot be directly derived from
this method. Therefore a latent variable probabilistic model

is to be introduced, meaning some “latent data” are to be
added in the known data in order to simplify the parameter
estimation. In this process missing data along with unknown
parameters treated as “latent data” will be solved by applying
expectation-maximization (EM) algorithm to achieve the
maximum likelihood estimation (MLE) ofmodel parameters.

When computing MLE, probabilistic distribution of
known data is required. Normally it is assumed that they are
normally distributed, but because of some anomalous traffic,
this assumption will cause parameter estimation to have a
large deviation; therefore, multivariate Gaussian distribution
is replaced by 𝑡-distribution in our paper. Compared with
Gaussian distribution, 𝑡-distribution has heavier tails, which
is a desirable property to handle data sets in the presence of
anomalies. The explanation is as follows.

Specifically, suppose sample data x
𝑖
(𝑖 = 1, . . . , 𝑁) are

recorded (𝑁 represents the number of the samples), and
one assumes that they are independent identically distributed
Gaussian random vectors:

x
𝑖
∼ 𝑁
𝐷
{𝜇 (𝜃) ,Σ (𝜑)} (1)

in which 𝐷 is the dimension of the sample, 𝜇 is the mean
vector function with parameter 𝜃, and Σ is the covariance
matrix with parameter 𝜑.

𝑡-distribution model replaces the above model, which is

x
𝑖
∼ 𝑡
𝐷
{𝜇 (𝜃) ,Λ (𝜑) , V} . (2)

𝐷 is also the dimension of the sample, 𝜇 is the location
vector, Λ is the scale matrix, and V is degree of freedom
for 𝑡-distribution; probabilistic density function (p.d.f.) is
calculated as

𝑆 (x | 𝜇,Λ, V) = |Λ|
−1/2

Γ {(V + 𝐷) /2}

{Γ (1/2)}
𝐷
Γ (V/2) V𝐷/2

× (1 +
𝜅
2

V
)

−(V+𝐷)/2

,

(3)

where 𝜅2 = (x − 𝜇)𝑇Λ−1(x − 𝜇) is the squared Mahalanobis
distance and Γ(⋅) is Gamma function. When V < ∞, 𝑡-
distribution model has a better robust against outlier’s inter-
ference over normal distribution by applying MLE. This is
due to outliers that have relatively largeMahalanobis distance
but comparably small contribution for model parameter
estimation. The estimation of 𝜃 is taken as example to
demonstrate the following.
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Figure 3: Steps of modeling normal traffic in noisy traffic.

For Gaussian distribution model (1), the equation for its
MLE is 𝜕𝑙/𝜕𝜃 = ∑

𝑁

𝑖=1
A
𝑖
∑
−1

𝑖
(x
𝑖
− 𝜇
𝑖
) = 0, where 𝑙 is the

corresponding log-likelihood and A
𝑖
is the matrix of partial

derivatives of 𝜇
𝑖
with respect to 𝜃; the MLE of 𝜃 under 𝑡-

distribution model (2) satisfies 𝜕𝑙/𝜕𝜃 = ∑
𝑁

𝑖=1
𝑤
𝑖
A
𝑖
Λ
−1

𝑖
(x
𝑖
−

𝜇
𝑖
) = 0, where

𝑤
𝑖
=

(V + 𝐷)

(V + 𝜅
2

𝑖
)

(4)

is the weight assigned to sample 𝑖. The weight𝑤
𝑖
is a function

of Mahalanobis distance 𝜅
𝑖
which indicates that 𝑤

𝑖
decreases

while 𝜅
𝑖
increases. The anomaly sample has a relatively larger

𝜅
𝑖
; therefore 𝑤

𝑖
is smaller, meaning adopting 𝑡-distribution

in model parameter estimation lowers the sensitivity to
anomaly samples. Compared with Gaussian distribution, 𝑡-
distribution model has a stronger robustness.

4.2. Normal Traffic Modeling

4.2.1. Normal Traffic Modeling in Noisy Traffic. RMPCM
models normal traffic in noisy traffic by establishing a
latent variable probabilistic model based on multivariate 𝑡-
distribution, and the procedure is illustrated in Figure 3.

In order to solve the problem that Gaussian noise models
are too sensitive to atypical observations such as anomalous
traffic observations, we suppose the noise is drawn from
𝑡-distribution model instead of a Gaussian noise model.
Assume each 𝑑-dimensional latent vector t

𝑖
comes from a

linear probabilistic projection of 𝐷-dimensional 𝐷 (𝐷 ≥ 𝑑)

eigenvector x
𝑖
, and we build a latent variable probabilistic

model where we select a unit variance 𝑡-distribution as the
prior distribution on the latent vectors. The probabilistic
model is

𝑝 (t
𝑖
) = 𝑆 (t

𝑖
| 0, I
𝑑
, V) ,

𝑝 (x
𝑖
| t
𝑖
) = 𝑆 (x

𝑖
| Wt
𝑖
+ 𝜇, 𝜏I

𝐷
, V) ,

(5)

whereW is the projectionmatrix, 𝜇 is the location vector, and
I is the unit matrix.

It is inapplicable to be analyzed and resolved using
MLE directly. As noted in [28] 𝑡-distribution model can
be extended to an infinite Gaussian mixture model with
the same mean where the prior distribution on 𝑢 is

ui

xi ti

Figure 4: Graphical model of RMPCM. The shaded node is the
observed vector, and arrows denote conditional dependencies
between these random variables.

a Gamma distribution with parameters depending only on 𝑡-
distribution’s degrees of freedom V:

𝑝 (x | 𝜇,Λ, V)

= ∫

+∞

0

𝑁(x | 𝜇, 𝑢Λ−1)Ga(𝑢 |
V
2
,
V
2
) 𝑑𝑢,

(6)

where Ga(𝑢 | 𝛼, 𝛽) = 𝛽
𝛼
𝑢
𝛼−1

𝑒
−𝛽𝑢

/Γ(𝛼) is the probability
density function of Gamma distribution. Based on (6), latent
variable 𝑢 is introduced, and 𝑢 is a scalar, 𝑢 ∼ Ga(V/2, V/2).
As can be known in [29], if t ∼ 𝑡(𝜇,Λ, V), then the conditional
distribution of t | 𝑢 is Gaussian: t | 𝑢 ∼ 𝑁(𝜇, 𝑢

−1
Λ).

The latent variable model can be derived as follows. Figure 4
indicates the relationship of variables in the model:

𝑝 (𝑢
𝑖
) = Ga(𝑢

𝑖
|
V
2
,
V
2
) , (7)

𝑝 (t
𝑖
| 𝑢
𝑖
) = 𝑁 (t

𝑖
| 0, 𝑢
−1

𝑖
I
𝑑
) , (8)

𝑝 (x
𝑖
| t
𝑖
, 𝑢
𝑖
) = 𝑁 (Wt

𝑖
+ 𝜇, 𝑢

−1

𝑖
𝜏I
𝐷
) . (9)

In order to calculate model parameters, 𝑢 | x and t | x, 𝑢
are also needed to be calculated, and from (8) and (9), it can
be solved that

𝑝 (x
𝑖
| 𝑢
𝑖
) = ∫𝑝 (x

𝑖
| t
𝑖
, 𝑢
𝑖
) 𝑝 (t
𝑖
| 𝑢
𝑖
) 𝑑t

= 𝑁(𝜇,WW𝑇 + 𝜏I
𝐷

𝑢
𝑖

) .

(10)
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Set Ψ = WW𝑇 + 𝜏I
𝐷
, which is 𝐷 × 𝐷 matrix, and the

marginal distribution of x follows 𝑡-distribution, which is
𝑝(x
𝑖
) = 𝑆(𝜇,Ψ, V).
From (7) and (10) it can be calculated that

𝑝 (𝑢
𝑖
| x
𝑖
) ∝ 𝑝 (x

𝑖
| 𝑢
𝑖
) 𝑝 (𝑢
𝑖
)

= Ga(𝑢
𝑖
|
𝐷 + V
2

,
𝛿
2
+ V
2

) ,

(11)

where 𝛿2 = (x
𝑖
− 𝜇)
𝑇
Ψ
−1
(x
𝑖
− 𝜇).

From (8) and (9) it can be computed that

𝑝 (t
𝑖
| x
𝑖
, 𝑢
𝑖
) ∝ 𝑝 (x

𝑖
| t
𝑖
, 𝑢
𝑖
) 𝑝 (t
𝑖
| 𝑢
𝑖
)

= 𝑁(M−1W𝑇 (x
𝑖
− 𝜇) ,

𝜏M−1

𝑢
𝑖

) ,

(12)

where M = W𝑇W + 𝜏I
𝑑
is 𝑑 × 𝑑 matrix and t | x follows 𝑡-

distribution, which is 𝑝(t
𝑖
| x
𝑖
) = 𝑆(M−1W𝑇(x

𝑖
−𝜇), 𝜏M−1, V).

The above procedure establishes the latent variable proba-
bilistic model by replacing Gaussian distribution model with
𝑡-distribution model.

The model parameters {𝜇, 𝜏,W, V, 𝑑} need to be esti-
mated. Parameter𝑑 is the intrinsic dimension of trafficmatrix
X. As shown in Figure 3 the value of 𝑑 is determined by scree
plot based on PCA, and the details are in Section 6.1. Param-
eters {𝜇, 𝜏,W, V} are estimated byMLE, where corresponding
log-likelihood is

𝐿 =

𝑁

∑

𝑖=1

ln𝑝 (x
𝑖
, t
𝑖
, 𝑢
𝑖
) . (13)

MLE can be calculated by applying EM algorithm. In
order to simplify the calculation, REM (rapid expectation-
maximization) is employed in this paper. REM remarkably
increases the algorithm’s rate of convergence. This algorithm
consists of 2 stages, estimating different parameters by apply-
ing EM algorithm in every stage, and does 2 stages’ iteration
until satisfying the condition of convergence.

The First Stage. It is only estimating 𝜇, ignoring t
𝑖
in the first

stage [30].
The log-likelihood is

𝐿
1
=

𝑁

∑

𝑖=1

ln𝑝 (x
𝑖
, 𝑢
𝑖
) =

𝑁

∑

𝑖=1

ln {𝑝 (x
𝑖
| 𝑢
𝑖
) 𝑝 (𝑢
𝑖
)} . (14)

E-Step. As can be known from Jensen inequality, when
𝑝(𝑢
𝑖
) = 𝑝(𝑢

𝑖
| x
𝑖
), the inequality becomes equality, and

the lower bound of 𝐿
1
is set. Its expectation can be calculated

from (10), (11), and (14) and get (15), where ⟨⋅⟩ is the
expectation operator:

⟨𝐿
1
⟩ = −

𝑁

∑

𝑖=1

⟨𝑢
𝑖
⟩ (x
𝑖
− 𝜇)
𝑇
Ψ
−1
(x
𝑖
− 𝜇) , (15)

where

⟨𝑢
𝑖
⟩ =

V + 𝐷

V + (x
𝑖
− 𝜇)
𝑇
Ψ
−1
(x
𝑖
− 𝜇)

. (16)

M-Step. Maximization of ⟨𝐿
1
⟩ with respect to 𝜇 can give the

estimated value of 𝜇. This process can be implemented by
setting the partial derivative of ⟨𝐿

1
⟩ with respect to 𝜇 at 0:

�̃� =
∑
𝑁

𝑖=1
⟨𝑢
𝑖
⟩ x
𝑖

∑
𝑇

𝑖=1
⟨𝑢
𝑖
⟩

. (17)

The Second Stage. In the second stage, REM algorithm
introduces the latent variable t

𝑖
and estimates parameters

{𝜏,W, V}. The estimated value �̃� from the first stage is used
in the second stage.

The log-likelihood is

𝐿
2
=

𝑁

∑

𝑖=1

ln𝑝 (x
𝑖
, t
𝑖
, 𝑢
𝑖
)

=

𝑁

∑

𝑖=1

ln {𝑝 (x
𝑖
| t
𝑖
, 𝑢
𝑖
) 𝑝 (t
𝑖
| 𝑢
𝑖
) 𝑝 (𝑢
𝑖
)} .

(18)

E-Step. When 𝑝(t
𝑖
, 𝑢
𝑖
) = 𝑝(t

𝑖
, 𝑢
𝑖
| x
𝑖
), the expectation of 𝐿

2

can be calculated from (7), (8), and (9):

⟨𝐿
2
⟩ = −

𝑁

∑

𝑖=1

{
𝐷

2
ln 𝜏 +

⟨𝑢
𝑖
⟩

2𝜏
(x
𝑖
− �̃�)
𝑇
(x
𝑖
− �̃�)

−
1

𝜏
⟨𝑢
𝑖
t
𝑖
⟩
𝑇W𝑇 (x

𝑖
− �̃�) +

1

2𝜏
tr (W𝑇W ⟨𝑢

𝑖
t
𝑖
t𝑇
𝑖
⟩)

+
V
2
log V

2
+
V − 2

2
⟨log 𝑢

𝑖
⟩ − log Γ ( V

2
)

−
V
2
⟨𝑢
𝑖
⟩} ,

(19)

where ⟨𝑢
𝑖
⟩ is in (16). Consider

⟨t
𝑖
⟩ = M−1W𝑇 (x

𝑖
− 𝜇) , (20)

⟨𝑢
𝑖
t
𝑖
⟩ = ⟨𝑢

𝑖
⟩ ⟨t
𝑖
⟩ , (21)

⟨𝑢
𝑖
t
𝑖
t𝑇
𝑖
⟩ = 𝜏M−1 + ⟨𝑢

𝑖
⟩ ⟨t
𝑖
⟩ ⟨t
𝑖
⟩
𝑇
, (22)

⟨log 𝑢
𝑖
⟩ = 𝜓(

V + 𝐷

2
)

− log(
V + (x

𝑖
− 𝜇)
𝑇
Ψ
−1
(x
𝑖
− 𝜇)

2
) ,

(23)

where 𝜓(⋅) denotes the digamma function in (23).
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Figure 5: Steps of modeling normal traffic with data loss.

M-Step. Maximizing ⟨𝐿
2
⟩ with respect to W and 𝜏 gives the

following updating formulas of {W, 𝜏}:

W̃ = (

𝑁

∑

𝑖=1

(x
𝑖
− �̃�) ⟨𝑢

𝑖
t
𝑖
⟩
𝑇
)(

𝑁

∑

𝑖=1

⟨𝑢
𝑖
t
𝑖
t𝑇
𝑖
⟩)

−1

,

𝜏 =
1

𝑁𝐷

𝑁

∑

𝑖=1

{⟨𝑢
𝑖
⟩

x
𝑖
− �̃�



2
− 2 ⟨𝑢

𝑖
t
𝑖
⟩
𝑇 W̃𝑇 (x

𝑖
− �̃�)

+ tr (W̃𝑇W̃ ⟨𝑢
𝑖
t
𝑖
t𝑇
𝑖
⟩)} .

(24)

The MLE of Ṽ can be computed by solving the following
equation by line search:

1 + log V
2
− 𝜓(

V
2
) +

1

𝑁

𝑁

∑

𝑖=1

(⟨log 𝑢
𝑖
⟩ − ⟨𝑢

𝑖
⟩) = 0. (25)

4.2.2. Normal Traffic Modeling with Data Loss. If data loss
occurs on some dimensions, 𝐷-dimensional data x

𝑖
can still

be used to conduct estimation for model parameters. The
sample data x

𝑖
can be divided into observed data and missing

data; that is,

x
𝑖
= [

x𝑜
𝑖

x𝑚
𝑖

] . (26)

Its mean and covariance can be also divided into blocks:

𝜇 = [

𝜇
𝑜

𝜇
𝑚
] ;

Ψ = [

Ψ
𝑜𝑜
Ψ
𝑜𝑚

Ψ
𝑚𝑜
Ψ
𝑚𝑚

] .

(27)

As noted in [31], x𝑚
𝑖

| x𝑜
𝑖

∼ 𝑡
𝐷
(𝜇
𝑚
+ Ψ
𝑚𝑜
Ψ
−1

𝑜𝑜
(x𝑜
𝑖
−

𝜇
𝑜
),Ψ
𝑚𝑚

−Ψ
𝑚𝑜
Ψ
−1

𝑜𝑜
Ψ
𝑜𝑚
, V), and then x

𝑖
| x𝑜
𝑖
∼ 𝑡
𝐷
(z
𝑖
,Q
𝑖
, V).

Thus

z
𝑖
= [

x𝑜
𝑖

𝜇
𝑚
+Ψ
𝑚𝑜
Ψ
−1

𝑜𝑜
(x𝑜
𝑖
− 𝜇
𝑜
)

] ;

Q
𝑖
= [

0 0

0 (Ψ
𝑚𝑚

−Ψ
𝑚𝑜
Ψ
−1

𝑜𝑜
Ψ
𝑜𝑚
)

] .

(28)

The procedures for normal traffic model establishment
with data loss are shown in Figure 5.When calculatingmodel
parameters, the method of determining 𝑑 is the same as
Section 4.2.1, and REM is also used to implement estimations
of model parameters {𝜇, 𝜏,W, V} under the condition of data
loss.

The First Stage

E-Step. Consider

⟨𝐿


1
⟩ = −

𝑁

∑

𝑖=1

tr (⟨𝑢
𝑖
(x
𝑖
− 𝜇) (x

𝑖
− 𝜇)
𝑇
⟩Ψ
−1
) , (29)

where

⟨𝑢
𝑖
⟩ =

V + 𝐷
𝑜

𝑖

V + (x𝑜
𝑖
− 𝜇𝑜)
𝑇
Ψ
−1

𝑜𝑜
(x𝑜
𝑖
− 𝜇𝑜)

, (30)

⟨𝑢
𝑖
(x
𝑖
− 𝜇) (x

𝑖
− 𝜇)
𝑇
⟩

= Q
𝑖
+ ⟨𝑢
𝑖
⟩ (z
𝑖
− 𝜇) (z

𝑖
− 𝜇)
𝑇
.

(31)

M-Step. Maximization of ⟨𝐿
1
⟩ with respect to 𝜇 results in the

updating formula of 𝜇:

�̃� =
∑
𝑁

𝑖=1
⟨𝑢
𝑖
⟩ z
𝑖

∑
𝑁

𝑖=1
⟨𝑢
𝑖
⟩

. (32)

The Second Stage. In the second stage, the latent variable t
𝑖

is introduced, and then the algorithm estimates parameters
{𝜏,W, V}. The estimated value �̃� from the first stage is used in
the second stage.

E-Step. Consider

⟨𝐿


2
⟩ = −

𝑁

∑

𝑖=1

{
𝐷

2
ln 𝜏

+
1

2𝜏
tr [⟨𝑢

𝑖
(x
𝑖
− �̃�) (x

𝑖
− �̃�)
𝑇
⟩]

−
1

𝜏
tr [⟨𝑢

𝑖
(x
𝑖
− �̃�) t𝑇

𝑖
⟩W𝑇]

+
1

2𝜏
tr (W𝑇W ⟨𝑢

𝑖
t
𝑖
t𝑇
𝑖
⟩)} ,

(33)
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where ⟨𝑢
𝑖
(x
𝑖
− �̃�)(x

𝑖
− �̃�)
𝑇
⟩ is in (31). Consider

⟨𝑢
𝑖
(x
𝑖
− �̃�) t𝑇

𝑖
⟩ = ⟨𝑢

𝑖
(x
𝑖
− �̃�) (x

𝑖
− �̃�)
𝑇
⟩WM−1,

⟨𝑢
𝑖
t
𝑖
t𝑇
𝑖
⟩

= 𝜏M−1 +M−1W𝑇 ⟨𝑢
𝑖
(x
𝑖
− �̃�) (x

𝑖
− �̃�)
𝑇
⟩WM−1.

(34)

M-Step. Maximizing ⟨𝐿
2
⟩ with respect to W and 𝜏 gives the

following updating formulas of {W, 𝜏}:

W̃ = (

𝑁

∑

𝑖=1

⟨𝑢
𝑖
(x
𝑖
− �̃�) t𝑇

𝑖
⟩)(

𝑁

∑

𝑖=1

⟨𝑢
𝑖
t
𝑖
t𝑇
𝑖
⟩)

−1

,

𝜏 =
1

𝑁𝐷

𝑁

∑

𝑖=1

{tr [⟨𝑢
𝑖
(x
𝑖
− �̃�) (x

𝑖
− �̃�)
𝑇
⟩]

− 2 tr [⟨𝑢
𝑖
(x
𝑖
− �̃�) t𝑇

𝑖
⟩W𝑇]

+ tr (W̃𝑇W̃ ⟨𝑢
𝑖
t
𝑖
t𝑇
𝑖
⟩)} .

(35)

The updating formula of V is the same as (25).
The algorithm in Section 4.2.2 is applicablewhendata loss

occurs as well as noise interference.

4.3. Anomaly Detection. Anomaly traffic flow samples of
complex traffic flow data need to be determined by choosing
measurement standards. There are mainly 2 strategies for
determining anomaly samples: one is to determine whether
samples are leverage outliers by judging if Hotelling’s 𝑇

2

exceeds the threshold; the other is to determinewhether sam-
ples are orthogonal outliers by judging squared prediction
error (SPE) which exceeds the threshold [32]. Because prob-
abilistic model is established in this paper and Mahalanobis
distance is employed to conduct anomalymeasurement, there
is no need for the two strategies [33].

For intact data samples, the squared Mahalanobis dis-
tance 𝛿2 is

𝛿
2
= (x
𝑖
− 𝜇)
𝑇
Ψ
−1
(x
𝑖
− 𝜇) . (36)

For samples containing some of dimension loss, the
squared Mahalanobis distance 𝛿2

𝑚
is to be computed using its

expectation:

𝛿
2

𝑚
= tr {Ψ−1 [(z

𝑖
− 𝜇) (z

𝑖
− 𝜇)
𝑇
+Q
𝑖
]} . (37)

Normal distribution “3𝜎” control chart is adopted to
determine anomaly, and the choosing reason is discussed
in Section 6.2. When anomaly occurs in time series, corre-
sponding distribution goes beyond the control boundary.

Establishing time series of the squared Mahalanobis
distance as 𝛿2(𝑡), its mean is 𝜇

𝑀
, and the variance is 𝜎2

𝑀
, and

then the configuration of “3𝜎” control chart is as follows:
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𝑀
.
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Figure 6: Steps of locating OD of anomaly occurrence.

Upper control limit: UCL = 𝜇
𝑀
+ 3𝜎
𝑀
.

Lower control limit: LCL = 𝜇
𝑀
− 3𝜎
𝑀
.

According to the Gaussian distribution,

𝑃 {−3𝜎
𝑀
< 𝛿
2

𝑀
(𝑡) < 3𝜎

𝑀
}

= Φ(
3𝜎
𝑀
− 𝜇
𝑀

𝜎
𝑀

) − Φ(
−3𝜎
𝑀
− 𝜇
𝑀

𝜎
𝑀

) = 99.74%,
(38)

whereΦ(⋅) is the probability distribution function of standard
normal distribution.

Adopting normal distribution “3𝜎” control chart, it is
certain that anomaly occurs when the values deviate from
𝜇
𝑀

by more than 3 times standard deviation 𝜎
𝑀
, and its

confidence coefficient is 99.74%.

4.4. Anomaly Localization. After confirming anomalous
samples, it is needed to be determined which dimension
(corresponding to OD) of the selected anomalous sample
should be responsible for the anomaly, which is anomaly
localization. The anomalous sample x

𝑎
is a 𝐷-dimensional

vector, and 𝑥
𝑗
(𝑗 = 1, . . . , 𝐷) is the 𝑗th-dimensional variable

of x
𝑎
, adopting following contribution analysis (as shown

in Figure 6) to locate OD of anomaly occurrence, which is
divided into 2 stages.

Stage One. (1) Eliminate any 𝑥
𝑗
in x
𝑎
, and get x𝑜

𝑎
and x𝑚
𝑎
.

(2) Compute the conditional distribution of the selected
anomalous sample with the 𝑗th-dimensional variablemissing
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Table 1: Execution time of RMPCM anomaly detection.

Simulation experiment Testbed experiment Real network data analysis
Complete data Complete data Missing data (mean) Complete data Missing data (mean)
2.15 s 1.94 s 3.56 s 2.53 s 4.86 s

Table 2: Evaluation content and method.

Method

Content
Robustness under noise

interference Robustness under
data loss

Anomaly
localization

Sensitivity

Noisy traffic Poisoning Intrinsic dimension Traffic measure
Simulation experiment ✓ ✓

Testbed experiment ✓ ✓ ✓

Real network data analysis ✓ ✓

from formula (28) to derive corresponding z and Q, and
compute the squared Mahalanobis distance 𝛿2

𝑚
with formula

(37).
(3) Calculate the contribution of 𝑥

𝑗
using contri

(𝑥𝑗)
=

𝛿
2
− 𝛿
2

𝑚
. It represents the degree of change in anomaly

measurement after a certain dimension of anomaly sample
missing.

(4) Take each different value of 𝑗 (𝑗 = 1, . . . , 𝐷), and
repeat (1) ∼ (3). If 𝛿2

𝑚
is smaller than the threshold of

anomaly discriminant, the corresponding dimension 𝑗(OD
𝑗
)

is mainly responsible for the anomaly, since its elimination
would bring the sample back to normal.

Stage Two. If there is not any 𝛿2
𝑚
in Step (4) of Stage 1 smaller

than the threshold of anomaly discriminant, it is indicated
that the anomaly is not caused by anomalous traffic of only
oneODflowbutmultipleOD, and then Stage 2 is to be carried
out.

(1) Arrange contri
(𝑥𝑗)

of every dimension of x
𝑎

in
descending order.

(2) Remove the first two dimensions of x
𝑎
after the

arrangement in (1), and if 𝛿2
𝑚
is smaller than the threshold,

the corresponding two dimensions are responsible for the
anomaly.

(3) Otherwise, sequentially increase the number of miss-
ing dimensions in the order arranged in (1) until correspond-
ing 𝛿2
𝑚
is smaller than the threshold, and then several missing

dimensions are jointly responsible for the anomaly.

4.5. Algorithm Complexity Analysis. In RMPCM the major
overheads are the inverse ofΨ and iterations of REM.Ψ is𝐷×

𝐷matrix;𝐷 is dimensions ofX corresponding to the number
of columns of traffic matrix, which is the number of OD (𝑛 ×

𝑛). In the calculation process, directly computingΨ−1 affects
the algorithm complexity significantly, andWoodburymatrix
identity is adopted in the paper: Ψ−1 = (WW𝑇 + 𝜏I

𝐷
)
−1

=

𝜏
−1I
𝐷
−𝜏
−1WM−1W𝑇, whereM = W𝑇W+𝜏I

𝑑
is 𝑑×𝑑matrix.

𝑑 is determined by applying PCA dimensionality reduction,
and 𝑑 ≪ 𝐷 (refer to Section 6.1). Calculating the inverse
of 𝐷 × 𝐷 matrix Ψ is changed into inverting 𝑑 × 𝑑 matrix

M, which simplifies the algorithm complexity noticeably, and
the time complexity is 𝑂(𝑁𝑑

2
). The time complexity is also

relatedwith the iterations of EMalgorithm. Iterative times are
smaller than 15 in the paper. ApplyingMatlab to runRMPCM
anomaly detection algorithmon selected data, execution time
is shown in Table 1, and computer specifications areWindows
7, i7 3.5 GHzCPU, and 4GBRAM. In the process of imple-
mentation the calculation will be faster when converting
Matlab code into binary executable program.

5. Evaluation

Normally there are 3 methods that can be applied to assess
the performance of network anomaly detection algorithm:
network traffic simulation experiment [10, 14–16], testbed
experiment [19], and real network data analysis [9, 10, 20,
32, 34]. There are pros and cons regarding each method.
For example, network traffic simulation experiment produces
synthetic datawhich can be entirely controlled by researchers,
but it is not so close to reality; real network data analysis is
closest to reality but it is difficult to establish a benchmark;
testbed experiment gives attention to both reality and con-
trollability, but the real output data might also deviate from
the experiment settings. In order to assess the performance
of RMPCM more objectively, all the three of them were
combined to conduct analysis. Experimental content and
method are shown in Table 2.

RMPCM will be compared with the anomaly detection
method based on subspace construction via PCA and its
improved method ANTIDOTE [15] to assess its real perfor-
mance. As it is known, the anomaly detection method based
on PCA is accepted and applied commercially (a commercial
anomaly detection system (NetReflex by Guavus) is based
on the well-known anomaly detector using PCA [34]).
Therefore, the results should be persuasive.

5.1. Network Traffic Simulation Experiment. Network anoma-
lous traffic, especially some poisoning attack traffic, may
cause the skewing of detection model, which would sig-
nificantly decrease the performance of anomaly detectors
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Figure 7: Steps for synthetic generation of anomalies.

[14, 22]. In this section the performance of RMPCM under
poisoning will be assessed.

5.1.1. Anomaly Generation. The structure of network-wide
traffic was revealed for the first time by Lakhina et al., which
is that OD flows consist of large number of periodic and
deterministic trends, some of the noises, and few of spikes
[8]. In order to be closer to the reality, the real network data
as shown in Table 1 is chosen as the blueprint of simulation,
andDiscreteWavelet Transform is adopted to obtain periodic
and deterministic trends of the real data which are the normal
daily mode by eliminating noises and spikes [10]. After
that, artificial noises and anomalies are synthetically injected
into the periodic daily mode components. The process is as
follows.

(1) Daubechies 5 orthogonal wavelet is adopted for
multiresolution analysis, and high-frequency components
containing noise and anomalies are removed by filtration
from 121OD flows’ data in the trafficmatrix, which computes
the periodic smoothing components as the basis, as shown in
Figure 7(a).

(2) Zero-mean Gaussian white noise is injected after (1),
as shown in Figure 7(b).

(3) Typical anomalies are injected after (1) and (2), as
shown in Figure 7(c).

121 OD flows are produced in this way. Data collection
occurs every 5 minutes, which is marked as one collection
cycle. Trafficmatrixwith 2016 rows and 121 columns is created
with one week’s collections in 121OD flows.

Table 3: Typical anomalies in the Internet.

Type Description

DoS Single source node sending large amount
of data to single destination node

DDoS Multiple source nodes sending large
amount of data to single destination node

ALPHA Abnormal high speed rate transferring
between two nodes

Ingress/egress shift Change of routing causing traffic
ingress/egress shift

Flash crowd Abnormal large data request for a certain
service

Table 4: Anomaly injection.

Type Injection method

DoS/DDoS Increasing the volume of single/multiple
OD flows gradually

ALPHA Promptly increasing the volume of a
single OD flow

Ingress/egress shift
Reducing a portion of volume of a certain
OD flow which then added to another
OD flow

Flash crowd
Increasing the volume of multiple OD
flows rapidly and then tuning them back
to normal gradually

As we mainly focused on traffic volume anomalies, five
kinds of typical anomalies were simulated: DoS, DDoS,
ALPHA, ingress/egress shift, and flash crowd. Their brief
description is shown inTable 3. Table 4 indicates howwehave
them injected.

5.1.2. Poisoning Generation. The poisoning method Add-
More-If-Bigger discussed in [15] was employed in this sec-
tion. It suggests injecting poisoning traffic flow into targeted
OD flow to increase its variance, which skews the detec-
tor’s normal traffic model and thereby increases the escape
probability of anomalies. This poisoning method requires
attackers to grasp the real-time traffic volume of background
flows. Add-More-If-Bigger means attackers inject poisoning
traffic when the background traffic volume exceeds its mean
value. The volume of poisoning traffic is 𝑐

𝑡
= (max{0, 𝑥

𝑠
(𝑡) −

mean})𝛽, where mean = (1/𝑇)∑
𝑇

𝑡=1
𝑥
𝑠
(𝑡), 𝑥
𝑠
(𝑡) is the volume

of targeted OD traffic at the moment of 𝑡. 𝑐
𝑡
is a function

with parameter 𝛽 which determines the degree of poisoning.
In this experiment 𝛽 = 0.8 means medium poisoning, and
𝛽 = 1.2means high poisoning.

5.1.3. Anomaly Detection under Poisoning. Anomalies were
injected according to the method in Section 5.1.1. Different
anomalies usually have different characteristics; thus injec-
tion should also be used in a different way. Usually DoS
or DDoS attacks are the gradually increasing traffic volume
of single or multiple OD flows, which normally lasts 5 to
30 minutes; ALPHA is always the sharp rise of single OD
flowwith uncertain duration; flash crowd occurs when traffic
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volume of multiple OD flows uprises fast and goes back to
normal gradually; ingress/egress shift is likely to show a step
change of 2OD flows’ volume, which normally lasts a long
time until the routing policy change. According to their own
properties, 5 ALPHA attacks were injected in 100∼500 with
its volume accounting for 50% of the mean volume of OD
flows; each of them lasted 20 minutes; at 600, an hour’s flash
crowd anomaly was injected into OD flows from 3 origin
nodes to one destination node, the volume of which was
10% ∼40% of the mean volume of OD flows; at the time
of 700, 200 minutes’ ingress/egress shift were injected, and
the volume of transferred traffic was 50% of the mean of
OD flows; 5Dos attacks were injected in 1000∼1400 with its
volume accounting for 30% ∼50% of the mean volume of OD
flows, and every one of them lasted 30 minutes; at the time of
1700, 30 minutes’ DDoS attacks were injected into OD flows
from 4 origin nodes to 1 destination node, and the volume of
the anomalies is from 5% to 30% of the mean volume of OD
flows.

Subspace construction via PCA and ANTIDOTE was
selected in order to be compared with RMPCMunder exactly
the same circumstance to evaluate its detection performance
under poisoning, and we plot the squared norm of the resid-
ual vector as a function of time to showPCAandANTIDOTE
method results. Receiver Operations Characteristic (ROC)
curve is also applied to the overall performance estimation
of three above methods. The 𝑥 axis means false positive rate
(FPR), and 𝑦 axis represents true positive rate (TPR). ROC
curve can display the relationship between TPR and FPRwith
the change of thresholds. The area under the curve is the
performance indicator. The larger the area is, the better the
performance is.

The experiment was conducted with the data generated
in one week to compare those three methods. Three ROC
curves are drawn corresponding to no poisoning, medium
poisoning, and high poisoning (Figure 10), and part of the
experiment results is shown in Figures 8 and 9. Before
poisoning (Figure 8) these three methods have a similar
performance. After medium poisoning (Figure 9) the vol-
ume of the residual vector of background traffic increases
significantly in PCA method, and the performance of PCA
reduces dramatically because lots of anomalies submerge in
the background traffic (Figure 9(b)); ANTIDOTE performs
well against poisoning, but low volume anomalies could
easily escape its detection (Figure 9(c)); RMPCM has a stable
performance, which does not decline toomuch after injection
(Figure 9(a)). Figure 10 reveals that poisoning has a large
impact on PCA anomaly detector, and FPR increases quickly
after TPR exceeded 60%; RMPCM and ANTODOTE have
a better antipoisoning ability; the detection performance of
RMPCM is better than ANTIDOTE because its ROC curve
rises up more quickly.

5.1.4. Anomaly Localization Test. Table 5 illustrates the set-
ting of anomaly locating test, and a single OD ormultiple OD
flows were injected with anomalies generated in Section 5.1.3.
The result of anomaly localization test in RMPCM method
is shown in Figure 11, the histograms represent anomaly
contribution degree of each OD at the time of anomaly
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Figure 8: Comparison of three methods’ test results with no
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Table 5: Setting of anomaly localization test.

Time of
anomaly
occurrence

Injection position Type

300 OD50 ALPHA

703 OD50, OD100 Ingress/egress shift

602 OD7, OD40, OD60 Flash crowd

1704 OD10, OD20, OD60, OD80 DDoS

occurrence, and the result agrees with the setting from
Table 5. As shown in Figure 11(a), anomaly contribution
degree of OD50 noticeably exceeds the contribution degree
threshold; therefore it is certain that anomaly at the time
of 300 occurs on OD50; from Figures 11(b), 11(c), and 11(d)
it is found that there is no single OD contribution degree
exceeding the threshold, and this requires locating multiple
OD when anomalies occur.

5.2. Testbed Experiment. Cyber-defense technology experi-
mental research laboratory testbed (DETERLab) [35] pro-
posed by the University of Southern California is chosen to
conduct the testbed experiment. Not only can DETERLab
interconnect nodes in the prototype system with any topo-
logical structure, but also its configuration for experiment
condition is flexible. It provides researchers with needed
background traffic and attack traffic injection for conducting
network attack-defense experiments and then deploys and
evaluates feasible solutions. It can fully integrate local hard-
ware resources and has a better simulation advantage over
software such as NS2.

In our experiment attacking tools based on Metasploit
framewas integrated into DETERLab’s security experimenta-
tion environment (SEER) toolset to generatemultiple anoma-
lies on the DETERLab platform. Our experiment sets up 10
PoP nodes and chooses the adjacent node of each PoP node as
collection device, and the topological configuration is shown
in Figure 12.The duration of the experiment is one week, data
are collected every 5 minutes which is a collection cycle, and
there are total 2016 cycles for a week. The collecting data is
byte count of traffic flows.

5.2.1. Anomaly Detection in Noisy Traffic. In order to verify
RMPCM’s performance in noisy traffic, the experiment set up
three situations to compare with the detection method based
on subspace construction via PCA, which test the detection
accuracy, factors impacting performance, and poisoning of
large anomalies, respectively, in the two methods.

At the time of 500 and 1000DoS attacks using TCP
SYN Flood were initiated from PoP1 to PoP2, at the time of
1800DoS attacks were carried out from PoP3 to PoP4, and
the duration of DoS attacks was all 4 cycles; at the time of
800 port scan was initiated from PoP1 to PoP2, PoP5, and
PoP6 applying by Nmat, and the duration was 5 cycles; at the
time of 1200 ingress/egress shift was initiated by transferring
50% of the traffic volume of the OD path (PoP1 to PoP2) to
another (PoP7 to PoP8), and the durationwas 40 cycles; at the
time of 1500DDoS attacks using UDP Flood on PoP10 were
initiated from PoP2, PoP4, PoP5, and PoP8 simultaneously,
and it lasted 6 cycles. Figure 13(a) and Table 6(a) illustrate
the test results applying RMPCM and subspace construction
via PCA. Both methods succeed in detecting 6 anomalies,
but the latter does not detect anomalies every time in
the corresponding cycles of anomaly occurrence, especially
for the 1200–1239 ingress/egress shifts. The anomaly cycles
detected by PCA are shorter than the settings, while RMPCM
made a notable improvement over PCA.

In order to reveal the impacting factors and performance
differences of two methods further, anomalies were adjusted.
The volume of DoS attacks beginning at 500 and 1800 was
reduced by 50%; the range of port scan beginning at 800
decreased to the range only from PoP1 to PoP2, and scanning
frequency was deducted by 50% as well; the duration of
ingress/egress shift beginning at 1200 was cut down by 20
cycles; DDoS attacks beginning at 1500 were narrowed down
to the range from PoP2 and PoP4 to PoP10 and kept the
same attack volume; DoS attacks beginning at 1000 remained
unchanged. Figure 13(b) and Table 6(b) indicate that the
change of volume and range of anomalies would influence
the performance of both of the methods, and the impact of
duration deduction is hardly noticeable. PCA gives us false
positive alarms at total of 10 time points including 1272, 1407,
and 1451, which is higher than RMPCM obviously.

The attack volume of DoS increased by 220% to produce
a large anomaly, and other factors remained the same as
the first test. A large anomaly could raise variance level
of the path that it was on, and other anomalies causing
small variance would be mistaken for a normal event in
this situation. Figure 13(c) and Table 6(c) show that the large
anomaly leads to the dramatic decrease in the detection
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Figure 11: Results of locating OD of anomaly occurrence in simulation experiment.
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Figure 12: Topological configuration on DETERLab.

accuracy of PCA method. OD paths of anomaly occurrence
contain theODpath of the large anomaly (PoP1 to PoP2), and
then the corresponding anomaly detection rate is affected:
Dos beginning at 1000 and the large anomaly are on the
same path, and the Dos attack is completely missing from the
figure; ingress/egress shift involves 2OD paths which contain
the OD path of the large anomaly, and the residual vector also

seriously decays and does not reach the detection threshold;
port scan and DDoS also contain OD path where the large
anomaly occurs, and its residual vector is affected in varying
degrees; DoS beginning at 1800 does not involve the OD path
of the large anomaly, thus the detection to the above DoS
attack is not impacted. Comparably RMPCM has a strong
robustness, and detection accuracy is not affected.



14 Mathematical Problems in Engineering

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11

Residual vector of DETERLab data
Q-statistic threshold

Time Time

×1015 ×1015

M
ah

al
an

ob
is 

di
st

an
ce

𝛿2 of DETERLab data
3𝜎 threshold

Re
sid

ua
l v

ec
to

r

2 4 6 8 10 12 14 16 18 20
×102

2 4 6 8 10 12 14 16 18 20
×102

(a) Initial settings, RMPCM on the left and PCA on the right

2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

Time Time

×1015

×102

×1015

𝛿2 of DETERLab data
3𝜎 threshold

M
ah

al
an

ob
is 

di
st

an
ce

Re
sid

ua
l v

ec
to

r

Residual vector of DETERLab data
Q-statistic threshold

2 4 6 8 10 12 14 16 18 20
×102

(b) After adjusting settings, RMPCM on the left and PCA on the right

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

TimeTime

×1015 ×1015

𝛿2 of DETERLab data
3𝜎 threshold

M
ah

al
an

ob
is 

di
st

an
ce

Re
sid

ua
l v

ec
to

r

Residual vector of DETERLab data
Q-statistic threshold

2 4 6 8 10 12 14 16 18 20
×102

2 4 6 8 10 12 14 16 18 20
×102

(c) Injecting the large anomaly, RMPCM on the left and PCA on the right

Figure 13: Comparisons of RMPCM and PCA test results on DETERLab.
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Table 6: Comparisons of RMPCM and PCA test results on DETERLab.

(a) Initial settings

Preset anomaly cycles Alerts cycles Type
RMPCM PCA

500∼503 501∼503 502, 503 DoS
800∼804 801 801 Port scan
1000∼1003 1000∼1003 1000∼1003 DoS
1200∼1239 1200∼1239 1217, 1231–1239 Ingress/egress shift
1500∼1505 1501∼1505 1501∼1505 DDoS
1800∼1803 1802, 1803 1803 DoS

(b) After adjusting settings

Preset anomaly cycles Alerts cycles Type
RMPCM PCA

500∼503 503 502, 503 DoS
800∼804 Port scan
1000∼1003 1001, 1002 1001, 1002 DoS
1200∼1219 1200∼1219 1200∼1219, 1272 Ingress/egress shift

1500∼1505 1503, 1504 1407, 1416, 1451, 1503,
1504, 1637, 1665

DDoS

1800∼1803 1802 1701, 1733, 1814, 1849 DoS

(c) Injecting the large anomaly

Preset anomaly cycles Alerts cycles Type
RMPCM PCA

500∼503 500∼503 500∼503 DoS
800∼804 801 801 Port scan
1000∼1003 1001, 1002 DoS
1200∼1239 1200∼1239 Ingress/egress shift
1500∼1505 1501∼1504 1502∼1504 DDoS
1800∼1803 1801, 1803 1801∼1803 DoS

The above experiment demonstrates RMPCMhas a better
detection performance than the method based on subspace
construction via PCA. Add-More-If-Bigger poisoning exper-
iment in Section 5.1.3 and large anomaly poisoning experi-
ment verify that RMPCM has a strong robustness under the
poisoning of variance injection.

5.2.2. Anomaly Detection with Data Loss. Data loss may
be caused by network malfunction, device breakdown, and
so on; thus algorithms based on conventional nonstatistical
model become inapplicable because of the incomplete input
data. RMPCM based on the latent variable probability model
of multivariate 𝑡-distribution has its distinct advantage when
solving the problem of data loss. The detection performance
of RMPCM with data loss is tested on DETERLab. The
scenarios are set to the occurrence of data loss when fac-
ing link fault, collection device breakdown, and PoP node
malfunction. Link fault will incur data loss when OD flows
go through the link; collection device breakdown will cause
the data loss of OD flows whose source node is the node
connected with the broken-down device; data loss caused
by PoP node malfunction is related with malfunction types,

network topology, and router strategies. Figure 12 displays
experimental topology configuration, and 100 anomalies
were injected in the way that was used in Section 5.2.1.
In order to eliminate occasionality 10 experiments were
conducted for each type of malfunctions, 403 cycles and 1008
cycles were randomly selected (which accounted for 20% and
50% of all 2016 cycles in one week resp.), in which a randomly
selected link (collection device, PoP node) broke down, and
the malfunction duration lasted 20 cycles. The mean of
10 experiment results was used to draw the ROC curves.
The experiments results indicate that link fault, collection
device breakdown, and PoP node malfunction regularly and
increasingly deteriorate the accuracy of anomaly detection,
but overall RMPCM has better robustness in this situation.
Its TPR is close to 70% when FPR is 20% even in the worst
scenario (PoP node malfunction occurred in 50% cycles)
(Figure 14(c)).

5.2.3. Anomaly Localization Test. Table 7 illustrates the set-
ting of anomaly locating test, and a single OD ormultiple OD
flows were injected with anomalies generated in Section 5.2.1.
The result of anomaly localization test in RMPCM method
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Figure 14: RMPCM detection results (left) and ROC curves (right) with data loss on DETERLab.
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Figure 15: Results of locating OD of anomaly occurrence on DETERLab.

Table 7: Setting of anomaly localization test.

Time of
anomaly
occurrence

Injection position Type

502 OD2 DoS
1203 OD2, OD78 Ingress/egress shift
802 OD2, OD5, OD6 Port scan

is shown in Figure 15, the histograms represent anomaly
contribution degree of each OD at the time of anomaly
occurrence, and the results agree with the setting from

Table 7. As shown in Figure 15(a), anomaly contribution
degree of OD2 noticeably exceeds the contribution degree
threshold; therefore it is certain that anomaly at the time of
502 occurs on OD2; from Figures 15(b) and 15(c) it is found
that there is not a single OD contribution degree exceeding
the threshold, and this requires locating multiple OD when
anomalies occur. Some problems of anomaly localization will
be discussed in Section 6.5.

5.3. Analysis of Real Network Data

5.3.1. Data Sets. Real network data sets are obtained from
backbone network Abilene [2, 9, 10, 16, 18, 20], whose main
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Table 8: Abilene traffic matrix data set.

Duration Time bin Measure Matrix form Data set
15 December–21 December 2003 5min Byte 2010 × 121 𝐵

15 December–21 December 2003 5min Packet 2010 × 121 𝑃

15 December–21 December 2003 5min Flow 2010 × 121 𝐹
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Figure 16: Test results of real network data with complete data, PCA (a) and RMPCM (b).

users are American universities and scientific institutions.
We choose the data from Abilene data sets dating from 15
December 2003 to 21December 2003 for its completeness and
convenience for reference.The raw data is NetFlow data from
11 PoP nodes, the access point and exit point of each flow are
obtained on the basis of BGP and ISIS routing table, and then
the volume of OD flows and traffic matrix can be calculated,
as shown in Table 8. Detection performance evaluation with
data loss and sensitivity analysis were conductedwith the data
set.

5.3.2. Anomaly Detection with Data Loss. When conducting
anomaly detection with data loss, data set 𝑃 was chosen to
implement four kinds of data loss mechanisms discussed
in Section 3.2.1. In order to clearly identify the different
performance of RMPCM in different data loss mechanisms
and evaluate the factors influencing the performance, nearly
the same loss rate was assigned to PureRandLoss, Peri-
odRandLoss, and ODRandLoss; the influence of different
volume of missing piece on the detection performance
was analyzed under PieceRandLoss. In order to eliminate
accidents, 10 experiments were conducted, and mean values
were calculated.

The true anomalies in the real network traffic data could
be hardly obtained exactly, and RMPCM and PCA generated
very similar alerts with the complete data set 𝑃 (as shown
in Figure 16), so the benchmark was set to be the detecting

result of RMPCM with complete data in order to test the
performance of RMPCM under the situations of data loss.

In the experiment of PureRandLoss, three kinds of loss
rates were selected which accounted for 10%, 20%, and 50%
of total data; in PeriodRandLoss the missing periods were
set to be 200, 400, and 1000, as the total periods were 2010;
data loss rates in here were close to 10%, 20%, and 50%;
in ODRandLoss we chose half adjacent data of a certain
column to be empty because of the algorithm limitation that
column of traffic matrix could not be empty entirely, lost OD
numbers were set to be 24, 48, and 121, and the loss rate per
OD was 50%; therefore, the total loss rates of ODRandLoss
were still 10%, 20%, and 50%. Parts of the results and ROC
curves under three kinds of loss mechanisms, respectively,
are displayed in Figures 17(a), 17(b), and 17(c). Three tests
above indicate the relatively high accuracy of RMPCM: when
the loss rate is 10%, the effect on anomaly detectors is
slight, and the detection performance is very similar to that
of RMPCM and PCA with complete data; as the loss rate
increasing the performance begins to decline, even when
the loss rate achieves 50%, test results are still applicable.
The tests also demonstrate that ODRandLoss has the biggest
impact on the performance of anomaly detectors, followed
by PeriodRandLoss and PureRandLoss. The total data loss
remains the same when applying these three methods, but
the performance of anomaly detectors deteriorates regularly,
and it is highly probable that this is due to the increase
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Figure 17: Continued.
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Figure 17: Test results of real network data under four loss mechanisms.
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Figure 18: Comparison of sensitivity to the change of intrinsic dimensions of PCA (a, b) and RMPCM (c, d).
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Figure 19: Comparison of sensitivity to the change of traffic measures of PCA (left) and RMPCM (right).

of structured loss of data. The volume of missing piece in
PureRandLoss is smallest, while volume of missing piece in
ODRandLoss is largest.

In order to verify the impact of structured loss on
the detection performance, we conducted experiment with
PieceRandLoss, and the total volume of loss is set to be the
same while the volume of eachmissing piece is set at different
sizes, which are 5∗ 5, 16∗ 16, and 40∗ 40, and the numbers
of missing pieces were 2000, 200, and 30, respectively; the
volume of total loss accounts for 20% of whole data. Parts
of the results and ROC curves in Figure 17(d) indicate that
the performance of anomaly detector declines significantly
when the volume of structured loss increases while the total
loss rate remains the same. However, RMPCM achieves
about 70% TPR with less than 20% FPR when applying
PieceRandLoss overall, which means the performance could
satisfy the requirement.

5.3.3. Sensitivity Analysis. The authors of [22] point out that
the detection algorithm based on subspace construction via
PCA is too sensitive to the change of intrinsic dimensions
and traffic measures; therefore, the same issues should also
be considered with RMPCM. The test will be conducted in

two scenarios: one is to analyze the sensitivity to the change
of intrinsic dimension 𝑑; the other is to analyze the sensitivity
to the change of traffic measures. The results of RMPCM
are to be compared with the algorithm based on subspace
construction via PCA.

Real network data set𝐹 in Table 8 was selected to conduct
the sensitivity to the change of intrinsic dimension analysis.
Intrinsic dimension 𝑑 varies depending on the accumulative
variance contribution of principal components which is
defined beforehand. The experiment results are displayed
in Figure 18. Figures 18(a) and 18(b), respectively, represent
detection curves when PCA model’s intrinsic dimension 𝑑

was set to be 4 and 5, as it can be seen that the detection results
vary largely; Figures 18(c) and 18(d) represent corresponding
curves of RMPCM, and the detection results agree with each
other. The further procedures are taken to test 𝑑 varying
from 2 to 10 when using RMPCM, and test results are almost
identical, which suggest that RMPCM is highly robust.

Real network data sets 𝐵, 𝑃, and 𝐹 in Table 8 were
employed to analyze the sensitivity to the change of traffic
measures. The accumulative variance contribution of princi-
pal components was set to be the same value of 0.85 when
using different traffic measures. The experiment results are



22 Mathematical Problems in Engineering

shown in Figure 19. The detection results in three kinds of
measures (𝐵, 𝑃, 𝐹) are completely different by applying PCA.
While using RMPCM the baselines of three curves are similar
to each other, and three test results are highly correlative.
Although benchmarks of anomalies in real network data sets
could not be acquired, the statistical data in three kinds
of measures (flow, packet, and byte) has interrelationship;
therefore corresponding anomaly detection results should
somewhat coincide. PCA produces too much conflict, which
indicates it ismuch sensitive to the change of trafficmeasures,
while RMPCM generates more satisfying results and shows a
strong robustness.

To summarize, RMPCM is convenient for practical
implementation for its lower sensibility and higher robust-
ness to the change of parameters such as intrinsic dimensions
and traffic measures.

6. Discussion

Issues like parameter selection, distribution characters of data
source, and so forth will be discussed further in this section.

6.1. Intrinsic Dimension. The Internet traffic matrix has this
characteristic of low dimensionality. The intrinsic dimension
𝑑 of the matrix needs to be determined at the beginning in
the process of modelling normal traffic by applying RMPCM.
The scree plot of data sets of 𝐵, 𝑃, and 𝐹 in Table 8 is
drawn using PCA, as is shown in Figure 20.The accumulative
variance contribution threshold is set to 0.85, and then
intrinsic dimension of these three data sets are all close to
5, which is far from their dimension 𝐷 (𝐷 = 121) of traffic
matrix. We then go further to Abilene traffic data in the
following three weeks and find that their intrinsic dimension
𝑑 is considerably stable. What is more, the experiment in
Section 5.3.3 also shows that RMPCM performance keeps
high stability when 𝑑 varies from 2 to 10, so we chose 𝑑 = 5

in this paper. In fact, when implementing RMPCM in real
situation, if network does not change a lot, the intrinsic
dimension of traffic matrix doesn’t need to be changed,
and there is no need to determine the intrinsic dimension
every time before detecting. This significantly reduces the
complexity of computation.

6.2. Anomaly DetectionThreshold. When network traffic is in
normal status, the distribution of the squared Mahalanobis
distance of traffic samples is close to Gaussian distribution. In
order to verify this, the normal probability plot of𝑃 in Table 8
is drawn by normplot of Matlab, as is shown in Figure 21.
Samples are mainly distributed on the normal line, which
are concentrated in the middle and sparse on both ends. A
Jarque-Bera test is employed in order to further verify its
normality. Since the samples’ squared Mahalanobis distance
almost follows Gaussian distribution, “3𝜎” control chart is
taken for anomaly detection in Section 4.3.

6.3. Distribution Characters of Data Source. Conventional
network-wide traffic anomaly detection algorithms usually
assume that the traffic matrix elements are drawn from
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Figure 20: Scree plot of data sets in Table 8.
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Figure 21: Normal probability plot of the squared Mahalanobis
distance of normal traffic (normplot test).

a Gaussian or Gaussian-like distribution [13]. We conduct
statistical analysis for real network data sets in Table 8 and
draw the normal probability plot. We find that the data
(traffic volume) exhibit a highly skewed distribution, many
of which are diverged from the normal line, and the density
of samples scattered on two ends is higher than Gaussian
distribution (Figure 22 illustrates some of drawn results).
Frequency histograms with superimposed normal density
curves are then plotted (as partially shown in Figure 23),
which indicates that real traffic volume’s heavy-tailed feature
ismore noticeable comparedwithGaussian distribution.This
is naturally one of the reasons why Gaussian distribution is
replaced by multivariate 𝑡-distribution when modeling the
traffic matrix.
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Figure 22: Comparison of normal probability plot of real traffic volume and Gaussian random data.
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Figure 23: Frequency histograms with superimposed normal density curves of real traffic volume.

6.4. False Positives and False Negatives. Compared with other
methods listed in the paper, RMPCM achieves a better per-
formance on reducing false positives and false negatives in the
experimental scenarios. One reason is that it is more accurate
for RMPCM to describe the traffic data. Conventional traffic
anomaly detection methods usually assume that the traffic
data are drawn from aGaussian orGaussian-like distribution.
We conduct statistical analysis for real network data sets,
and it indicates that real traffic volume’s heavy-tailed feature
is more noticeable compared with Gaussian distribution. So
we use the multivariate 𝑡-distribution as prior distribution
when modeling the traffic data. Another reason is that
introducing a latent variable probabilistic model based on

𝑡-distribution can relieve the noise interference and achieve a
better performance. In addition, RMPCM method is within
a probabilistic framework, making it attain advantages over
traditional method of nonprobabilistic model (such as sub-
space construction via PCA (Lakhina et al.)) in handling
missing data.

However, RMPCM also suffers from false positives and
false negatives to some degree. This is due to the dynamic
nature of the network traffic flows, which inevitably leads
to some deviation when describing the change of traffic
by applying this algorithm based on baseline. Moreover,
false positives and false negatives will occur under the
circumstances in which anomalous traffic generated in
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Figure 24: Anomaly location histogram with 5 anomalous OD
settings.

the experiments is excessively small or large along with the
interference of background traffic. But on the whole the false
positives and false negatives of RMPCM can meet the needs
of engineering practices.

6.5. Problems on Anomaly Localization. The anomaly local-
ization in scenarios with more anomalous OD is discussed
here. The experimental environment is DETERLab with
10 PoP nodes the same as in Section 5.2. The benchmark is
set up with the scenario where DDoS attacks took place from
1∼9 nodes to one node. When the number of anomalous
OD is from 1 to 4, the results agree with the setting. When
the number of anomalous OD is 5, the preset anomalous
OD are OD20, OD40, OD50, OD60, and OD80, but the
localization results are OD20, OD39, OD40, OD60, and
OD80, as shown in Figure 24. During the experiment, it is
found that the accuracy of anomaly localization decreases
with the increasing number of anomalous OD, as shown in
Figure 25. This problem will be researched further in depth
in the future.There are several preliminary considerations for
this taking place.

(a) With the increasing number of anomalous OD, the
volume of anomalous traffic also increases significantly, if
the volume of anomalous traffic is excessively large which
exceeds the anomalous observations tolerance of the pro-
posed approach, and then it is highly likely to impact the
detection performance and location results of the proposed
approach.

(b) In addition, with the increasing number of anomalous
OD and the volume of anomalous traffic, the impact on every
single OD becomes relatively smaller, which brings negative
impact on the accuracy of anomalous OD localization.

7. Conclusion

In conclusion, traditional network-wide anomaly detection
methods have actual problems of performance reduction or
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Figure 25: Anomaly location results with 1∼9 anomalous OD
settings.

being unavailable when noise interference or data loss takes
place, and in order to solve these problems and advance
anomaly detection and localization, we propose a network-
wide approach based on robust multivariate probabilistic
calibration model in this paper. The analysis conducted with
simulations, DETERLab experiments, and real data from
the Internet indicates that the performance of RMPCM is
better than PCA and ANTIDOTE and has a better robust-
ness. Regardless of data loss or noise interference, RMPCM
demonstrates a stable performance and less sensitivity to
the change of parameters. RMPCM can be also applied to
locating anomalies. In the future, we will take our researches
on more accurate and fine-grained anomaly localization and
online RMPCM algorithm.
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