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Although näıve Bayes learner has been proven to show reasonable performance in machine learning, it often suffers from a few
problems with handling real world data. First problem is conditional independence; the second problem is the usage of frequency
estimator. Therefore, we have proposed methods to solve these two problems revolving around naı̈ve Bayes algorithms. By using
an attribute weighting method, we have been able to handle conditional independence assumption issue, whereas, for the case
of the frequency estimators, we have found a way to weaken the negative effects through our proposed smooth kernel method.
In this paper, we have proposed a compact Bayes model, in which a smooth kernel augments weights on likelihood estimation.
We have also chosen an attribute weighting method which employs mutual information metric to cooperate with the framework.
Experiments have been conducted on UCI benchmark datasets and the accuracy of our proposed learner has been compared with
that of standard näıve Bayes. The experimental results have demonstrated the effectiveness and efficiency of our proposed learning
algorithm.

1. Introduction

Näıve Bayes classifier is a supervised learning method based
on Bayes rule of probability theory, running on labeled
training examples and driven by a strong assumption that
all attributes in the training examples are independent from
one another on the given training examples known as naı̈ve
Bayes assumption or näıve Bayes conditional independence
assumption. Naı̈ve Bayes classifier has high performance and
rapid classification speed and has exhibited its effectiveness
especially in huge training instances with plenty of attributes
mainly because of its independence assumption [1].

In practice, classification performance is affected by the
attribute independence assumption which is usually vio-
lated in real world. However, due to the attractive advan-
tages of efficiency and simplicity, both stemming from the
attribute independence assumption, many researchers have
proposed effective methods to further improve the perfor-
mance of naı̈ve Bayes classifier by weakening the attribute

independence without neglecting its advantages. We catego-
rize some typical previous methods of relaxing näıve Bayes
assumption and give brief reviews in Section 3. However, we
have found out that attribute weighting method has drawn
relatively little attention among those previous methods in
improving naı̈ve Bayes classifier, especially in the case when
attribute weighting method is combined with kernel method
in a reasonable way.

Although Chen andWang [2] proposed attribute weight-
ingmethodwith the kernel, their weighting scheme generates
a series of parameters from least squares cross-validation
which is less meaningful in terms of interpretation than
our proposed method. In contrast, we propose an attribute
weighting algorithm based on attribute weighting framework
with kernel method. Our method makes the weights embed-
ded in kernel have relatively interpretable meaning; thus we
can flexibly choose different metrics andmethods tomeasure
the weights based on our attribute weighting framework.
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Contributions of this paper are threefold:

(i) We briefly make a survey of ways to improve näıve
Bayes, especially focusing on those naı̈ve Bayes
weighting methods.

(ii) We propose a novel attribute weighting framework
called Attribute Weighting with Smooth Kernel Den-
sity Estimation, simply AW-SKDE. The AW-SKDE
framework employs a smooth kernel that makes the
probabilistic estimation of likelihood to be dominated
by the weights, which enables the combination of
kernel methods and weighting methods. After setting
up the kernel, we can generate a set of weights
directly by using various methods cooperating with
the kernel.

(iii) On the AW-SKDE framework, we propose a learner
called AW-SKDEMI in which we choose the mutual
information criterion to measure the dependency
between an attribute and its class label.

Our experimental results show that mutual information
criterion based on AW-SKDE framework exhibits superior
performance compared to standard naı̈ve Bayes classifier.

The paper is organized as follows: we briefly make a
survey of ways to improve näıve Bayes in Section 2. In
Section 3, we introduce the background of our study. In
Section 4, we first propose our attribute weighting framework
based on kernel density estimation. After that, we propose
a method employing the mutual information criterion for
attribute weighting based on our proposed framework. In
Section 5, we describe the experiment and results in detail.
Lastly, we draw conclusions for our study and describe the
future research in Section 6.

2. Related Work

A number of methods that weaken attribute independent
assumption for naı̈ve Bayes have been proposed in the
recent years. Jiang et al. [3] made a survey about improving
näıve Bayes method. Those methods are broadly divided
into five main categories: structure extension, feature selec-
tion, data expansion, local learning, and attribute weight-
ing. We make a brief review by following this categoriza-
tion.

For data expansion, Kang and Sohn [4] have presented
an algorithm called propositionalized attribute taxonomy
learner, simply PAT-learner. In PAT-learner, the training data
set is first disassembled into small pieces with attributes
values; then, PAT-learner rebuilds a new data set called PAT-
Table by using divergence between the distribution of the
class labels associated with the corresponding attributes at
the disassembled date set. Kang and Kim [5] also proposed a
Bayes learner based on PAT-learner, called propositionalized
attribute taxonomy guided näıve Bayes learner (PAT-NBL).
They utilize propositionalized data set and PAT-Table that
is generated from PAT-learner to build näıve Bayes classi-
fiers.

Wong [6] has focused on the discretization method of
attributes to improve naı̈ve Bayes. Wong has proposed a

hybrid method for continuous attributes and mentioned that
discretizing continuous attributes in a data set using different
methods can improve the performance of näıve Bayes learner.
Also, Wong provides a nonparametric measure to evaluate
the dependence level between a continuous attribute and the
class.

In structure extension, Webb et al. [7] have proposed
a method called aggregating one-dependence estimators,
simply AODE. In AODE, the conditional probability of test
instances given class is tuned by one attribute value which
occurs in the test instance. After the training stage, AODE
outputs an average one-dependence estimator. AODE is a lazy
method of structure extension of Bayesian network. Jiang et
al. [3] have proposed hidden naı̈ve Bayes, simplyHNB, which
is also a kind of structure extension method.

As for attribute weighting methods, we have two ways to
get attribute weights. The first one is to construct a function
with the parameters of attributeweight and to let this function
fit itself with the training data by estimating theweights. Zaidi
et al. [8] have proposed a weighted näıve Bayes algorithm,
called weighting to alleviate the näıve Bayes independence
assumption, simply WANBIA. Based on WANBIA frame-
work, the authors have described two methods to obtain
the attribute weights: WANBIACLL, which maximizes the
conditional log likelihood function and WANBIAMSE, which
minimizes mean squared error function.

Chen and Wang [2] have also proposed an algorithm to
minimize mean squared error function in order to obtain
the attribute weights. In another paper, Chen and Wang [9]
have proposed a method called subspace weighting naı̈ve
Bayes (simply SWNB) that is a näıve Bayes weightingmethod
to deal with high-dimensional data. Using the local feature-
weighting technique, SWNB has the ability to describe
different contributions of attributes in the training data set
and outputs an optimal set of attribute weights fitting a Logit
normal priori distribution.

There are many other methods that can be categorized
into attribute weighting. Lee et al. [10] have calculated
attributes weight via Kullback-Leibler divergence between
the attribute and class label. Wu and Cai [11] have pro-
posed decision tree-based attribute weighted AODE, simply
DTWAODE. DTWAODE generates a set of attribute weights
directly, and the weight value decreases according to attribute
depth in the decision tree. Omura et al. [12] have proposed a
weighting method, called confidence weight for näıve Bayes,
and that confidence weight is derived from the probabilities
of the majority class in the training data set.

3. Background

In this section, we explain the concepts of machine learning
methods used in this paper, including naı̈ve Bayes classifier,
näıve Bayes attribute weighting, and kernel density estima-
tion for näıve Bayes categorical attributes. The symbols used
in this paper are summarized in Notations section.

3.1. Naı̈ve Bayes Classifier. In supervised learning, consider a
training data setD = {x(1), . . . , x(n)} composed of 𝑛 instances,
where each instance x = ⟨𝑥1, . . . , 𝑥𝑚⟩ ∈ D (𝑚-dimensional
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vector) is labeled with class label 𝑐 ∈ 𝐶. For the posterior
probability of 𝑐 given x, we have

𝑝 (𝑐 | x) =
𝑝 (x | 𝑐) ⋅ 𝑝 (𝑐)

𝑝 (x)
∝ 𝑝 (x | 𝑐) . (1)

But likelihood 𝑝(x | 𝑐) cannot be directly estimated from
D because of insufficient data in practice. Näıve Bayes uses
attributes independence assumption to alleviate this problem;
from the assumption, 𝑝(x | 𝑐) is shown as follows:

𝑝 (x | 𝑐) =
𝑚

∏

𝑖=1
𝑝 (𝑥𝑖 | 𝑐) . (2)

In the training phase, only 𝑝(𝑥𝑖 | 𝑐) and 𝑝(𝑐) need to be
estimated for each class 𝑐 ∈ 𝐶 and each attribute value 𝑥𝑖 ∈
𝐴 𝑖. The estimation method uses the frequency of 𝑥𝑖 given 𝑐
and the frequency of 𝑐 for 𝑝(𝑥𝑖 | 𝑐) and 𝑝(𝑐), respectively.

In the classification phase, if we have a test instance t =
⟨𝑡1, . . . , 𝑡𝑚⟩ where 𝑡𝑚 is an attribute value of the attribute 𝑚
in the test instance, näıve Bayes classifier outputs a class label
prediction of t based on the frequency estimation of 𝑝(𝑥𝑖 | 𝑐)
and 𝑝(𝑐) which have been generated in the training phase.
The classifier of naı̈ve Bayes is shown as follows:

𝐶NB (t) = argmax
𝑐∈𝐶

𝑝 (𝑐)

𝑚

∏

𝑖=1
𝑝 (𝑥𝑖 | 𝑐) . (3)

As it was aforementioned, naı̈ve Bayes assumption con-
flicts withmost real world applications (note that it is rare that
attributes in the same data set do not have any relationships
between each other). Therefore, many researchers provide
proposals to relax näıve Bayes assumption effectively, which
have been reviewed in Section 2.

In this paper, we focus on attribute weighting methods
combined with kernel density estimation technique which is
applied to näıve Bayes learner in order to relax conditional
independence assumption.

3.2. Naı̈ve Bayes Attribute Weighting. Generally, näıve Bayes
attribute weighting scheme can be formulated in several
forms. Firstly, the weight to each attribute is defined as
follows:

𝑝 (𝑐 | x) = 𝑝 (𝑐)
𝑚

∏

𝑖=1
𝑝 (𝑥𝑖 | 𝑐)

𝑤𝑖
. (4)

If the weight depends on attribute and class, the corre-
sponding formula is as follows:

𝑝 (𝑐 | x) = 𝑝 (𝑐)
𝑚

∏

𝑖=1
𝑝 (𝑥𝑖 | 𝑐)

𝑤𝑐𝑖
. (5)

The following formula is used for the case when the
weight depends on attribute value:

𝑝 (𝑐 | x) = 𝑝 (𝑐)
𝑚

∏

𝑖=1
𝑝 (𝑥𝑖 | 𝑐)

𝑤𝑖,𝑥𝑖
. (6)

Referring back to (4), when ∀𝑤𝑖 = 𝑤, the formula is
shown as follows:

𝑝 (𝑐 | x) = 𝑝 (𝑐)
𝑚

∏

𝑖=1
𝑝 (𝑥𝑖 | 𝑐)

𝑤
. (7)

It is worthwhile to mention that (7) is considered as a
special case of näıve Bayes classifier, where each attribute
𝐴 𝑖 has the same weight ∀𝑤𝑖 = 𝑤 = 1. In other words,
näıve Bayes classifier ignores the importance of attributes.
From information theoretic perspective, naı̈ve Bayes classifier
abandons the chance of digging more information from D
to reduce the entropy of class. This is one of the reasons
why attribute weighting method provides more accuracy of
classification result than näıve Bayes classifier.

In our approach, we follow (4) that assigns 𝑤𝑖 which
corresponds to the attribute 𝐴 𝑖. But instead of using 𝑤𝑖 as an
exponential parameter, we incorporate 𝑤𝑖 into 𝑝(𝑥𝑖 | 𝑐) so
that it works in a more generalized form. The weight in our
paper works in the kernel, as is shown in (13), described in
Section 4.1.

Based on information theoretic perspective, attribute
weighting method tries to find out which attribute will give
more information for classification than other attributes. If
an attribute 𝐴 𝑖 in data set D provides more information to
reduce the entropy of class label 𝐶 than other attributes, then
𝐴 𝑖 will be assigned with a higher weight.

3.3. Kernel Density Estimation for Naı̈ve Bayes Categorical
Attributes. In näıve Bayes learner, which has been discussed
in Section 3.1, the likelihood 𝑝(𝑎(𝑗)

𝑖
| 𝑐) is often estimated

by 𝑓𝑐(𝑎
(𝑗)

𝑖
), the frequency of 𝑎(𝑗)

𝑖
given 𝑐; note that 𝑎(𝑗)

𝑖
is the

value of attribute 𝑖 at the 𝑗th instance in a data set D. From
a statistical perspective, a nonsmooth estimator has the least
sample bias, but it also has a large estimation variance [2, 13]
at the same time. Aitchison and Aitken [14] have proposed
a kernel function and Chen and Wang [2] have proposed a
variant of smooth kernel function alternating the frequency.
The definition of their kernel function in [2] is as follows.

Given a test instance t = ⟨𝑡1, . . . , 𝑡𝑚⟩ where 𝑡𝑚 is an
attribute value of the attribute𝑚 in the test instance,

𝜅 (𝑡𝑖, 𝑎
(𝑗)

𝑖
, 𝜆𝑐𝑖) =

{
{
{

{
{
{

{

1 −





𝐴 𝑖





− 1





𝐴 𝑖





𝜆𝑐𝑖: 𝑡𝑖 = 𝑎
(𝑗)

𝑖

1





𝐴 𝑖





𝜆𝑐𝑖: 𝑡𝑖 ̸= 𝑎
(𝑗)

𝑖
.

(8)

Note that 𝜅(𝑡𝑖, 𝑎
(𝑗)

𝑖
, 𝜆𝑐𝑖) is a kernel function for𝐴 𝑖 given 𝑐,

which may become an indicator if 𝜆𝑐𝑖 = 0. 𝜆𝑐𝑖(= 𝑤𝑐𝑖 ⋅ 𝜆𝑐) is
the bandwidth such that 𝜆𝑐 = 1/√𝑛𝑐, 𝜆𝑐𝑖 ∈ [0, 1], and 𝑛𝑐 is a
number of instances inD given 𝑐.

In [2], they have used (8) to estimate 𝑝(𝑡𝑖 | 𝑐) as follows:

𝑝 (𝑡𝑖 | 𝑐, 𝜆𝑐𝑖) =
1
𝑛𝑐

𝑛𝑐

∑

𝑗=1
𝜅 (𝑡𝑖, 𝑎

(𝑗)

𝑖
, 𝜆𝑐𝑖)

= 𝑓𝑐 (𝑡𝑖) +(
1





𝐴 𝑖





− 𝑓𝑐 (𝑡𝑖)) 𝜆𝑐𝑖,

(9)
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where we use 𝑝(𝑡𝑖 | 𝑐, 𝜆𝑐𝑖) instead of 𝑝(𝑡𝑖 | 𝑐). (Note that
𝑝(𝑐) is still estimated by frequency.) They minimize the cost
function to take out a series𝑤𝑐𝑖 for each𝐴 𝑖 in class 𝑐.The cost
function is defined as follows:

𝐽 (𝑤𝑐) =

𝑚

∑

𝑖=1

𝐴𝑖

∑

𝑎𝑖

(𝑝 (𝑎𝑖 | 𝑐) − 𝑝 (𝑎𝑖 | 𝑐, 𝑤𝑐𝑖))
2
. (10)

Hence, the classifier is formulated as follows:

𝐶 (t) = arg max
𝑐∈𝐶

𝑝 (𝑐)

𝑚

∏

𝑖=1
𝑝 (𝑡𝑖 | 𝑐, 𝜆𝑐𝑖) . (11)

4. AW-SKDE Framework and
AW-SKDEMI Learner

As mentioned earlier, in this section, we propose an attribute
weighting framework working on the categorical attribute
called Attribute Weighting with Smooth Kernel Density Esti-
mations, simply AW-SKDE. Based on the AW-SKDE frame-
work, a learner named AW-SKDEMI is proposed, in which
mutual information attribute weighting is applied.

4.1. AW-SKDE Framework. In (8), we pose an assumption
that if a certain attribute 𝐴 𝑖 has more importance for
classification given class label, in other words,𝐴 𝑖 can provide
more information to reduce the indeterminacy of class 𝑐, then
the value of 𝑝(𝑎(𝑗)

𝑖
| 𝑐) should be more close to 𝑓𝑐(𝑎

(𝑗)

𝑖
);

otherwise, if 𝐴 𝑖 is less meaningful for classification, then
𝑝(𝑎

(𝑗)

𝑖
| 𝑐) should be more close to 1/|𝐴 𝑖|. We let the

bandwidth𝜆𝑐𝑖 = (1−𝑤𝑖)
2
×𝜆𝑐, where𝑤𝑖 ∈ [0, 1], 𝜆𝑐 = 1/√𝑛𝑐,

and 𝑛𝑐 is the number of instances labeled𝐶 = 𝑐.The variation
of (8) according to our proposal is as follows:

𝜅 (𝑡𝑖, 𝑎
(𝑗)

𝑖
, 𝑤𝑖)

=

{
{
{

{
{
{

{

1 −





𝐴 𝑖





− 1





𝐴 𝑖





(1 − 𝑤𝑖)
2
𝜆𝑐: 𝑡𝑖 = 𝑎

(𝑗)

𝑖

1





𝐴 𝑖





(1 − 𝑤𝑖)
2
𝜆𝑐: 𝑡𝑖 ̸= 𝑎

(𝑗)

𝑖
.

(12)

The estimation 𝑝(𝑡𝑖 | 𝑐, 𝑤𝑖) of probability of 𝑝(𝑡𝑖 | 𝑐) is
described as follows:

𝑝 (𝑡𝑖 | 𝑐, 𝑤𝑖) =
1
𝑛𝑐

𝑛𝑐

∑

𝑗=1
𝜅 (𝑡𝑖, 𝑎

(𝑗)

𝑖
, 𝑤𝑖)

= 𝑓𝑐 (𝑡𝑖) +(
1





𝐴 𝑖





− 𝑓𝑐 (𝑡𝑖))
(1 − 𝑤𝑖)

2

√𝑛𝑐

.

(13)

Hence, AW-SKDE framework is defined as follows:

𝐶AW-SKDE (t) = arg max
𝑐∈𝐶

𝑝 (𝑐)

𝑚

∏

𝑖=1
𝑝 (𝑡𝑖 | 𝑐, 𝑤𝑖) . (14)

The AW-SKDE framework incorporates a smooth kernel
to make the probabilistic estimation of likelihood dominated
by the weights. This enables natural combination of kernel
methods and weighting methods. After setting up the kernel,
we can generate a set of weights estimated by variousmethods
cooperating with the kernel.

Table 1: Time complexity (𝑚: the number of attributes, 𝑛: the
number of training examples, 𝑘: the number of classes, and V: the
average number of values for an attribute).

Algorithm Training time Classification time
NB 𝑂(𝑚𝑛) 𝑂(𝑘𝑚)

AW-SKDEMI
𝑂(𝑚𝑛𝑘 + 𝑚

2
+ 𝑚V) 𝑂(𝑘𝑚)

4.2. AW-SKDEMI Learner. Our approach generates a set
of attribute weights 𝑤𝑖 ∈ [0, 1] by employing mutual
information between 𝐴 𝑖 and 𝐶. It makes sense that if one
attribute has more mutual information with class label, the
attribute will provide more classification ability than other
attributes and therefore should be assigned a larger weight.

The average weight𝑤𝑖 avg of each attribute𝐴 𝑖 is defined as
follows:

𝑤𝑖 avg =
𝐼 (𝐴 𝑖; 𝐶)

∑

𝑚

𝑖=1 𝐼 (𝐴 𝑖; 𝐶)
, (15)

where the definition of 𝐼(𝐴 𝑖; 𝐶) is as follows:

𝐼 (𝐴 𝑖; 𝐶) = ∑

𝑖,𝑐

𝑝 (𝑎𝑖 | 𝑐) 𝑝 (𝑐) log
𝑝 (𝑎𝑖 | 𝑐)

𝑝 (𝑎𝑖)
. (16)

We also incorporate split information used in C4.5 [15]
with 𝑤𝑖 split into our weighting scheme to avoid choosing the
attributes with lots of values. The split information for each
𝐴 𝑖 is defined as follows where 𝑎(𝑗)

𝑖
is the value of attribute 𝐴 𝑖

at 𝑗th instance (as described in Notations section):

𝐴 𝑖 split = − ∑
𝑎𝑖∈𝐴𝑖

𝑝 (𝑎𝑖) log𝑝 (𝑎𝑖) . (17)

Now, the weight of 𝐴 𝑖 is defined as follows:

𝑤𝑖 =

𝑤𝑖 avg/𝐴 𝑖 split

∑

𝑚

𝑖=1 (𝑤𝑖 avg/𝐴 𝑖 split)
. (18)

We feed AW-SKDEMI with a training data set D. In
the training stage, we generate 𝑤𝑖 avg, 𝐴 𝑖 split, and 𝑤𝑖 out for
each 𝐴 𝑖. In the classification phase, we give a test instance t;
then AW-SKDEMI classifier is formed; a prediction of class is
outputted finally. The learning algorithm of AW-SKDEMI is
described in Algorithm 1.

During the training phase, AW-SKDEMI only needs to
construct conditional probability tables (CPT), which are
the tables that contain joint probabilities of attributes and
a class label. In terms of time complexity, the calculation
of 𝐼(𝐴 𝑖; 𝐶), 𝑤𝑖 avg, 𝐴 𝑖 split, and 𝑤𝑖 requires 𝑂(𝑚𝑛𝑘), 𝑂(𝑚

2
),

𝑂(𝑚V), and 𝑂(𝑚2
), respectively. Therefore, the total time

complexity is𝑂(𝑚𝑛𝑘+𝑚2
+𝑚V) in the training phase. In the

classification phase, the algorithm time complexity is𝑂(𝑘𝑚).
We summarize the time complexity ofAW-SKDEMI andnaı̈ve
Bayes in Table 1.

Here, we also present a framework named Attribute
Weighting with Light Smooth Kernel Density Estimation,
simply AW-LSKDE, which does not consider the bandwidth.
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AW-SKDEMI:
Input: training data setD and a test instance t
Output: the class estimation of t
Training phase:
begin
(1) for each 𝑎𝑖 and 𝑐 in 𝐴 𝑖 and 𝐶:

estimate 𝑝(𝑎𝑖, 𝑐), 𝑝(𝑐), 𝑝(𝑎𝑖 | 𝑐), 𝑝(𝑎𝑖) and |𝐴 𝑖|.
(2) for each 𝐴 𝑖 and 𝐶:

𝐼 (𝐴 𝑖; 𝐶) = ∑

𝑖,𝑐

𝑝 (𝑎𝑖 | 𝑐) 𝑝 (𝑐) log
𝑝 (𝑎𝑖 | 𝑐)

𝑝 (𝑎𝑖)

(3) for each 𝐴 𝑖:

(a) 𝑤𝑖 avg =
𝐼 (𝐴 𝑖; 𝐶)

∑

𝑚

𝑖=1 𝐼 (𝐴 𝑖; 𝐶)

(b) 𝐴 𝑖 split = −∑
𝑎𝑖∈𝐴𝑖

𝑝 (𝑎𝑖) log𝑝 (𝑎𝑖)

(c) 𝑤𝑖 =
𝑤𝑖 avg/𝐴 𝑖 split

∑

𝑚

𝑖=1 (𝑤𝑖 avg/𝐴 𝑖 split)

end.
Classification phase:
begin
(1) for each dimension of test instance t and 𝐶:

𝑝 (𝑡𝑖 | 𝑐, 𝑤𝑖) = 𝑓𝑐
(𝑡𝑖) + (

1





𝐴 𝑖






− 𝑓

𝑐
(𝑡𝑖))

(1 − 𝑤𝑖)
2

√𝑛𝑐

(2) Output the class value

𝐶AW-SKDEMI (t) = arg max
𝑐∈𝐶

𝑝 (𝑐)

𝑚

∏

𝑖=1
𝑝 (𝑡𝑖 | 𝑐, 𝑤𝑖)

end.

Algorithm 1: Mutual information based Attribute Weighting with
Smooth Kernel Density Estimation (AW-SKDEMI) algorithm.

AW-LSKDE can be regarded as a simple version of AW-
SKDE.According to (8), we directly let𝜆𝑐𝑖 = 1−𝑤𝑖 where𝑤𝑖 ∈
[0, 1]. Hence, the kernel 𝜅(𝑡𝑖, 𝑎

(𝑗)

𝑖
, 𝜆𝑐𝑖) is changed to 𝜅(𝑡𝑖, 𝑎

(𝑗)

𝑖
,

𝑤𝑖) which is defined as follows:

𝜅 (𝑡𝑖, 𝑎
(𝑗)

𝑖
, 𝑤𝑖) =

{
{
{

{
{
{

{

1





𝐴 𝑖





+






𝐴 𝑖





− 1





𝐴 𝑖





𝑤𝑖: 𝑡𝑖 = 𝑎
(𝑗)

𝑖

1





𝐴 𝑖





(1 − 𝑤𝑖) : 𝑡𝑖 ̸= 𝑎
(𝑗)

𝑖
.

(19)

The estimation 𝑝(𝑡𝑖 | 𝑐, 𝑤𝑖) is described as follows:

𝑝 (𝑡𝑖 | 𝑐, 𝑤𝑖) =
1
𝑛𝑐

𝑛𝑐

∑

𝑗=1
𝜅 (𝑡𝑖, 𝑎

(𝑗)

𝑖
, 𝑤𝑖)

=

1





𝐴 𝑖





+𝑤𝑖 (𝑓𝑐 (𝑡𝑖) −
1





𝐴 𝑖





) .

(20)

We also build an attribute weighting näıve Bayes learner
with mutual information metric based on this AW-LSKDE
framework, called AW-LSKDEMI. The method of obtain-
ing the weight of 𝐴 𝑖 is the same as that of AW-SKDEMI

learner. Unfortunately, AW-LSKDE framework does not give
us encouraging results. The experimental results of AW-
LSKDEMI learner can be found in Table 3 with analysis of the
results.

Table 2: Description of data sets used in the experiments.

Data set Instances Attributes Classes Missing Numeric
Anneal 898 39 6 Y Y
Balance-scale 625 5 3 N Y
Breast-cancer 286 10 2 Y N
Breast-w 699 10 2 Y N
Colic 368 23 2 Y Y
Credit-a 690 16 2 Y Y
Dermatology 366 35 6 Y Y
Glass 214 10 7 N Y
Heart-statlog 250 14 2 N Y
Hepatitis 155 20 2 Y Y
Ionosphere 351 35 3 N Y
Lymph 148 19 4 N Y
Primary-tumor 339 18 21 Y N
Segment 2310 20 7 N Y
Sick 3772 30 2 Y Y
Vehicle 846 19 4 N Y
Vote 435 17 2 Y N

Table 3: Experimental results in terms of classifiers’ accuracy. Note
that accuracies are estimated using 10-fold cross-validationwith 95%
confidence interval.

Data set Näıve Bayes AW-SKDEMI AW-LSKDEMI

Anneal 93.99 ± 1.55 96.55 ± 1.19 76.17 ± 2.79
Balance-scale 91.36 ± 2.20 91.36 ± 2.20 89.6 ± 2.39
Breast-cancer 71.68 ± 5.22 72.38 ± 5.18 70.28 ± 5.30
Breast-w 97.28 ± 1.21 96.85 ± 1.29 88.41 ± 2.37
Colic 82.07 ± 3.92 81.79 ± 3.94 79.62 ± 4.12
Credit-a 85.94 ± 2.59 86.09 ± 2.58 83.62 ± 2.76
Dermatology 97.81 ± 1.50 97.81 ± 1.50 75.14 ± 4.43
Glass 77.10 ± 5.63 76.64 ± 5.67 62.62 ± 6.48
Heart-statlog 83.70 ± 4.58 83.70 ± 4.58 77.78 ± 5.15
Hepatitis 89.03 ± 4.92 89.03 ± 4.92 79.35 ± 6.37
Ionosphere 92.02 ± 2.83 91.45 ± 2.93 86.61 ± 3.56
Lymph 85.81 ± 5.62 85.81 ± 5.62 76.35 ± 6.85
Primary-tumor 50.15 ± 5.32 49.85 ± 5.32 24.78 ± 4.60
Segment 89.09 ± 1.27 88.70 ± 1.29 75.28 ± 1.76
Sick 97.48 ± 0.50 97.03 ± 0.54 93.88 ± 0.76
Vehicle 66.67 ± 3.18 66.90 ± 3.17 61.82 ± 3.27
Vote 90.11 ± 2.81 89.89 ± 2.83 91.49 ± 2.62
Average 84.78 ± 3.23 84.81 ± 3.22 76.05 ± 3.86

5. Experimental Results

In order to compare AW-ESKDMI, AW-LSKDEMI, and näıve
Bayes in terms of classification accuracy, we have conducted
experiments on UCI Machine Learning Repository Bench-
mark Data Sets [16]. The UCI benchmark data sets that we
have used are shown in Table 2. Note that we have conducted
preprocessing to each data set: removing missing values and
discretizing numerical attribute values.
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In the implementation of our algorithm, all the probabil-
ities including 𝑝(𝐶 = 𝑐) and 𝑝(𝐴 𝑖 = 𝑎𝑖, 𝐶 = 𝑐) are estimated
via Laplacian smoothing which is shown as follows:

𝑝 (𝐶= 𝑐) =

count (𝑐) + 1
𝑛 + |𝐶|

𝑝 (𝐴 𝑖 = 𝑎𝑖, 𝐶 = 𝑐) =
count (𝑎𝑖, 𝑐) + 1
𝑛𝑖 +






𝐴 𝑖





× |𝐶|

,

(21)

where 𝑛 is the number of training examples for which the
class value is known; 𝑛𝑖 is the number of training examples for
which both attribute 𝑖 and the class are known. The count(∙)
is the count value of ∙. The quotient of 𝑝(𝐴 𝑖 = 𝑎𝑖, 𝐶 = 𝑐) as
the dividend and 𝑝(𝐶 = 𝑐) as the divisor result in conditional
probability 𝑝(𝐴 𝑖 = 𝑎𝑖 | 𝐶 = 𝑐).

To compare the performance of the algorithms, we
have adapted 𝑡-test with 10-fold cross-validation. We have
conducted the experiments by applying our algorithm and
standard näıve Bayes on the same training data sets as well
as the same test data sets. The performance of the algorithm
is evaluated through classification accuracy.

Table 3 shows the comparison of accuracies among stan-
dard naı̈ve Bayes, AW-SKDEMI learner, and AW-LSKDEMI

learner.
It can be seen that AW-SKDEMI learner shows four better

results, six even results, and seven worse results than näıve
Bayes within seventeen UCI data sets. AW-LSKDEMI learner
only has one better result. Note that accuracies are estimated
using 10-fold cross-validation with 95% confidence interval.
AW-SKDEMI has a significant performance in the anneal
data set and the mean accuracy of the AW-SKDEMI learner
is 84.81 which is better than that of naı̈ve Bayes’ 84.78.
This experimental result can prove that our new attribute
weighting model AW-SKDEMI is efficient and effective. AW-
LSKDEMI learner has performed poorly due to the ignorance
of bandwidth parameters in the kernelmethods which results
in a relatively larger bias.

6. Conclusions and Future Work

In this paper, a novel attribute weighting framework called
Attribute Weighting with Smooth Kernel Density Estimations,
simply AW-SKDE framework, has been proposed. The AW-
SKDE framework enables the estimation of likelihood to be
dominated by attribute weights. Based on AW-SKDE, AW-
SKDEMI has been proposed to exploit mutual information.
We have conducted experiments on seventeen UCI bench-
mark data sets andmade a comparison of accuracy among the
standard NB, AW-SKDEMI, and AW-LSKDEMI. The exper-
imental result proves that our new learner, AW-SKDEMI, is
efficient and effective. Also, due to the relatively larger bias in
the algorithm of AW-LSKDEMI, it has underperformed.

Even though AW-SKDEMI shows comparable results, as
shown in Table 3, it does not quite outperform näıve Bayes.
In the future work, we plan to improve AW-SKDE framework
and investigate more effective attribute weighting methods
instead of the weight measurement method with mutual
information between attributes and class label.

Notations

𝐴 𝑖: The 𝑖th attribute in data set
|𝐴 𝑖|: The cardinality of attribute 𝑖
𝑎

(𝑗)

𝑖
: The value of 𝐴 𝑖 at 𝑗th instance

D = {x(1), . . . , x(n)}: Training data set consists of 𝑛
instances

x = ⟨𝑥1, . . . , 𝑥𝑚⟩: An instance,𝑚-dimensional
vector, x ∈ D

𝐶: Class label, 𝐶 = {𝑐1, . . . , 𝑐|𝐶|}
𝑐: An element of 𝐶, 𝑐 ∈ 𝐶
t = ⟨𝑡1, . . . , 𝑡𝑚⟩: A test instance,𝑚-dimensional

vector
𝑃(𝑒): The unconditioned probability of

event 𝑒
𝑃(𝑒 | 𝑔): The conditional probability of 𝑒

given 𝑔
̂
𝑃(∙): An estimation of 𝑃(∙)
𝑓𝑐(⋅): The frequency of ⋅ given 𝑐
𝑤𝑖 ∈ [0, 1]: The weight-value of attribute 𝐴 𝑖
𝐼(𝐴 𝑖; 𝐶): The mutual information between

𝐴 𝑖 and 𝐶.
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