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Spectrum sensing is the most important component in the cognitive radio (CR) technology. Spectrum sensing has considerable
technical challenges, especially in wideband systems where higher sampling rates are required which increases the complexity and
the power consumption of the hardware circuits. Compressive sensing (CS) is successfully deployed to solve this problem. Although
CS solves the higher sampling rate problem, it does not reduce complexity to a large extent. Spectrum sensing via CS technique
is performed in three steps: sensing compressed measurements, reconstructing the Nyquist rate signal, and performing spectrum
sensing on the reconstructed signal. Compressed detectors perform spectrum sensing from the compressedmeasurements skipping
the reconstruction step which is the most complex step in CS. In this paper, we propose a novel compressed detector using energy
detection technique on compressed measurements sensed by the discrete cosine transform (DCT) matrix.The proposed algorithm
not only reduces the computational complexity but also provides a better performance than the traditional energy detector and the
traditional compressed detector in terms of the receiver operating characteristics. We also derive closed form expressions for the
false alarm and detection probabilities. Numerical results show that the analytical expressions coincide with the exact probabilities
obtained from simulations.

1. Introduction

There is a remarkable growing demand on wireless devices
and services that use the electromagnetic spectrum for com-
munication. In static license regime, the spectrum bands are
assigned to licensed holders on a long termbasis for large geo-
graphical regions. However, a large portion of the assigned
spectrum remains underutilized [1]. Cognitive radio (CR)
can utilize the spectrum more efficiently in an opportunistic
fashion. CR allows a secondary user (SU) to use a specific
spectrum band as long as its licensed primary user (PU) is
protected against harmful interference. The Federal Com-
munications Commission (FCC) defined the CR as follows:
a radio or system that senses its operational electromagnetic
environment and can dynamically and autonomously adjust
its radio operating parameters to modify system operation [2].
The main functions for CRs are spectrum sensing, spectrum
management, spectrum mobility, and spectrum sharing [3].

One key component of theCR system is spectrum sensing
(SS), by which a SU radio can detect the presence or absence
of the PUs and identify the available white spaces in the
spectrum [4]. In order not to affect the performance of the
PU, the SS process has tomeet the sensing speed and accuracy
requirements set by the FCC [2]. The problem becomes
more challenging, particularly in wideband systems where
the sampling rate has to be higher than or equal to the
Nyquist rate. Consequently, the complexity and the cost of the
hardware circuits as well as the power consumption would
be high [5–7]. Moreover, the timing requirements for rapid
sensing may only allow the acquisition of a small number of
samples which may not provide accurate information about
the existence of the PU.

Recently, compressive sensing (CS) is used to solve the
high sampling rates problem in the CR systems. CS allows the
sensing of sparse signals at sub-Nyquist sampling rates and
a reliable recovery of the signal via computationally efficient
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algorithms [8, 9]. In CS, the signal can be recovered from a
small number of projections over a sensing basis (measure-
ments) as long as it is sparse over the representation basis that
is incoherent with the sensing basis. Examples of the sensing
basis matrices are Gaussian, Bernoulli, partial Hadamard,
and partial Fourier matrices. In order to reconstruct the
signal, the sensing basis should satisfy the restricted isometry
property (RIP) [10]. Signal reconstruction is the solution of
an 𝑙
1
-norm optimization problem to recover the high dimen-

sional data from the low dimensional measurements.
In previous work of using CS in CR applications, SS is

completed in three steps: sampling using an analog to infor-
mation converter (AIC) at a sub-Nyquist rate, reconstructing
the Nyquist rate signal or reconstructing the PU frequency
response, and then applying one of the spectrum detection
techniques on the reconstructed signal [11, 12, 16]. The SS
process can be considered as a binary hypothesis test, where
the detection algorithm has to decide which one of the
two hypotheses is probably true. The mostly used detection
schemes are matched filter detection [13], energy detection
[14], and feature detection [15]. Although the algorithms
proposed in [11, 12, 16] reduce the hardware complexity of
acquiring the signal, they increase the computational com-
plexity through the reconstruction process.The fundamental
task of SS is to detect the presence of the PUs. Therefore, the
full reconstruction of the wideband signal is not necessary
as long as the PU existence can be accurately detected from
the compressed measurements. In [17], it was shown that
the detection and estimation problem can be solved using
the compressed measurements without reconstructing the
original signal. However, the observationmatrix chosen is the
random observation matrix which serves the purpose of the
reconstruction process not the detection process.The authors
showed that the detection probability increases as the number
of the compressed measurements increases. The analytical
results of [17] show that the traditional detector outperforms
the compressed measurements based detection algorithm
in terms of the detection probability and the proposed
detection algorithmwill provide the same performance as the
traditional detector only when the number of the compressed
measurements equals the number of Nyquist rate samples.

In this paper, we propose an algorithm that enables the
detection of the PU existence from the compressed meas-
urements directly without going into the intermediate pro-
cess of reconstructing the signal. This can be realized by
designing a compressive sensing process that guarantees that
the information used in the detection process is preserved in
the compressed measurements. To achieve this, the sensing
matrix has to be designed with constraints different from
those used in the conventional CS [10] and the detector
proposed in [17]. The algorithm we propose in this paper
is based on the well-known energy detection techniques.
Therefore, the sensing matrix should preserve the energy of
PU signal. The discrete cosine transform (DCT) [18] has the
property of energy compaction where most of the energy of
the time domain signal will be concentrated in few samples
of the DCT domain signal. Therefore, we adopt the DCT
matrix as the sensing matrix in our algorithm. In addition
to the reduction in the computational complexity due to the

elimination of the reconstruction process, the results show
that the proposed algorithm provides a better performance
than the traditional energy detector that uses the Nyquist rate
signal and accordingly the compressed detector proposed in
[17]. Moreover, the detection algorithm we propose does not
require a priori knowledge or estimation of the PU signal
sparsity. We also derived closed form expressions for the
detection and false alarm probabilities. Simulation results are
provided to validate the derived expressions.

The remainder of this paper is organized as follows. The
system model and the detection algorithms are described in
Section 2. The derivation of the false alarm and detection
probabilities is provided in Section 3. Section 4 presents the
numerical results and discussions. Finally, the conclusions are
drawn in Section 5.

2. System Model and Detection Algorithms

In this section, we present the system model, compres-
sive sensing based energy detection (CSBED) algorithm,
and the compressed measurements based energy detection
(CMBED) algorithm. Let us first summarize some notations
and definitions that will be used through the paper:

(i) H
0
: it is the null hypothesis which states that there

is no transmission from the PU in the band under
consideration,

(ii) H
1
: it is the alternative hypothesis which states that

there is a transmission from the PU in the band under
consideration,

(iii) D
0
: the SU accepts H

0
after applying the detection

algorithm,
(iv) D

1
: the SU rejects H

0
after applying the detection

algorithm,
(v) 𝑃(D

1
| H
0
): it is the probability that the SU decides

that the PUexistswhile it does not (probability of false
alarm).

2.1. System Model. In this paper, the primary network is
assumed to be the television broadcasting system. According
to the IEEE 802.22 WRAN standards [19], the PU signal is
transmitted using orthogonal frequency division multiplex-
ing (OFDM) with the following specifications: 54MHz: main
carrier frequency, 4.45Mbps: data rate, 16-QAM: payload
modulation, and 2048 FFT: size. The channel is modeled
as an additive white Gaussian noise (AWGN) channel. The
hypothesis model is defined as follows:

H
0
: 𝑥 (𝑡) = 𝑛 (𝑡) , (1)

H
1
: 𝑥 (𝑡) = 𝑠 (𝑡) + 𝑛 (𝑡) , (2)

where𝑥(𝑡) is the signal received by the SU, 𝑠(𝑡) is the PU signal
with bandwidth 𝑊, and 𝑛(𝑡) is an (AWGN) with zero mean
and one-sided power spectral density of 𝑁

01
. The received

signal is sensed using CS to get the low dimensional data vec-
tor y which has a sub-Nyquist sampling rate and is given by

y = Φx, (3)
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Figure 1: Block diagram of the CMBED algorithm.

Table 1: Complexities and memory requirements for some OMP
computational approaches [24].

Algorithm Complexity Memory
Naive way 𝑁𝑀+𝑀𝑘 +𝑀𝑘

2
+ 𝑘
3

𝑀𝑁

Cholesky
Decomposition-1 𝑁𝑀+𝑀𝑘 + 𝑘

2
𝑁
2
+ 𝑁𝑀 + 𝑘 + 𝑘

2

Cholesky
Decomposition-2 𝑁𝑘 + 𝑘

2
𝑁
2
+ 𝑁𝑀 + 𝑘 + 𝑘

2

QR
Decomposition-1 𝑁𝑀+𝑀𝑘; solve: 𝐾2 𝑁𝑀+𝑀𝑘 + 𝑘

2

QR
Decomposition-2 𝑁𝑘 +𝑀𝑘 + 𝑘

2
𝑁
2
+ 𝑁𝑀 +𝑀𝑘 + 𝑘

2

Matrix Inversion
Lemma 𝑁𝑘 +𝑀𝑘 𝑁

2
+ 𝑁𝑀 +𝑀𝑘

where x is an𝑁 × 1 vector which represents the Nyquist rate
samples of 𝑥(𝑡), y is the 𝑀 × 1 compressed measurements
vector, andΦ is an𝑀×𝑁 sensing matrix (𝑀 < 𝑁).

2.2. Compressive Sensing Based Energy Detection Algorithm
(CSBED). In CSBED, the Nyquist rate signal is reconstructed
from the compressed measurements vector y of (3) and then
the energy detector is applied to the reconstructed signal.
The reconstruction process is a linear inverse problem with
sparseness constraint. It was shown that this problem is an
NP-hard [20]. Basis Pursuit (BP) [21] is a reconstruction tech-
nique that transforms the problem to a convex optimization
problem that can be solved by linear programming as follows:

x̂ = argminx ‖x‖1

s.t. y = Φx.
(4)

Several reconstruction techniques have been proposed
in the literature. Examples of these techniques are Matching
Pursuit (MP) [22] and Orthogonal Matching Pursuit (OMP)
[23]. These techniques differ in the computational complex-
ity and memory requirements. For instance, the computa-
tional complexity and memory requirements of the OMP
algorithms as a function of the iteration number 𝑘 are sum-
marized in Table 1. In QR-1, only after the final iteration
𝐾 does OMP find the solution [24]. The accuracy of the
reconstructed signal depends on the number of compressed
measurements 𝑀 and the number of iterations. In order to
detect the existence of the PU, the energy of the reconstructed
signal 𝜉x̂ is calculated and compared with a predetermined
threshold 𝜆 as follows:

𝜉x̂

D0

≶
D1

𝜆. (5)

2.3. Compressed Measurements Based Energy Detection Algo-
rithm (CMBED). In this paper, we propose to detect the
existence of the PU directly from the compressed measure-
ments without reconstructing the Nyquist rate signal. Hence,
the computational complexity will be dramatically reduced.
Figure 1 shows the block diagram of the proposed detection
algorithm. In ordinary CS, the sensing matrix is chosen with
specific constraints such that the Nyquist rate signal can
be accurately reconstructed. Since the Nyquist rate signal
will not be reconstructed in the proposed algorithm, the
constraints of the sensing matrix are different. The sensing
matrix has to preserve specific parameters of the signal
such that the PU can be detected. In this paper, the energy
detector will be applied to the compressed measurements.
Therefore, the sensingmatrix has to preserve the energy of PU
signal.The discrete cosine transform (DCT) expresses a finite
sequence of data points in terms of a sum of cosine functions
oscillating at different frequencies. One of the properties of
the DCT is the strong energy compaction where most of the
signal information tends to be concentrated in the few low-
frequency coefficients [18]. In the proposed algorithm, the
CS is performed using the DCT sensing matrix. The entry of
the sensing matrix that is located at the 𝑘th row and the 𝑖th
column is given by

𝜙 (𝑘, 𝑖) = 𝑐 (𝑘) cos(𝜋 (2𝑖 + 1) 𝑘
2𝑁

) , (6)

where 𝑘 = 0, 1, . . . ,𝑀 − 1, 𝑖 = 0, 1, . . . , 𝑁 − 1, and

𝑐 (𝑘) =

{{{{{

{{{{{

{

√
1

𝑁
, 𝑘 = 0,

√
2

𝑁
, 𝑘 ̸= 0.

(7)

It is worth mentioning that the first𝑀 rows of the DCT
matrix are chosen as they correspond to the high-energy
coefficients. After CS, according to Parseval’s theorem [18],
the energy of the signal can be calculated from the com-
pressed measurements as follows [25]:

𝜉y𝑀 =
𝑀−1

∑

𝑘=0

(
𝑦
𝑘

√𝑁
01
𝑊
)

2

. (8)

Afterwards, the energy detector decision variable 𝜉y𝑀 is
compared with a predetermined threshold 𝜆 to decideD

0
or

D
1
as follows:

𝜉y𝑀

D0

≶
D1

𝜆. (9)
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3. False Alarm and Detection Probabilities

In this section, we derive closed form expressions for the false
alarm and detection probabilities of the proposed CMBED
algorithm. The probability of false alarm 𝑃

𝐹
is defined as the

probability that the SU declares that the PU exists while it
does not and it is given by

𝑃
𝐹
= 𝑃 (D

1
| H
0
) = 𝑃 (𝜉y𝑀 ≥ 𝜆 | H0) . (10)

When the PU does not exist, the signal received by the SU
is an AWGN as given by (1). Therefore, the output of CS
would be a vector of 𝑀 Gaussian random variables (linear
combination of i.i.d Gaussian RV’s is a Gaussian RV) which
is given by

y = [V1 V
2
⋅ ⋅ ⋅ V
𝑀]
𝑇

, (11)

where V
1
, V
2
, . . . , V

𝑀
are independent and identically dis-

tributed Gaussian RV’s each has zero mean and variance
𝑁
01
𝑊. Substituting from (11) into (8) yields

𝜉y𝑀 =
𝑀−1

∑

𝑘=0

(
V
𝑘

√𝑁
01
𝑊
)

2

. (12)

Thedecision variable of (12) follows the central chi-square
distribution with 𝑀 degrees of freedom and unity variance
with the following probability density function [13, eq. (2.3-
21)]:

𝑓
𝐻0
(𝜉y𝑀) =

1

2𝑀/2Γ (𝑀/2)
𝜉
𝑀/2−1

𝑒
−𝜉/2

, (13)

where Γ(⋅) is the gamma function. From (10) and (13), the
probability of false alarm would be given by

𝑃
𝐹
=

1

2𝑀/2Γ (𝑀/2)
∫

∞

𝜆

𝜉
𝑀/2−1

𝑒
−𝜉/2d𝜉

=
Γ (𝑀/2, 𝜆/2)

Γ (𝑀/2)
,

(14)

where Γ(⋅, ⋅) is the upper incomplete gamma function.
The probability of detection is given by

𝑃
𝐷
= 𝑃 (D

1
| H
1
) = 𝑃 (𝜉y𝑀 ≥ 𝜆 | H1) . (15)

When the PU exists, the signal received by the SU is the sum-
mation of the PU signal and a white Gaussian noise as given
by (2). The output of CS would be

y = [𝑠1 + V
1
𝑠
2
+ V
2
⋅ ⋅ ⋅ 𝑠
𝑀
+ V
𝑀]
𝑇

, (16)

where 𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑀
are the 𝑀 DCT coefficients of the PU

signal. Substituting from (16) into (8) yields

𝜉y𝑀 =
𝑀−1

∑

𝑘=0

(
𝑠
𝑘
+ V
𝑘

√𝑁
01
𝑊
)

2

. (17)

The decision variable of (17) is a noncentral chi-square ran-
dom variable with 𝑀 degrees of freedom and has the fol-
lowing probability density function [13, eq. (2.3-29)]

𝑓
𝐻1
(𝜉y𝑀) =

1

2
(
𝜉

𝜇
)

𝑀−2/4

𝑒
−(𝜉+𝜇)/2

𝐼
𝑀/2−1

(√𝜇𝜉) , (18)

where 𝐼
𝑚
(⋅) is the 𝑚th order modified Bessel function of the

first kind and 𝜇 is the noncentrality parameter which is given
by [14]

𝜇 =

𝑀−1

∑

𝑘=0

(
𝑠
𝑘

√𝑁
01
𝑊
)

2

. (19)

Let 𝐸
𝑠
= ∑
𝑁−1

𝑘=0
𝑠
2

𝑘
be the total energy of the PU signal and 𝜂

𝐸

be the fraction of energy contained in the𝑀DCT coefficients
relative to 𝐸

𝑠
(i.e., 𝜂

𝐸
= 1 when𝑀 = 𝑁). Then

𝜂
𝐸
=

1

𝐸
𝑠

𝑀−1

∑

𝑘=0

𝑠
2

𝑘
. (20)

Substituting from (20) into (19) yields

𝜇 = 𝜂
𝐸

𝐸
𝑠

𝑁
01
𝑊

= 𝜂
𝐸
𝛾, (21)

where 𝛾 is the signal to noise ratio. From (15), (18), and (21),
the probability of detection can be calculated as follows:

𝑃
𝐷
=
1

2
∫

∞

𝜆

(
𝜉

𝜇
)

(𝑀−2)/4

𝑒
−(𝜉+𝜇)/2

𝐼
𝑀/2−1

(√𝜇𝜉) d𝜉

= 𝑄
𝑀/2

(√𝜂𝐸𝛾,
√𝜆) ,

(22)

where 𝑄
𝑀/2

(⋅, ⋅) is the generalized Marcum 𝑄-function [13,
eq. (2.3-36)]. The probability of misdetection is given by

𝑃
𝑀
= 𝑃 (D

0
| H
1
) = 1 − 𝑃

𝐷

= 1 − 𝑄
𝑀/2

(√𝜂𝐸𝛾,
√𝜆) .

(23)

The performance of the proposed algorithm is compared
with that of the traditional energy detector (TED) and the
compressed detector presented in [17] where the probability
of detection is approximated by

𝑃
𝐷
= 𝑄(𝑄

−1
(𝑃
𝐹
) − √

𝑀

𝑁
√𝛾) . (24)

In the compressed detector [17], decreasing the com-
pression ratio (i.e., decreasing 𝑀) causes a degradation in
performance but the algorithm we propose in this paper
provides a better performance at low compression ratios as
will be shown and intuitively interpreted in Section 4.

4. Numerical Results and Discussions

In this section, we present numerical results to study the per-
formance of the proposed sensing technique. Unless other-
wise stated, the PU signal is assumed to follow the IEEE
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Figure 2: Complementary ROC when𝑁 = 512,𝑀/𝑁 = 70%, and
𝛾 = 15 dB.

802.22 WRAN standards described in Section 2.1. Figure 2
compares the complementary receiver operating character-
istics (ROC) of the traditional energy detector (TED) (i.e.,
the energy detector is applied to signal that is sampled at a
rate higher than the Nyquist rate) with that of the CSBED
algorithm. Gaussian and Bernoulli matrices are used to
perform the CS process. In this comparison, the compression
ratio (𝑀/𝑁) is 70% and the SNR equals 15 dB. In CSBED,
the OMP algorithm is used to reconstruct the signal. We
find that the performance of the CSBED technique is worse
than that of the TED. That is because the PU signal was
not perfectly reconstructed. Therefore, the TED will be
considered when evaluating the performance of the CMBED
technique proposed in this paper.

Figure 3 compares the complementary ROC of the pro-
posed CMBED algorithm with that of the TED algorithm,
using compressed measurements sensed with Gaussian and
partial Fourier ensemble sensing matrices, and the com-
pressed detector in [17], when the compression ratio (𝑀/𝑁)
is 10% and the SNR equals 15 dB. The false alarm and the
misdetection probabilities are obtained from both simula-
tions and the analytical results of Section 3. We find that
the analytical results coincide with the simulation results
which validates (14) and (22). We also find that the proposed
CMBED algorithm provides a better performance than the
TED algorithm and other algorithms. That is because the
compressed measurements contain most of the PU signal
energy and only a fraction of the noise energy. Figure 4 shows
the percentage of the energy 𝜂

𝐸
contained in𝑀 compressed

measurements of both PU and noise signals against the
compression ratio (𝑀/𝑁). We find that, at𝑀/𝑁 = 10%, the
percentage of the energy contained in the compressed mea-
surements of the PU signal equals 91.5% and that of the noise
signal equals 10%.That is because, on the one hand, the DCT-
based CS preserves the energy of the PU signal, and, on
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Figure 3: Complementary ROC when𝑁 = 512 and 𝛾 = 15 dB.
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Figure 4: 𝜂
𝐸
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the other hand, it would only preserve 𝑀/𝑁 of the AWGN
energy.

Figure 5 shows the detection probability 𝑃
𝐷
against the

compression ratio 𝑀/𝑁 when 𝑁 = 128, 𝛾 = 15 dB, and
target 𝑃

𝐹
= 0.01 for the proposed CMBED algorithm, TED,

and compressed detector in [17]. We find that 𝑃
𝐷
increases

as 𝑀/𝑁 increases until it reaches a maximum value of
0.903 at a compression ratio of 5.5% and then it decreases
as 𝑀/𝑁 increases. This convex behavior of the detection
probability of the CMBED algorithm can be interpreted as
follows. Let 𝐸

𝑠𝑀
and 𝐸

𝑛𝑀
denote the energies contained in
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Figure 5: Probability of detection versus the compression ratio
when 𝑃

𝐹
= 0.01,𝑁 = 128, and 𝛾 = 15 dB.

the 𝑀 compressed measurements of the PU and the noise
signals, respectively. It is clear that both 𝐸

𝑠𝑀
and 𝐸

𝑛𝑀
will

increase as the compression ratio increases when 𝑁 is fixed.
In order to keep the false alarmprobability fixed (i.e.,𝑃(𝐸

𝑛𝑀
>

𝜆) = 0.01), increasing the compression ratio (or equivalently
increasing𝑀) necessitates an increase in the threshold 𝜆.The
detection probability is defined as the probability that the
energy contained in the compressed measurements is greater
than the thresholdwhen the PU exists (i.e.,𝑃(𝐸

𝑠𝑀
+𝐸
𝑛𝑀

> 𝜆)).
When𝑀 increases, both sides of the inequality will increase
but not with the same rate. At lower compression ratios (i.e.,
smaller values of 𝑀), the growth of 𝐸

𝑠𝑀
with respect to 𝑀

is much higher than that of 𝐸
𝑛𝑀

(as shown in Figure 4) and
accordingly 𝜆. Therefore, the detection probability increases
as 𝑀/𝑁 increases. At higher compression ratios, increasing
𝑀 results in a negligible increase in 𝐸

𝑠𝑀
; however, a consid-

erable increase occurs in 𝜆. Hence, the detection probability
decreases as𝑀/𝑁 increases.

Figure 6 shows the detection probability against the sig-
nal-to-noise ratio for CMBED, TED, and the compressed
detector in [17] when 𝑃

𝐹
= 0.01 and compression ratio of

10% at𝑁 = 128. We find that the detection probability of the
proposed CMBED algorithm is higher than other algorithms.

5. Conclusions

In this paper, we proposed a spectrum sensing technique
for wideband cognitive radio systems. In order to detect the
existence of the PU, the SU firstly samples the received sig-
nal at a sub-Nyquist rate using compressive sensing and then
applies the energy detector on the compressed measure-
ments. Consequently, the complexity required in reconstruct-
ing the Nyquist rate signal is eliminated. The DCT sensing
matrix was used for the compressive sensing step due to its
energy compaction property. In addition to the considerable

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CMBED
Compressed detector
TED

𝛾 (dB)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (P
D
)

Figure 6: Probability of detection versus SNR when 𝑃
𝐹
= 0.01 and

a compression ratio of 10%.

complexity reduction, the results showed that proposed algo-
rithm provides a better detection probability compared to
traditional schemes at the same false alarm probability. That
is because although the compressed measurements contain
most of the energy of the PU signal, they only contain a
fraction of the energy of the noise signal. We also derived
analytical expressions for the false alarm and misdetection
probabilities. These results are validated using simulations.
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