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The Takagi-Sugeno (T-S) fuzzy observer for dynamical systems described by ordinary differential equations is widely discussed in
the literature.The aim of this paper is to extend this observer design to a class of T-S descriptor systems with unmeasurable premise
variables. In practice, the computation of solutions of differential-algebraic equations requires the combination of an ordinary
differential equations (ODE) routine together with an optimization algorithm. Therefore, a natural way permitting to estimate the
state of such a system is to design a procedure based on a similar numerical algorithm. Beside some numerical difficulties, the
drawback of such a method lies in the fact that it is not easy to establish a rigorous proof of the convergence of the observer. The
main result of this paper consists in showing that the state estimation problem for a class of T-S descriptor systems can be achieved
by using a fuzzy observer having only anODE structure.The convergence of the state estimation error is studied using the Lyapunov
theory and the stability conditions are given in terms of linear matrix inequalities (LMIs). Finally, an application to a model of a
heat exchanger pilot process is given to illustrate the performance of the proposed observer.

1. Introduction

In practice, the control and the supervision of a process
require the knowledge of the state of the process. One
way permitting to obtain such unknown state consists in
using physical sensors. However, in many cases and due to
a high running cost and physical constraints, this method
becomes very limited. To solve this problem, one solution
is to design an observer. This method combines a priori
knowledge about a physical system (nominal model) with
experimental data (some on-line measurements) to provide
on-line estimation of states and/or parameters. In the present
work, we are concernedwith the problemof the observer syn-
thesis for nonlinear descriptor systems that can be described
by dynamic models of T-S descriptor with unmeasurable
premise variables. In fact, many chemical and physical pro-
cesses can be described by nonlinear systems of differential
and algebraic equations [1–3]. These systems are variously
called descriptor systems, singular systems, or differential

algebraic equations (DAEs). This formulation includes both
dynamic and static relations. Consequently, this formalism
is much more general than the usual one and can model
the physical constraints or impulsive behavior due to an
improper part of the system. The numerical simulation of
such descriptor models usually combines an ODE numerical
method together with an optimization algorithm.

Recently, there has been a great deal of interest in using
the approach based on the representation of the nonlinear
systems by T-S models [4]. This interest relies on the fact
that once the T-S fuzzy models are obtained, some analysis
and design tools developed in the linear system can be
used, which facilitates observer or/and controller synthesis
for complex nonlinear systems. Many practical problems
using T-S fuzzy approach have been widely treated in the
literature. The stability and stabilization problems of T-S
fuzzy systems can be found in [5–7]. In [8] a filter for
nonuniformly sampled nonlinear systems represented by
T-S model is proposed. For filtering problem in networked
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control systems where the nonlinear discrete-time system is
modeled by T-S fuzzy model, we can cite [9]. The T-S fuzzy
observer problems for dynamic T-S fuzzy models described
by ordinary differential equations (ODEs) with measurable
and unmeasurable premise variables are studied in [10–20].
Concerning nonlinear descriptor systems described by T-S
descriptor models the problem of fuzzy observer design has
been widely investigated; see, for instance, [21–25]. The aim
of this paper is to give a fuzzy observer design to a class of
fuzzy descriptor systems permitting to estimate the unknown
state without the use of an optimization algorithm. The idea
of the proposed result is to separate the dynamic relations of
the static relations in the descriptor model.

The outline of the paper is as follows. The main result is
stated in Sections 2 and 3. It consists in showing that the state
estimation problem for a class of fuzzy descriptor systems
can be achieved by using a fuzzy observer having only an
ODE structure. First, the method used for decomposing the
differential part of the algebraic part is developed; secondly
we give a fuzzy observer design permitting to estimate the
unknown state. In Section 4, we illustrate the performance
of the proposed observer in simulation through a model of
a heat exchanger pilot process.

2. Fuzzy Descriptor Systems

The form of the class of Takagi-Sugeno descriptor systems
with unmeasurable premise variables studied in this paper is

𝐸�̇� =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑥) (𝐴 𝑖𝑥 + 𝐵𝑖𝑢) ,

𝑦 = 𝐶𝑥,

(1)

where 𝑥 = (𝑋𝑇
1
𝑋
𝑇

2
)
𝑇

∈ R𝑛 is the state vector with 𝑋1 ∈ R𝑟,
𝑋2 ∈ R𝑛−𝑟, 𝑢 ∈ R𝑚 is the control input, and 𝑦 ∈ R𝑝 is the
measured output. 𝐸 ∈ R𝑛×𝑛 with rank(𝐸) = 𝑟, 𝐴 𝑖 ∈ R𝑛×𝑛,
𝐵𝑖 ∈ R𝑛×𝑚, and 𝐶 ∈ R𝑝×𝑛 are real known constant matrices
with

𝐸 = (

𝐼 0

0 0
) , 𝐴 𝑖 = (

𝐴11𝑖 𝐴12𝑖

𝐴21𝑖 𝐴22𝑖

) ,

𝐵𝑖 = (

𝐵1𝑖

𝐵2𝑖

) , 𝐶 = (𝐶1 𝐶2) ,

(2)

where𝐴22𝑖 constant matrices are invertible (rank(𝐴22𝑖) = 𝑛−
𝑟). 𝑞 is the number of submodels. The ℎ𝑖(𝑥) are the weighting
functions that ensure the transition between the contribution
of each submodel:

𝐸�̇� = 𝐴 𝑖𝑥 + 𝐵𝑖𝑢,

𝑦 = 𝐶𝑥.

(3)

They depend on unmeasurable premise variables (state of the
system) and have the following properties:

𝑞

∑

𝑖=1

ℎ𝑖 (𝑥) = 1,

0 ≤ ℎ𝑖 (𝑥) ≤ 1, 𝑖 = 1, . . . , 𝑞.

(4)

In order to design an observer for each submodel (3) (𝑖 =
1, . . . , 𝑞), we will make the following assumptions.

(H1) (𝐸, 𝐴 𝑖) is regular; that is, det(𝑠𝐸 − 𝐴 𝑖) ̸= 0 ∀𝑠 ∈ C.

(H2) All submodels (3) are impulse observable; that is,

rank((
𝐸 𝐴 𝑖

0 𝐸

0 𝐶

)) = 𝑛 + rank (𝐸) . (5)

(H3) All submodels (3) are detectable; that is,

rank((
𝑠𝐸 − 𝐴 𝑖

𝐶
)) = 𝑛 ∀𝑠 ∈ C. (6)

To design a fuzzy observer for system (1), our approach is
based on the separate dynamic relations of the static relations
for each submodel (3) and the global model is obtained by
aggregation of the submodels.

Thus, from (2), system (3) can be written as follows:

�̇�1 = 𝐴11𝑖𝑋1 + 𝐴12𝑖𝑋2 + 𝐵1𝑖𝑢,

0 = 𝐴21𝑖𝑋1 + 𝐴22𝑖𝑋2 + 𝐵2𝑖𝑢,

𝑦 = 𝐶1𝑋1 + 𝐶2𝑋2.

(7)

Using the fact that 𝐴−1
22𝑖

exist, system (7) can be rewritten as

�̇�1 = 𝑀𝑖𝑋1 + 𝑁𝑖𝑢,

𝑋2 = 𝑄𝑖𝑋1 + 𝑅𝑖𝑢,

𝑦 = 𝑆𝑖𝑋1 + 𝐺𝑖𝑢,

(8)

where

𝑀𝑖 = 𝐴11𝑖 − 𝐴12𝑖𝐴
−1

22𝑖
𝐴21𝑖,

𝑁𝑖 = 𝐵1𝑖 − 𝐴12𝑖𝐴
−1

22𝑖
𝐵2𝑖,

𝑄𝑖 = − 𝐴
−1

22𝑖
𝐴21𝑖,

𝑅𝑖 = − 𝐴
−1

22𝑖
𝐵2𝑖,

𝑆𝑖 = (𝐶1 − 𝐶2𝐴
−1

22𝑖
𝐴21𝑖) ,

𝐺𝑖 = − 𝐶2𝐴
−1

22𝑖
𝐵2𝑖.

(9)
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Then, the fuzzy descriptor system (1) can be rewritten in the
following form:

�̇�1 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑥) (𝑀𝑖𝑋1 + 𝑁𝑖𝑢) ,

𝑋2 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑥) (𝑄𝑖𝑋1 + 𝑅𝑖𝑢) ,

𝑦 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑥) (𝑆𝑖𝑋1 + 𝐺𝑖𝑢) ,

(10)

where

ℎ𝑖 (𝑥) = ℎ𝑖 (𝑋1, 𝑋2 = 𝑄𝑖𝑋1 + 𝑅𝑖𝑢) = ℎ𝑖 (𝑋1, 𝑢) . (11)

3. Fuzzy Observer Design

In this section, our aim is to design a fuzzy observer
for descriptor system (1). Based on the separate dynamic
relations of the static relations in the descriptormodel (1) (see
(10)) and by substituting (11) in (10), the proposed observer is
given by the following equations:

̇̂
𝑋1 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑀𝑖𝑋1 + 𝑁𝑖𝑢 − 𝐿 𝑖 (𝑦 − 𝑦)) ,

𝑋2 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑄𝑖𝑋1 + 𝑅𝑖𝑢) ,

𝑦 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑆𝑖𝑋1 + 𝐺𝑖𝑢) ,

(12)

where𝑋1,𝑋2, and 𝑦 denote the estimated state vectors of𝑋1,
𝑋2, and output vector 𝑦, respectively. The local gains 𝐿 𝑖 can
be determined byTheorem 1.

In order to establish the conditions for the asymptotic
convergence of the observer (12), we define the state estima-
tion error:

𝑒 = (

𝑒1

𝑒2

) = (

𝑋1 − 𝑋1

𝑋2 − 𝑋2

) . (13)

It follows from (10) and (12) that the observer error dynamic
is given by the differential and algebraic equations:

̇𝑒1 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑀𝑖𝑋1 + 𝑁𝑖𝑢 − 𝐿 𝑖 (𝑦 − 𝑦))

−

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑀𝑖𝑋1 + 𝑁𝑖𝑢) ,

(14)

𝑒2 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑄𝑖𝑋1 + 𝑅𝑖𝑢)

−

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑄𝑖𝑋1 + 𝑅𝑖𝑢) .

(15)

By adding and subtracting the term ∑𝑞
𝑖=1
ℎ𝑖(𝑋1, 𝑢)(𝑀𝑖𝑋1 +

𝑁𝑖𝑢), (14) becomes

̇𝑒1 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑀𝑖𝑒1 − 𝐿 𝑖 (𝑦 − 𝑦))

−

𝑞

∑

𝑖=1

(ℎ𝑖 (𝑋1, 𝑢) − ℎ𝑖 (𝑋1, 𝑢)) (𝑀𝑖𝑋1 + 𝑁𝑖𝑢) .

(16)

Note that
𝑞

∑

𝑖=1

(ℎ𝑖 (𝑋1, 𝑢) − ℎ𝑖 (𝑋1, 𝑢))𝑀𝑖

=

𝑞

∑

𝑖,𝑗=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢) (𝑀𝑖 −𝑀𝑗) ,

𝑞

∑

𝑖=1

(ℎ𝑖 (𝑋1, 𝑢) − ℎ𝑖 (𝑋1, 𝑢))𝑁𝑖

=

𝑞

∑

𝑖,𝑗=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢) (𝑁𝑖 − 𝑁𝑗) .

(17)

Then, (16) becomes

̇𝑒1 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑀𝑖𝑒1 − 𝐿 𝑖 (𝑦 − 𝑦))

−

𝑞

∑

𝑖,𝑗=1

(ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢)) (Δ𝑀𝑖𝑗𝑋1 + Δ𝑁𝑖𝑗𝑢) ,

(18)

where Δ𝑀𝑖𝑗 = 𝑀𝑖 −𝑀𝑗 and Δ𝑁𝑖𝑗 = 𝑁𝑖 − 𝑁𝑗.
Similarly 𝑦 can be written as follows:

𝑦 =

𝑞

∑

𝑖,𝑘=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑘 (𝑋1, 𝑢)

⋅ ((𝑆𝑘 + Δ𝑆𝑖𝑘)𝑋1 + (𝐺𝑘 + Δ𝐺𝑖𝑘) 𝑢) ,

(19)

where Δ𝑆𝑖𝑘 = 𝑆𝑖 − 𝑆𝑘 and Δ𝐺𝑖𝑘 = 𝐺𝑖 − 𝐺𝑘.
Multiplying by ∑𝑞

𝑖=1
ℎ𝑖(𝑋1, 𝑢), we obtain

̇𝑒1 =

𝑞

∑

𝑖,𝑗=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢) (𝑀𝑗𝑒1 − 𝐿𝑗 (𝑦 − 𝑦))

−

𝑞

∑

𝑖,𝑗=1

(ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢)) (Δ𝑀𝑖𝑗𝑋1 + Δ𝑁𝑖𝑗𝑢) ,

(20)

𝑦 =

𝑞

∑

𝑖,𝑘=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑘 (𝑋1, 𝑢) (𝑆𝑘𝑋1 + 𝐺𝑘𝑢) . (21)

By substituting (19) and (21) in (20), we obtain

̇𝑒1 =

𝑞

∑

𝑖,𝑗,𝑘=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢) ℎ𝑘 (𝑋1, 𝑢)

⋅ (Ω𝑗𝑘𝑒1 + Γ𝑖𝑗𝑘𝑋1 + Λ 𝑖𝑗𝑘𝑢) ,

(22)
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where

Ω𝑗𝑘 = 𝑀𝑗 − 𝐿𝑗𝑆𝑘,

Γ𝑖𝑗𝑘 = 𝐿𝑗 (𝑆𝑖 − 𝑆𝑘) − (𝑀𝑖 −𝑀𝑗) ,

Λ 𝑖𝑗𝑘 = 𝐿𝑗 (𝐺𝑖 − 𝐺𝑘) − (𝑁𝑖 − 𝑁𝑗) ,

𝑖, 𝑗, 𝑘 ∈ {1, . . . , 𝑞} .

(23)

By adding and subtracting the term ∑
𝑞

𝑖=1
ℎ𝑖(𝑋1, 𝑢)(𝑄𝑖𝑋1 +

𝑅𝑖𝑢), (15) becomes

𝑒2 =

𝑞

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢)𝑄𝑖𝑒1

−

𝑞

∑

𝑖=1

(ℎ𝑖 (𝑋1, 𝑢) − ℎ𝑖 (𝑋1, 𝑢)) (𝑄𝑖𝑋1 + 𝑅𝑖𝑢) .

(24)

Note that to prove the convergence of the estimation error
𝑒 toward zero, it suffices to prove that 𝑒1 converges to zero.
Thus, let𝑋1 = (𝑒𝑇1 𝑋

𝑇

1
)
𝑇

; we have

̇̃
𝑋1 =

𝑞

∑

𝑖,𝑗,𝑘=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢)

⋅ ℎ𝑘 (𝑋1, 𝑢) (H𝑖𝑗𝑘𝑋1 +T𝑖𝑗𝑘𝑢) ,

𝑧1 = 𝐻𝑋1,

(25)

where

H𝑖𝑗𝑘 = (
Ω𝑗𝑘 Γ𝑖𝑗𝑘

0 𝑀𝑖

) ,

T𝑖𝑗𝑘 = (
Λ 𝑖𝑗𝑘

𝑁𝑖

) ,

𝐻 = (𝐼 0) .

(26)

Thus, the aim is to determine the observer gains 𝐿 𝑖 (𝑖 =
1, . . . , 𝑞) to ensure the stability of (25) while attenuating
the effect of the input 𝑢 on 𝑧1. Therefore, the convergence
condition of the observer (12) can be formulated by the
following theorem.

Theorem 1. Under the above hypotheses (H1), (H2), and (H3),
the state error between the T-S descriptor model (1) and its
observer (12) converges asymptotically towards zero, if there
exist symmetric positive definite matrices 𝑃1 and 𝑃2, matrices
K𝑖, 𝑖 = 1, . . . , 𝑞, and a positive scalar 𝛽, such that the following
LMIs hold:

(

Z1𝑗𝑘 Θ𝑖𝑗𝑘 Ψ𝑖𝑗𝑘

Θ
𝑇

𝑖𝑗𝑘
Z2𝑖 𝑃2𝑁𝑖

Ψ
𝑇

𝑖𝑗𝑘
𝑁
𝑇

𝑖
𝑃2 −𝛽𝐼

) < 0 ∀ (𝑖, 𝑗, 𝑘) ∈ {1, . . . , 𝑞}
3
, (27)

where

Z1𝑗𝑘 = 𝑀
𝑇

𝑗
𝑃1 + 𝑃1𝑀𝑗 −K𝑗𝑆𝑘 − 𝑆

𝑇

𝑘
K
𝑇

𝑗
+ 𝐼,

Z2𝑖 = 𝑀
𝑇

𝑖
𝑃2 + 𝑃2𝑀𝑖,

Θ𝑖𝑗𝑘 =K𝑗 (𝑆𝑖 − 𝑆𝑘) − 𝑃1 (𝑀𝑖 −𝑀𝑗) ,

Ψ𝑖𝑗𝑘 =K𝑗 (𝐺𝑖 − 𝐺𝑘) − 𝑃1 (𝑁𝑖 − 𝑁𝑗) .

(28)

The gains of the observer are derived from

𝐿𝑗 = 𝑃
−1

1
K𝑗 (29)

and the attenuation level is

𝛼 = √𝛽. (30)

Proof of Theorem 1. Consider the following quadratic Lya-
punov function:

𝑉 = 𝑋
𝑇

1
𝑃𝑋1, 𝑃 = 𝑃

𝑇
> 0 (31)

with

𝑃 = (

𝑃1 0

0 𝑃2

) . (32)

The time derivative of 𝑉 along the trajectory of (25) is given
by

�̇� =

𝑞

∑

𝑖,𝑗,𝑘=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢) ℎ𝑘 (𝑋1, 𝑢)

⋅ (𝑋
𝑇

1
(H
𝑇

𝑖𝑗𝑘
𝑃 + 𝑃H𝑖𝑗𝑘)𝑋1

+ 𝑋
𝑇

1
𝑃T𝑖𝑗𝑘𝑢 + 𝑢

𝑇
T
𝑇

𝑖𝑗𝑘
𝑃𝑋1) .

(33)

In order to ensure the stability of (25) and the boundedness
of the transfer from 𝑢 to 𝑧1,

𝑧1
2

‖𝑢‖2

< 𝛼, ‖𝑢‖2 ̸= 0, (34)

we consider the following criterion:

�̇� + 𝑧
𝑇

1
𝑧1 − 𝛼

2
𝑢
𝑇
𝑢 < 0. (35)

From (25) and (33), inequality (35) becomes
𝑞

∑

𝑖,𝑗,𝑘=1

ℎ𝑖 (𝑋1, 𝑢) ℎ𝑗 (𝑋1, 𝑢) ℎ𝑘 (𝑋1, 𝑢) (𝑋
𝑇

1
𝑢
𝑇
) Σ𝑖𝑗𝑘(

𝑋1

𝑢

)

< 0,

(36)

where

Σ𝑖𝑗𝑘 = (

H𝑇
𝑖𝑗𝑘
𝑃 + 𝑃H𝑖𝑗𝑘 + 𝐻

𝑇
𝐻 𝑃T𝑖𝑗𝑘

T𝑇
𝑖𝑗𝑘
𝑃 −𝛼

2
𝐼

) . (37)

The inequality (36) is satisfied if

Σ𝑖𝑗𝑘 < 0 ∀𝑖, 𝑗, 𝑘 ∈ {1, . . . , 𝑞} . (38)
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Figure 1: Heat exchanger plant.

Then, from (23), (26), and the use of the changes of variables,

K𝑖 = 𝑃1𝐿 𝑖,

𝛽 = 𝛼
2

(39)

we establish the LMIs given by (27) inTheorem 1.

Thus, from (25) the LMI constraints (27) imply that 𝑋1
exponentially converges to the unknown trajectory 𝑋1 of
system (10) which are identical to those of system (1). And,
from system (24) and the fact that 𝑋1 converges to 𝑋1, 𝑋2
exponentially converges to the unknown trajectory 𝑋2 of
system (10) which is identical to that of system (1).

4. Application to a Heat Exchanger System

The aim of this section consists in applying the above fuzzy
observer design (12) with unmeasurable premise variables to
a descriptor model of a heat exchanger pilot process.

4.1. Physical Model. The heat exchanger process considered
is presented in Figure 1. The process is mainly built around
a counterflow tubular heat exchanger. The warm water flows
in a closed circuit, and the temperature in the hot water tank
is fixed by an independently controlled electric heater. The
cold water flows in an open circuit. The flows of either warm
or cold water are controlled by two electropneumatic valves.
𝑇1, 𝑇3 are, respectively, the inlet temperatures of the warm
and the cold water and 𝑇2, 𝑇4 are the correspondent outlet
temperatures. The dynamics of actuators (electropneumatic
valves) cannot be neglected. Indeed their time constants
are equivalent to the residence time constants of the heat
exchanger (0.5 s–1 s). The correspondent state variables are
the displacements and the velocities of the electropneumatic
valves. The temperatures are assumed to be homogeneous in
the tubular heat exchanger. Under the hypotheses that the
circuit of the thermal exchanger is a closed system which
contains a constant mass of water, the inertia of the fluid is
negligible and the flow is turbulent.

The controlled variables of our problem are the tem-
peratures 𝑇2 and 𝑇4, which are manipulated with the flows

which are a function of electropneumatic valves current 𝐼V𝑤
and 𝐼V𝑐. The current on electropneumatic valve is an actual
manipulated variable of the process. Furthermore, the heat-
exchanger is just one part of the plant. So, the actuators
should also be modeled. The electropneumatic valve is a
system that exhibits inherent second-order dynamics. For
the heat-exchanger, we perform the energy balance for the
characterization of the temperature. A descriptor model of
the process takes the form

𝐸�̇� = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢,

𝑦 = ℎ (𝑥) ,

(40)

where 𝑥 = (𝑥1, . . . , 𝑥8)
𝑇 is the state vector, 𝑢 = (𝑢1, 𝑢2)

𝑇 is
the control vector, and 𝑦 = (𝑥1, 𝑥4)

𝑇
= (𝑇2, 𝑇4)

𝑇 is the output
measurements. 𝑥2, 𝑥5 are, respectively, the displacement of
the warm water valve and the cold water valve. 𝑥3, 𝑥6 are,
respectively, the velocity of the warmwater valve and the cold
water valve. Finally,𝑥7,𝑥8 are, respectively, the acceleration of
the warm water valve and the cold water valve:

𝑓 (𝑥) =

(
(
(
(
(

(

𝑒1𝑥2 − 𝑎1𝑥1𝑥2 − 𝑏1𝑥1 + 𝑏1𝑥4

𝑥3

𝑥7

𝑒2𝑥5 − 𝑎2𝑥4𝑥5 + 𝑏2𝑥1 − 𝑏2𝑥4

𝑥6

𝑥8

−𝑥7 − 𝜔
2

0
𝑥2 − 2𝜂𝜔0𝑥3

−𝑥8 − 𝜔
2

0
𝑥5 − 2𝜂𝜔0𝑥6

)
)
)
)
)

)

,

𝑔 (𝑥) =

(
(
(
(
(

(

0 0

0 0

0 0

0 0

0 0

0 0

𝑘0𝜔
2

0
0

0 𝑘0𝜔
2

0

)
)
)
)
)

)

,



6 Journal of Control Science and Engineering

𝐸 =

(
(
(
(

(

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

)
)
)
)

)

,

ℎ (𝑥) = (
𝑥1

𝑥4
) ;

(41)

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑒1, and 𝑒2 are physical constants which derive
from the energy balance transfer.
𝑘0 is the static gain of the valve, 𝜔0 is the undamped

natural frequency, and finally 𝜂 is the damping factor.

4.2. Takagi-SugenoDescriptorModel. To express themodel of
the heat exchanger system as a Takagi-Sugenomodel with the
unmeasurable parameters (displacements of the valves𝑥2 and
𝑥5) as decision variables, we use the procedure of fuzzymodel
construction given in [26]. For this purpose, we rewrite (40)
in the following equivalent state space form:

𝐸�̇� = 𝐴 (𝑥) 𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥,

(42)

where

𝐵 = 𝑔 (𝑥) , 𝐶 = (
1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
) ,

𝐴(𝑥) =

(
(
(
(
(
(
(

(

−𝑏
1
− 𝑎
1
𝑥
2
𝑒
1
0 𝑏

1
0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

𝑏
2

0 0 −𝑏
2
− 𝑎
2
𝑥
5
𝑒
2
0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 −𝑤
2

0
−2𝜂𝑤

0
0 0 0 −1 0

0 0 0 0 −𝑤
2

0
−2𝜂𝑤

0
0 −1

)
)
)
)
)
)
)

)

.

(43)

Then, we consider the sector of the nonlinearities of the terms
𝜉𝑗 ∈ [𝜉𝑗min, 𝜉𝑗max] of the matrix 𝐴(𝑥(𝑡)) with 𝑗 = 1, 2:

𝜉1 = −𝑏1 − 𝑎1𝑥2,

𝜉2 = −𝑏2 − 𝑎2𝑥5.

(44)

Thus, we can transform the nonlinear terms under the
following shape:

𝜉𝑗 = 𝑀1𝑗𝜉𝑗max +𝑀2𝑗𝜉𝑗min; 𝑗 = {1, 2} , (45)

where

𝑀1𝑗 =

𝜉𝑗 − 𝜉𝑗min

𝜉𝑗max − 𝜉𝑗min
,

𝑀2𝑗 =

𝜉𝑗max − 𝜉𝑗

𝜉𝑗max − 𝜉𝑗min
.

(46)

Then, the global fuzzy model is inferred as

𝐸�̇� =

4

∑

𝑖=1

ℎ𝑖 (𝑥) (𝐴 𝑖𝑥 + 𝐵𝑢) ,

𝑦 = 𝐶𝑥,

(47)

where

ℎ1 (𝑥) = 𝑀21𝑀22,

ℎ2 (𝑥) = 𝑀21𝑀12,

ℎ3 (𝑥) = 𝑀11𝑀22,

ℎ4 (𝑥) = 𝑀11𝑀12,

𝐴
1
=

(
(
(
(

(

𝜉
1min 𝑒

1
0 𝑏

1
0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

𝑏
2

0 0 𝜉
2min 𝑒

2
0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 −𝑤
2

0
−2𝜂𝑤

0
0 0 0 −1 0

0 0 0 0 −𝑤
2

0
−2𝜂𝑤

0
0 −1

)
)
)
)

)

,

𝐴
2
=

(
(
(
(

(

𝜉
1min 𝑒

1
0 𝑏

1
0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

𝑏
2

0 0 𝜉
2max 𝑒

2
0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 −𝑤
2

0
−2𝜂𝑤

0
0 0 0 −1 0

0 0 0 0 −𝑤
2

0
−2𝜂𝑤

0
0 −1

)
)
)
)

)

,

𝐴
3
=

(
(
(
(

(

𝜉
1max 𝑒

1
0 𝑏

1
0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

𝑏
2

0 0 𝜉
2min 𝑒

2
0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 −𝑤
2

0
−2𝜂𝑤

0
0 0 0 −1 0

0 0 0 0 −𝑤
2

0
−2𝜂𝑤

0
0 −1

)
)
)
)

)

,

𝐴
4
=

(
(
(
(

(

𝜉
1max 𝑒

1
0 𝑏

1
0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

𝑏
2

0 0 𝜉
2max 𝑒

2
0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 −𝑤
2

0
−2𝜂𝑤

0
0 0 0 −1 0

0 0 0 0 −𝑤
2

0
−2𝜂𝑤

0
0 −1

)
)
)
)

)

.

(48)

4.3. Fuzzy Observer Design. Based on the on-line measure-
ments of the temperature of the warm water 𝑥1 and the
temperature of the cold water 𝑥4, we will show that the
previous result (12) can be used to estimate the displacement,
the velocity, and the acceleration of the warm water valves
𝑥2, 𝑥3, and 𝑥7 and the displacement, the velocity, and the
acceleration of the cold water valves 𝑥5, 𝑥6, and 𝑥8.

Using Section 3, the construction of the fuzzy descriptor
observer algorithm for heat exchanger system requires that
the above system (47) takes the form (10).
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To do so, let

𝑋1 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]
𝑇
, 𝑋2 = [𝑥7 𝑥8]

𝑇
,

𝐸 = (
𝐼 0

0 0
) with rank (𝐸) = 6,

𝐴 𝑖 = (
𝐴11𝑖 𝐴12𝑖

𝐴21𝑖 𝐴22𝑖
)

= (
𝐴 𝑖 (1 : 6, 1 : 6) 𝐴 𝑖 (1 : 6, 7 : 8)

𝐴 𝑖 (7 : 8, 1 : 6) 𝐴 𝑖 (7 : 8, 7 : 8)
) ,

for 𝑖 = 1, 2, 3, 4,

𝐵 = (
𝐵1

𝐵2
) = (

𝐵 (1 : 6, 1 : 2)

𝐵 (7 : 8, 1 : 2)
) ,

𝐶 = (𝐶1 𝐶2) = (𝐶 (1 : 2, 1 : 6) 𝐶 (1 : 2, 7 : 8)) .

(49)

Notice that in this application 𝐴22𝑖 = 𝐴 𝑖(7 : 8, 7 : 8) =
(
−1 0
0 −1

) are invertible.
This shows that system (47) is a particular case of system

(1).
Consequently, from Theorem 1 a fuzzy observer for T-S

descriptor system (47) permitting to estimate 𝑥2, 𝑥3, 𝑥5, 𝑥6,
𝑥7, and 𝑥8 takes the following form:

̇̂
𝑋1 =

4

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑀𝑖𝑋1 + 𝑁𝑖𝑢 − 𝐿 𝑖 (𝑦 − 𝑦)) ,

𝑋2 =

4

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑄𝑖𝑋1 + 𝑅𝑖𝑢) ,

𝑦 =

4

∑

𝑖=1

ℎ𝑖 (𝑋1, 𝑢) (𝑆𝑖𝑋1 + 𝐺𝑖𝑢) ,

(50)

where𝑀𝑖,𝑁𝑖, 𝑄𝑖, 𝑅𝑖, 𝑆𝑖, 𝐺𝑖, ℎ𝑖, and 𝐿 𝑖 are given in the above
equations (9), (11), and (29).

4.4. Simulation Results. In this section the purpose is to
show by numerical simulations the good performances of the
present study given in this paper. For all computer simula-
tions results discussed in the sequel, we use the parameter
values summarized in Table 1.

To simulate descriptor models (40) and (47), we use a
Runge-Kutta method combined with the Newton-Raphson
algorithm.

The initial conditions of the nonlinear system (40) and
T-S model (47) are

𝑥1 (0) = 73
∘C, 𝑥2 (0) = 0m,

𝑥3 (0) = 0m/s, 𝑥4 (0) = 18
∘C,

𝑥5 (0) = 0m, 𝑥6 (0) = 0m/s,

𝑥7 (0) = 0.4406m/s
2
, 𝑥8 (0) = 0.4406m/s

2
.

(51)

Table 1: List of parameters.

Parameters Values
𝑎
1

552.5871
𝑎
2

92.0978
𝑏
1

0.2856
𝑏
2

0.0952
𝑒
1

4.1444 ∗ 104

𝑒
2

1.4736 ∗ 103

𝑘
0

0.93
𝑤
0

6.2832
𝜂 0.7
𝑢
1

0.012
𝑢
2

0.012

First, we compare in Figure 2 the behavior of the continuous
descriptor model (40) with its T-S model (47). For the con-
sidered T-S model, we can see that the T-S model represents
exactly the nonlinear model.

In order to illustrate the performances of the T-S fuzzy
observer (50), we solve the LMIs given in Theorem 1. Then,
note that in this practical case 𝐶2 = 0; this implies that (see
(9)) 𝑆1 = ⋅ ⋅ ⋅ = 𝑆𝑞 = 𝐶1 and 𝐺1 = ⋅ ⋅ ⋅ = 𝐺𝑞 = 0. Thus, the
output of the system takes the following expression:

𝑦 = 𝐶1𝑋1. (52)

Now, the LMIs (27) given inTheorem 1 become

(

Z1𝑗 Θ𝑖𝑗 Ψ𝑖𝑗

Θ
𝑇

𝑖𝑗
Z2𝑖 𝑃2𝑁𝑖

Ψ
𝑇

𝑖𝑗
𝑁
𝑇

𝑖
𝑃2 −𝛽𝐼

) < 0 ∀ (𝑖, 𝑗) ∈ {1, . . . , 𝑞}
2
, (53)

where

Z1𝑗 = 𝑀
𝑇

𝑗
𝑃1 + 𝑃1𝑀𝑗 −K𝑗𝐶1 − 𝐶

𝑇

1
K
𝑇

𝑗
+ 𝐼,

Z2𝑖 = 𝑀
𝑇

𝑖
𝑃2 + 𝑃2𝑀𝑖,

Θ𝑖𝑗 = − 𝑃1 (𝑀𝑖 −𝑀𝑗) ,

Ψ𝑖𝑗 = − 𝑃1 (𝑁𝑖 − 𝑁𝑗) .

(54)

Therefore, we solve the LMIs given in (53)-(54); we obtain the
following observer gains 𝐿 𝑖, 𝑖 = 1, 2, 3, 4, and the minimal
value of the attenuation level 𝛼:

𝐿1 = 10
7(

(

2.9231 0.2860

0.0000 −0.0000

−0.0000 0.0000

0.2489 0.4752

−0.0000 0.0000

0.0000 −0.0000

)

)

,

𝐿2 = 10
7(

(

2.9465 0.0162

0.0000 −0.0000

−0.0000 0.0000

0.2894 0.4921

−0.0000 0.0000

0.0000 −0.0000

)

)

,
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𝐿3 = 10
8(

(

0.5899 −3.2133

0.0000 −0.0000

0.0000 0.0000

0.5469 −0.2332

0.0000 0.0000

−0.0000 −0.0000

)

)

,

𝐿4 = 10
7(

(

3.4557 −3.3143

0.0000 −0.0000

−0.0000 0.0000

0.8855 0.1733

0.0000 0.0000

−0.0000 −0.0000

)

)

,

𝛼 = √𝛽 = 4.4555.

(55)

The initial conditions of the fuzzy observer (50) are

𝑥1 (0) = 73
∘C, 𝑥2 (0) = 0.002m,

𝑥3 (0) = 0.001m/s, 𝑥4 (0) = 18
∘C,

𝑥5 (0) = 0.001m, 𝑥6 (0) = 0.001m/s,

𝑥7 (0) = 0.3528m/s
2
, 𝑥8 (0) = 0.3923m/s

2
.

(56)

Simulations results given in Figure 3 show the performances
of the observer designed above with the parameters 𝐿 𝑖, 𝑖 =
1, 2, 3, 4, where the dotted lines denote the state variables
estimated by the fuzzy observer (50). This simulation shows
that the estimation states converge to their corresponding
state variables.

5. Conclusion

In this paper, a new method to synthesize observer for
continuous-time T-S descriptor model with unmeasurable
premise variables was presented. The approach is based on
the separation between dynamic and static relations. The
convergence conditions are obtained by using Lyapunov
theory and the L2 techniques. The existence of conditions
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ensuring the convergence of the state estimation error is
expressed in terms of LMIs. The proposed fuzzy observer is
used for the on-line estimation of unknown state in a heat
exchanger model. First, the Takagi-Sugeno fuzzy model is
developed to represent the descriptor nonlinear model of the
heat exchanger. Next, simulation results have been given and
they demonstrated the good performances of the estimator.
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