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In the problem of VMs consolidation for cloud energy saving, different workloads will ask for different resources.Thus, considering
workload characteristic, the VMplacement solution will bemore reasonable. In the real world, different workload works in a varied
CPU utilization during its work time according to its task characteristics.That means energy consumption related to both the CPU
utilization and CPU frequency. Therefore, only using the model of CPU frequency to evaluate energy consumption is insufficient.
This paper theoretically verified that there will be a CPU frequency best suit for a certain CPU utilization in order to obtain the
minimum energy consumption. According to this deduction, we put forward a heuristic CPU frequency scaling algorithm VP-FS
(virtual machine placement with frequency scaling). In order to carry the experiments, we realized three typical greedy algorithms
for VMs placement and simulate three groups of VM tasks. Our efforts show that different workloads will affect VMs allocation
results. Each group of workload has its most suitable algorithm when considering the minimum used physical machines. And
because of the CPU frequency scaling, VP-FS has the best results on the total energy consumption compared with the other three
algorithms under any of the three groups of workloads.

1. Introduction

On-demand and effective resources management is crucial
for the availability of a scalable cloud datacenter [1, 2].
According to statistics, the resource utilization rate of dat-
acenter is very low, which is only about 30% on average.
However, a server is in idle status most of the time during
the day. And even an idle server still consumes almost 60%
of its full-load power. With its technical advantages and the
hardware support, virtualization technology [3] comes out
once again. Based on the support of the processor and server,
virtual machine (VM) becomes the basic unit for resource
management and sharing [4]. It has high utilization efficiency
and good isolation characteristics with each other. Nowadays,
people also use VMs to solve energy saving problem in
datacenter which is so-called packing problem [5]. Packing
problem is a global optimal problem.The objective is to pack
the pieces into a number of bins, subject to the constraint,
that the sum of the sizes of the pieces in each bin is less than

or equal to the size of the bin. Similarly, VMpackingmeans to
place the VMs as much as possible to the physical machines
(PMs), so that the unused PMs can be shut down to save
energy. Therefore, VM packing problem is also called VM
placement problem.

Different from dynamic VM placement, initial VM
placement should have long term effects in datacenter.
Because VMs migration will cost time and resources, fre-
quent migration is impractical. Such placement plays an
important role in efficient use of resources and energy saving
in datacenters [6]. Initial VM placement is subject to the
VM requirements for resources, the SLA requirements set
by users, and the available resources on PMs. There are
many works studying the optimal solution of initial VM
placement problem, such as heuristic methods [7–9] or
genetic algorithms [10, 11]. However, heuristic algorithm is
basically the single point search, and thus it is easy to fall
into the local optimal solution. Genetic algorithm does not
use the feedback information of the system, which makes
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the search blind. Reference [12] proposed an improved ant
colony optimization algorithm to find the optimal solution.
Reference [11] proposed a genetic algorithm based on NSGA-
II to find the optimal solution. There are also many works
focusing on the energy or power in a virtualized environment
[13–18]. In [12], the author proposed a heuristic method
to find the optimal energy consumption in a virtualized
enterprise environment. Reference [7] studied the relation
between CPU utilization and applications. In this way, the
system can decide the placement solution for VMs in order
to decrease the energy consumption. Reference [15] proposed
algorithms based on first-fit descending to consolidate VMs
in datacenter. Reference [16] not only considers the energy
but also considers the factor of SLA for optimal service pro-
vision according to users resource requirement. References
[17, 18] also focus on the objective of energy. They also
regard CPU as the main resource for energy consumption
and monitor it. The objective of VM migration is to find the
optimal energy consumption.

These algorithms are all based on the fixed frequency
of CPU. References [19, 20] put forward the model of CPU
frequency and energy consumption. Reference [21] proposed
a solution under the changeable CPU frequency. But it only
adapts to unchangedworkload. In [22], the authors addressed
the idea that an energy conservation algorithmmust consider
the workload characteristics of virtual machines. The typical
or random workload will actually affect the final energy con-
sumption. Reference [23] describes the relationship between
the power consumption and the operating frequency. This
energy consumption model has been utilized by many works
[24, 25]. However, its assumption is when the CPU operates
on full load and the CPU utilization is 100%. Paper [22] has
addressed the idea that the different workload will affect the
CPU utilization because of its task kinds and algorithms.
For example, some workload is CPU intensive while others
are data intensive or I/O intensive. Therefore, it is not
comprehensive to only consider the relation of power and
frequency.

This paper considers the relationship among power
consumption and CPU frequency and CPU utilization.
Here we consider the condition of workload characteristics.
That means the CPU utilization will dynamically change
according to their task characteristics. Usually, traditional
PM in datacenters runs at a fixed CPU frequency despite
what CPU utilization is. Based on the energy consumption
model, we deduce that there will be a suitable frequency
for certain workload CPU utilization in order to obtain
minimum energy consumption. Therefore, we put forward
a CPU frequency scaling idea and design a heuristic ant
colony algorithm VP-FS (virtual machine placement with
frequency scaling) to find the global solution for VMs
placement. For the experiments, we simulate three groups of
workload with different characteristics of CPU requirements
as the evaluation data. CPU utilization for these three group
presents linear, even, and bipolar distribution, respectively.
For comparison, we also design and realize three algorithms
with different greedy policies for initial VM placement. Dif-
ferent weights are considered for CPU, memory, and band-
width resource requirements separately. The efforts show

that different workload has its suitable placement algorithm.
Because CPU frequency can dynamically be scaled to fit
for certain CPU utilization, VP-FS can lead to minimum
energy consumption among these algorithms. The main
contributions of this paper are in the following aspects.

(1) Different from the work in [23], we consider the CPU
utilization which is also an important factor to the
energy consumption. And we verify that there should
be a frequency that is best suited for CPU utilization
with respect to the minimum energy consumption.

(2) Different from the work in [20], we consider the opti-
mal energy consumption not the energy efficiency.
We can have a more direct view of the relation among
the PM numbers, CPU frequency, and the workload
tasks capacity.

(3) Based on the above analysis, we put forward a CPU
frequency scaling algorithm which can dynamically
scale the frequency of the PM according to the CPU
utilization in order to obtain the optimal energy
consumption.

(4) In order to evaluate the effort of ours, we simulate
three groups of workloads. Each group has a certain
CPUutilization distribution.Thenwe do experiments
using the proposed algorithms. From the results we
can see that the solution of VM placements does have
the relation with the different workloads. And the
energy consumption can be lower by using frequency
scaling.

The rest of this paper is organized as follows. The
VM packing problem statement is presented and the three
greedy algorithms are proposed in Section 2. In Section 3, we
modeled the VM placement problem with respect to multi-
objectives and frequency scaling. We also deduce the related
factors with respect to minimum energy consumption. Based
on the above analysis and the idea of CPU frequency
scaling, we propose a heuristic ant colony algorithm VP-FS
in Section 4. VP-FS is to find the optimal VM placement
solution by searching the global solution space. In Section 5,
we design the workload with different characteristics of CPU
requirements. We then do the experiments and evaluations
of the proposed algorithms. Conclusion is finally given in
Section 6.

2. Problem Formulation and the
VM Packing Algorithms

2.1. Problem Formulation. For future reference, we sum-
marize the notation that is used throughout this paper in
Notation section. In Notation section, each 𝑢

𝑟
denotes a

resource utilization ratio (RUR), such asCPU,memory, or the
bandwidth of aVM.With the notations presented inNotation
section, we use ∑𝑑

𝑟=1
𝑤
𝑟𝑖
𝑢
𝑟𝑖
to represent the comprehensive

RUR of 𝑉
𝑖
. Thus, VM packing problem can be formulated as

follows: given a certain 𝑟𝑢
𝑗
> 0, 𝑢

𝑟
> 0, 𝑤

𝑟
> 0, 1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑟 ≤ 𝑑, we should find a placement solution
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Input: 𝑛 VM,𝑚 PM
Output: 𝑆 = {⟨𝑉

𝑖
, 𝑃
𝑗
⟩ | 𝑀

𝑖𝑗
= 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}

(1) for 𝑖 = 1 to 𝑛 do
(2) for 𝑟 = 1 to 𝑑 do
(3) 𝑢[𝑟] = VM[𝑖][𝑟];

(4) uVM[𝑖] =
𝑑

∑

𝑟=1

𝑤
𝑟𝑖
𝑢
𝑟𝑖
;

(5) sort(uVM, oVM, descending);
(6) for 𝑖 = 1 to𝑚 do
(7) for 𝑢 = 1 to 𝑑 do
(8) 𝑢[𝑖] = PM[𝑖][𝑢];

(9) uPM [𝑖]=
𝑑

∑

𝑟=1

𝑤
𝑟𝑖
𝑢
𝑟𝑖
;

(10) sort(uPM, oPM, ascending);
(11) for 𝑖 = 1 to 𝑛 do
(12) for 𝑗 = 1 to𝑚 do
(13) if PM[𝑗] > VM[oVM[𝑖]]
(14) PM[𝑗] − = VM[oVM[𝑖]];
(15) M[oVM[𝑖], 𝑗] = 1;
(16) adjust(PM[𝑗]), oPM[𝑗]);
(17) break;
(18) end

Algorithm 1: VPBFD (VM, PM).

𝑆 = {⟨𝑉
𝑖
, 𝑃
𝑗
⟩ | 𝑀

𝑖𝑗
= 1, ∀𝑖, 𝑗}, that is, ∑𝑑

𝑟=1
𝑤
𝑟𝑖
𝑢
𝑟𝑖
< 𝑟𝑢
𝑗
and

min∑𝑛
𝑖=1

∑
𝑚

𝑗=1
𝑒
𝑖𝑗
(𝑒
𝑖𝑗
= 0 | ⟨𝑉

𝑖
, 𝑃
𝑗
⟩ ∉ 𝑆).

2.2. RUR Based VMPacking Algorithms with Different Greedy
Policies. We will present three algorithms with different
greedy policies in this section.

(1) VPBFD Algorithm. The idea of VPBFD (virtual machine
placement with best fit descending policy) algorithm is as
follows. Compute the comprehensive RUR of each VM. And
sort the VMs in descending order according to their RUR.
Sort the PMs in ascending order according to their RUR.
Search for each VM, finding the first PM that can satisfy
the RUR of the VM. If a VM found its host PM, then
recalculate the surplus RUR of PM and find its new place
in the ascending PM queue. The pseudocode of VPBFD is
presented in Algorithm 1. uVM[] is an array used for saving
the comprehensive RURof eachVM.And theVM label 𝑖 (1 ≤
𝑖 ≤ 𝑛) is recorded in array oVM[].

VPBFD algorithm will satisfy VM with highest resource
requirements and select the PM that just can satisfy the VM
requirements, so it can leavemuchmore room for otherVMs.

(2) VPWFDAlgorithm.The idea of VPWFD (virtual machine
placement with worst fit descending policy) algorithm is as
follows. Compute the comprehensive RUR of each VM. And
sort the VMs in descending order according to their RUR.
Sort the PMs in descending order according to their RUR.
Search for each VM, finding the first PM that can satisfy
the RUR of the VM. If a VM has found its host PM, then
recalculate the remnant RUR of PM and find its new place
in the descending PM queue. The only difference of VPWFD

algorithmwithVPBFD algorithm is to sort PM in descending
order instead of ascending order. So the pseudocode of
VPWFD will not be presented in this paper.

Different from VPBFD algorithm, VPWFD algorithm
will first select the PM with highest resource surplus. There-
fore, such PM can have room for other VMs.

(3) VPRandom Algorithm. The idea of VPRandom (virtual
machine placement with random policy) algorithm is as
follows. Compute the comprehensive RUR of eachVM. It will
not sort VMor PM.The algorithmwill just begin to search for
each VM, finding the first PM that can satisfy the RUR of the
VM. The pseudocode of VPRandom algorithm is presented
in Algorithm 2. As Algorithm 1, here the uVM[] is an array
used for saving the comprehensive RUR of each VM. And the
VM label 𝑖 (1 ≤ 𝑖 ≤ 𝑛) is recorded in array oVM[].

Different from Algorithms 1, 2, and 3, VPRandom algo-
rithm will not sort VM or PM. In totally random order, the
algorithm will select the first satisfiable PM for each VM. In
some cases, this method may obtain the ideal solution.

3. Multiobjective VM Placement with
Frequency Scaling

3.1. VM Placement Problemwith Variable Frequencies. In this
paper, we will put 𝑛 VMs to 𝑚 PMs; the basic objective is to
minimize energy consumption of all the PMs. Therefore, the
solution space is𝑚𝑛. If we consider ℎ frequencies of each PM
and PM can select a proper CPU frequency according to its
workload, then the solution space will be ℎ𝑚𝑚𝑛. Generally
speaking, different type of workload has different resource
requirements. And only if all the resources can satisfy VM
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Input: 𝑛 VM,𝑚 PM
Output: 𝑆 = {⟨𝑉

𝑖
, 𝑃
𝑗
⟩ | 𝑀

𝑖𝑗
= 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}

(1) for 𝑖 = 1 to 𝑛 do
(2) for 𝑟 = 1 to 𝑑 do
(3) 𝑢[𝑟] = VM[𝑖][𝑟];

(4) uVM[𝑖]=
𝑑

∑

𝑟=1

𝑤
𝑟𝑖
𝑢
𝑟𝑖
;

(5) for 𝑖 = 1 to 𝑛 do
(6) for 𝑗 = 1 to𝑚 do
(7) if PM[𝑗] > VM[oVM[𝑖]]
(8) PM[𝑗] − = VM[oVM[𝑖]];
(9) M[oVM[𝑖], 𝑗] = 1;
(10) break;
(11) end

Algorithm 2: VPRandom (VM, PM).

requirements, the resources can be allocated to the VM.
However, the unbalance of resources utilization will easily
lead to a waste of resources. If some VMs canmeet a resource
balance in different resource requirement, these VMs should
be placed in one PM to obtain better resource utilization. For
example, one VMhas a CPU-intensive workload and another
VM has a data-intensive workload; then, these two VMs can
be packing together in one PM to obtain better resource
utilization. This may be reasonable for an optimal placement
solution. Thus, besides the energy consumption objective,
this paper also proposes another objective to measure the
solution, that is, resource balancing degree.

3.2. The Objectives of the Problem

(1) Energy Consumption. Consider

𝑒 = 𝑐 + 𝑘 ∗ 𝑓
3

∗ 𝑢cpu, (1)
where 𝑒 denotes the instantaneous power of a PM. It depends
on the energy consumption of PM in its idle time and the
instantaneous frequency and CPU utilization, 𝑢cpu denotes
the CPU utilization, and 𝑘 is a coefficient, which indicates
that dynamic energy consumption of CPU is proportional
to the cubic of frequency and utilization [21]. In [23], the
energy consumption is depicted as 𝑒 = 𝑐 + 𝑘 ∗ 𝑓

3. However,
its assumption is that the workload works on 100% CPU
utilization. Actually, a workload task can be depicted as the
multiple of CPU frequency, CPU utilization, and a coefficient
[20].Therefore, in Formula (1), we put the 𝑢cpu as a multiplier
to the 𝑓.

(2) Resources Balancing Degree. Consider

𝑏 = (1 −

𝑢cpu

𝑢

)

2

+ (1 −

𝑢mem
𝑢

)

2

+ (1 −

𝑢bw
𝑢

)

2

, (2)

𝑢 =

𝑢cpu + 𝑢mem + 𝑢bw

3

. (3)

In this paper, we mainly consider three kinds of resources.
They are CPU, memory, and bandwidth. In formula (2), 𝑢mem

and 𝑢bw denote the utilization of memory and bandwidth
on PMs, respectively. 𝑢 is the average utilization of the three
resources.We normalize 𝑢cpu, 𝑢mem, and 𝑢bw in formula (2) so
that 𝑏 can depict the balancing of the three kinds of resources
in a PM. If the value of 𝑏 is small, then itmeans the three kinds
of resources utilization in a PM are balancing.

(3) Objective Function. Based on formulas (1) and (2), the
objective function of VMs initial placement can be depicted
as follows.

Minimize

𝑎
1
∗

𝑚−1

∑

𝑗=0

𝑒
𝑗
+ 𝑎
2
∗

𝑚−1

∑

𝑗=0

𝑏
𝑗 (4)

subject to

𝑢cpu ≤ 𝑢sla, 𝑢mem ≤ 𝑢sla, 𝑢bw ≤ 𝑢sla, (5)

where 𝑒
𝑗
indicates the energy consumption of 𝑃

𝑗
, 𝑏
𝑗
indicates

the resources balancing degree of 𝑃
𝑗
, and 𝑎

1
and 𝑎

2
are

weights which stand for the degree of importance on energy
consumption and resources balancing.Theobjective function
is to find the minimal value of energy consumption and best
resource balancing degree. Objective SLA is implemented by
constraining resources utilization in 𝑒

𝑗
and 𝑏
𝑗
; 𝑢sla indicates

the upper threshold of resources utilization on PMs.

3.3. Frequency Scaling for Lowest Energy Consumption. For-
mula (1) shows the relation of instantaneous power of a PM
with its instantaneous frequency 𝑓 and CPU utilization 𝑢cpu.
Given a set of workloads, each of whom has its own resource
requirements. And each workload may ask for different CPU
resource according to its load capacity. Theoretically speak-
ing, if the PM can work on its best CPU frequency according
to the CPU utilization, then the energy efficiency will be
the optimal. Therefore, we need to answer the following two
questions. (1) Is there a CPU frequency that is best suitable
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for a certain workload that can make the minimum energy
consumption? (2)What can such frequency be depicted as?

For convenience, we use 𝑢 to denote 𝑢cpu in this section.
If there are 𝑚 PMs with each work on a frequency 𝑓

𝑖
, then,

as [23], the total required computing power of all the PMs
is 𝐹 = ∑

𝑚

𝑖=1
𝑓
𝑖
. According to formula (1), the total energy

consumption of all the𝑚 PMs is given by

𝐸 = 𝑚𝑐 + 𝑘
[

[

𝑚−1

∑

𝑖=1

𝑓
3

𝑖
𝑢
𝑖
+ (𝐹 −

𝑚−1

∑

𝑖=1

𝑓
𝑖
)

3

𝑢
𝑚

]

]

. (6)

As formula (6) shows, the total energy consumption has
two variables, which are CPU frequency and utilization. If
all the CPU frequencies and utilization in each PM are the
optimal ones, then the total energy consumption𝐸 can be the
minimum one. Therefore, we will deduct the relations of 𝐸
with respect to CPU frequency or CPU utilization separately
in the following.

(1) Total Energy Consumption with respect to CPU Frequency.
As the first question asked about if we want to obtain the
lowest energy consumption, then there is optimal values for
CPU frequency of each PM. Based on formula (6), we make
a first partial derivative of the total energy consumption with
respect to CPU frequency. Consider

𝜕𝐸

𝜕𝑓
𝑖

= 3𝑘𝑓
2

𝑖
𝑢
𝑖
+ 𝑘

𝜕(𝐹 − ∑
𝑚−1

𝑖=1
𝑓
𝑖
)

3

𝜕𝑓
𝑖

.
(7)

In formula (7),

𝜕(𝐹 − ∑
𝑚−1

𝑖=1
𝑓
𝑖
)

3

𝜕𝑓
𝑖

=

𝜕 (𝐹
3

− 3𝐹
2

∑
𝑚−1

𝑖=1
𝑓
𝑖
+ 3𝐹(∑

𝑚−1

𝑖=1
𝑓
𝑖
)

2

− (∑
𝑚−1

𝑖=1
𝑓
𝑖
)

3

)

𝜕𝑓
𝑖

= −3𝐹
2

+ 3𝐹

𝜕(∑
𝑚−1

𝑗=1,𝑗 ̸=𝑖
𝑓
𝑗
+ 𝑓
𝑖
)

2

𝜕𝑓
𝑖

−

𝜕(∑
𝑚−1

𝑗=1,𝑗 ̸=𝑖
𝑓
𝑗
+ 𝑓
𝑖
)

3

𝜕𝑓
𝑖

= −3𝐹
2

+ 3𝐹(2

𝑚−1

∑

𝑗=1,𝑗 ̸=𝑖

𝑓
𝑗
+ 2𝑓
𝑖
)

− 𝜕((

𝑚−1

∑

𝑗=1,𝑗 ̸=𝑖

𝑓
𝑗
)

3

+ 3(

𝑚−1

∑

𝑗=1,𝑗 ̸=𝑖

𝑓
𝑗
)

2

𝑓
𝑖

+ 3(

𝑚−1

∑

𝑗=1,𝑗 ̸=𝑖

𝑓
𝑗
)𝑓
2

𝑖
+ 𝑓
3

𝑖
) × (𝜕𝑓

𝑖
)
−1

= −3𝐹
2

+ 6𝐹

𝑚−1

∑

𝑖=1

𝑓
𝑖
− (3(

𝑚−1

∑

𝑗=1,𝑗 ̸=𝑖

𝑓
𝑗
)

2

+ 6(

𝑚−1

∑

𝑗=1,𝑗 ̸=𝑖

𝑓
𝑗
)𝑓
𝑖
+ 3𝑓
2

𝑖
)

= −3𝐹
2

+ 6𝐹

𝑚−1

∑

𝑖=1

𝑓
𝑖
− 3(

𝑚−1

∑

𝑗=1,𝑗 ̸=𝑖

𝑓
𝑗
+ 𝑓
𝑖
)

2

= −3(𝐹 −

𝑚−1

∑

𝑖=1

𝑓
𝑖
)

2

.

(8)

According to (8), we can rewrite (7) as

𝜕𝐸

𝜕𝑓i
= 3𝑘𝑓

2

𝑖
𝑢
𝑖
− 3𝑘(𝐹 −

𝑚−1

∑

𝑖=1

𝑓
𝑖
)

2

𝑢
𝑚
. (9)

In order to get the minimum 𝐸, let formula (9) equate 0,
and then we have

3𝑘𝑓
2

𝑖
𝑢
𝑖
= 3𝑘(𝐹 −

𝑚−1

∑

𝑖=1

𝑓
𝑖
)

2

𝑢
𝑚
, (10)

𝑓
2

𝑖
𝑢
𝑖
= 𝑓
2

𝑚
𝑢
𝑚
. (11)

(2) Total Energy Consumption with respect to Amount of PM.
We substitute each 𝑓

𝑖
𝑢
𝑖
in formula (6) with (11). Formula (6)

can be rewritten as

𝐸 = 𝑚𝑐 + 𝑘

𝑚

∑

𝑖=1

𝑓
3

𝑖
𝑢
𝑖
= 𝑚𝑐 + 𝑘𝑓

2

𝑚
𝑢
𝑚

𝑚

∑

𝑖=1

𝑓
𝑖

= 𝑚𝑐 + 𝑘𝑓
2

𝑚
𝑢
𝑚
𝐹.

(12)

If PM 𝑖 works at frequency 𝑓
𝑖
and the CPU utilization is

𝑢
𝑖
, we define 𝑇 as

𝑇 =

𝑚

∑

𝑖=1

𝑓
2

𝑖
𝑢
𝑖
. (13)

Therefore, according to (11), we have

𝑓
2

𝑖
𝑢
𝑖
= 𝑓
2

𝑚
𝑢
𝑚
=

𝑇

𝑚

. (14)

Then we can rewrite formula (12) as

𝐸 = 𝑚𝑐 + 𝑘

𝑇

𝑚

𝐹. (15)

Wemake the first derivative of the total energy consump-
tion 𝐸 according to (15) with respect to the number of PM.
This can be expressed as

d𝐸
d𝑚

= 𝑐 − 𝑘𝐹

𝑇

𝑚
2
. (16)

Setting d𝐸/d𝑚 = 0, then we have 𝑐 = 𝑘𝐹(𝑇/𝑚
2

).
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Thus,

𝑚 = √
𝑘𝐹𝑇

𝑐

. (17)

Equation (17) means that besides the constants 𝑐 and 𝑘

and the number of PMs 𝑚, the optimal energy consumption
also relates to each frequency 𝑓

𝑖
in each PM.

4. Dynamic Programming Algorithm

To find the optimal solution for energy consumption, there
should be a most suitable frequency to each PM according
to the workload running on it. Based on this idea, this
paper proposes an ant colony optimization algorithm VP-FS
(virtual machine placement with frequency scaling). It can
select the suitable frequency by scaling it according to the
CPU utilization of the running workload. The basic idea is
discussed as follows.

Initialize each 𝑉
𝑖
and each 𝑃

𝑗
as a two tuples ⟨𝑉

𝑖
, 𝑃
𝑗
⟩,

which means a placement between 𝑉
𝑖
and 𝑃
𝑗
. We call the two

tuples as a path. Set for each path an initial pheromone 𝑡
𝑖𝑗
= 1.

The ant will choose a path randomly for 𝑉
𝑖
according to the

value of 𝑡
𝑖𝑗
. Of course, the path will be easily selected if it has

a big 𝑡
𝑖𝑗
. Once the ant has finished path choosing for each 𝑉

𝑖
,

an initial placement solution is formed.
If there are 𝑛 ants, then there will be 𝑛 placement solution.

We take all the solutions that meet objective SLA as the
solution space for the second objective min∑𝑚−1

𝑗=0
𝑒
𝑗
. In the

solution space that meets the second objective, we select the
first 𝑝% subset solution as the solution space for the third
objectivemin∑𝑚−1

𝑗=0
𝑏
𝑗
.Thenwewill find the best solution. For

the paths in the final solution, their pheromone will increase
multiplied by 𝑞 (𝑞 > 1). Iterating the above processes till the
value of the objective function as formula (4) does not change
or changes in a small enough range. The pseudocode of VP-
FS algorithm is presented in Algorithm 3.

In Algorithm 3, 𝐹 denotes the value of the objective
function of formula (4). Variant 𝑎 represents the ant. It will
loop from 1 to the 𝐴. Each ant will produce a placement
solution. Variants 𝑖 and 𝑗 are used to find a proper 𝑃

𝑗
for

a 𝑉
𝑖
. While choosing the proper 𝑃

𝑗
for 𝑉
𝑖
, it will depend

on the probability 𝑡
𝑖𝑗
/∑
𝑛,𝑚

𝑖=1,𝑗=1
𝑡
𝑖𝑗
. If any remnant resource is

insufficient, that is, 𝑟𝑢
𝑗
> 𝑢sla, then undo the allocation,

else record the allocation ⟨𝑉
𝑖
, 𝑃
𝑗
⟩. choose energy(𝑝, 𝑆)means

to select the 𝑝% solution from set 𝑆. And choose balance(𝑆)
means to search the best solution with minimal resources
balancing degree 𝑏 from set 𝑆. The ending condition of the
iteration is that the difference of two results is less than a small
enough value 𝜖.

5. Experiments

Our experiments run on a cluster containing 10 PMs with
OpenStack as its cloud infrastructure platform. All PMs are
connected by a gigabit Ethernet. CPU in each PM has four
cores. CPU highest frequency of each core is 2.7 GHz. The
memory and bandwidth of each PM are 2GB and 100Mbps.

We also set 30VMs and let each VM deploy on one of the
cores of the PM.We use sysbench to simulate each workload.

5.1. CPU-Intensive Workloads. Different workloads have dif-
ferent resource requirements variation, which may ask for
different initial placement algorithms for best performance.
In this paper, we simulate three groups of workloads. In each
group of workload, we mainly focus on the CPU resource.
The distribution of CPU utilization in each group is shown in
Figure 1.

In Figure 1(a), the CPU utilization requirements of the
three VM groups present different distribution.The 1st group
is a linear distribution, the 2nd group is an even distribution,
and the 3rd group is a bipolar distribution. Figure 1(b) is the
memory andbandwidth resources, which are almost the same
in each group.

The comprehensive RUR of 𝑉
𝑖
is ∑
𝑑

𝑟=1
𝑤
𝑟𝑖
𝑢
𝑟𝑖
. In our

experiments, 𝑑 = 3. That means we consider three types
of resource, CPU, memory, and bandwidth. Because CPU is
the most effective factor in energy and we propose a CPU
frequency scaling approach in this paper, so we set 𝑤

1
, 𝑤
2
,

and 𝑤
3
as 7, 3, and 2, respectively. In the realization of the

proposed VP-FS algorithm, we set 𝑝 = 0.05, 𝑞 = 1.2.

5.2. Placement Solution of Each Algorithm. For VMs in each
group, we use the four algorithms (VPBFD, VPRandom,
VPWFD, and VP-FS) in this paper to allocate them. 30VMs
are allocated to 10 PMs. Figure 2 is the allocation results
under each VM group.

Because of different resource distribution in each group,
the allocation results are different, as Figures 2(a), 2(b), and
2(c) show. x-Coordinate is the 10 PMs and y-coordinate is the
30VMs. For example, in Figure 2(a), according to VPBFD,
the allocation result is that VMs numbers 30, 29, 28, and 27
will be placed to PM number 1. According to VP-FS, VMs
numbers 1, 19, and 3 will be placed to PM number 1. As the
allocation results using different four algorithms show, firstly,
the amount of used PMs is different. VPBFD andVPRandom
use the least PMs, that is, 8 PMs instead of 10 PM for the
30VMs, while VPWFD and VP-FS allocate 30 VMs in all the
10 PMs. Secondly, the distributed pattern is different. Because
VPRandom algorithm does not sort the PM or the VM in
advance, so the 30VMs in Figures 2(a), 2(b), and 2(c) are
all sequentially allocated from PM 1 to 10 if only the PM
can afford the required resources. This is the same for the
algorithm of VP-FS. When using VPWFD algorithm, the
30VMs under three groups are all disorderly distributed in
each PM, because VPWFD algorithm always tries to find the
PM with the largest resources.

5.3. Resource Balancing Degree of Each Algorithm. After VM
placement, we calculate the value of 𝑏 in each PM according
to formula (2). The results are shown in Figure 3.

In Figure 3, we compare the value of 𝑏 in each PM under
different algorithms. If the value of 𝑏 is low, then the PM has a
good resource balance. Otherwise, the PM has a bad resource
balance. Using the first group with the linear distributed
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Input: 𝑛 VM,𝑚 PM, 𝐴 ants, error margin 𝜖, parameter 𝑝, 𝑞(𝑞 > 1)

Output: 𝑆 = {⟨𝑉
𝑖
, 𝑃
𝑗
⟩ | 𝑀

𝑖𝑗
= 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}

(1) for each ⟨𝑖, 𝑗⟩ 𝑡
𝑖𝑗
= 1

(2) 𝐹 = 0
(3) do{
(4) 𝑆 = []
(5) 𝐹

1
= 𝐹

(6) for each 𝑎 from 1 to 𝐴
(7) 𝑆

𝑎
= []

(8) for each 𝑖 from 1 to 𝑛
(9) choose host 𝑗 from hosts
(10) Allocate(𝑉

𝑖
, 𝑃
𝑗
)

(11) If 𝑟𝑢
𝑗
> 𝑢sla

(12) then Dealloc(𝑉
𝑖
, 𝑃
𝑗
), back to step 9

(13) 𝑆
𝑎
= 𝑆
𝑎
+ [⟨𝑉

𝑖
, 𝑃
𝑗
⟩]

(14) 𝑆 = 𝑆 + 𝑆
𝑎

(15) 𝑆 = choose energy(𝑝, 𝑆)
(16) 𝑆 = choose balance(𝑆)
(17) for 𝑡

𝑖𝑗
in 𝑆

(18) 𝑡
𝑖𝑗
= 𝑡
𝑖𝑗
∗ 𝑞

(19) 𝐹 = energy sla sum(𝑆)
(20) } while(|𝐹

1
− 𝐹| ≥ 𝜖)

Algorithm 3: VP-FS (VM, PM).
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Figure 1: Resources utilization of each group of workloads.

CPU utilization. We get the results in Figure 3(a). The results
obtained by VPBFD and VPRandom are fluctuating wildly
from top to bottom. That means only some of the PMs
can have a very good resource balance after being allocated
with VMs. Because VPBFD firstly considers allocating the
VMs to the used PM if only the PM has enough resources,
therefore the resources of some PMs can be used effectively.
VPWFD firstly considers allocating the VMs to the PM with
the largest resources, and therefore all the 10 PMs have been

used. Although some of the PMs have the lowest 𝑏 value
under VPBFD, both the VPWFD and VP-FS have an average
resources balance among each of the 10 PMs. Comparatively
speaking, under linear CPU utilization workloads, 𝑏 value of
VPWFD is a little better than VP-FS. Figure 3(b) is the results
under CPU RU even distribution, and we can see taht all the
𝑏 value of each PM are all in an average manner by using any
of the algorithms. Figure 3(c) is the results under CPU RU
bipolar distribution.The 𝑏 values of each PM by using VP-FS
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Figure 2: Allocation results under three groups.

are the smoothest compared to the other three algorithms.
That means, by using VP-FS, under the workloads in bipolar
distribution, all the PMs can obtain the best resource balance.
We can also use the standard deviation of 𝑏 value of the total
10 PMs to describe the resource balance of each algorithm.
As Table 1 shows, the standard deviation of 𝑏 value of VP-FS
is small compared with the other algorithms. That means the
resource balance is well in each of the 10 PMs under VP-FS.

5.4. EnergyConsumption of EachAlgorithm. TheVMs run for
2 hours after having been placed on the PMs. We use power
meters to measure the instantaneous power and the whole
power consumption of each PM. When the PMs are in their
idle status, we can obtain the basic energy consumption of
each PM, as Table 2 shows.

Using the placement results under the 1st group data, the
consumption energy of each PM is shown in Figure 4(a), so as
to the 2nd group data in Figure 4(b) and the 3rd group data
in Figure 4(c). Because VPBFD and VPRandom algorithms
only use 8 PMs, their energy consumption in each PM is
higher than that of VPWFD and VP-FS in the first 8 PMs.
VP-FS leads to almost the least energy consumption in each
PM under each group, except for few PMs.

Workload distribution in each group really affects the
energy consumption result in each PM. In the first group,
CPU RU is in a linear distribution pattern. In the four
algorithms, VPBFD method will sort the VMs by their
resource utilization in descend and VM in the first place
will be placed firstly. So the energy consumption from PM
1 to PM 8 is also in a descending manner in Figure 4(a).
VPRandom method will not sort VMs in advance and the
placement is in a randommanner, so the result in Figure 4(a)



Mathematical Problems in Engineering 9

0 1 2 3 4 5 6 7 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
so

ur
ce

 b
al

an
ci

ng
 d

eg
re

e

Physical machines

(a) The first group

0 1 2 3 4 5 6 7 8 9 10 11

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
so

ur
ce

 b
al

an
ci

ng
 d

eg
re

e

Physical machines

(b) The second group

0 1 2 3 4 5 6 7 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
so

ur
ce

 b
al

an
ci

ng
 d

eg
re

e

Physical machines

VPBFD
VPWFD

VPRandom
VP-FS

(c) The third group

Figure 3: Resource balancing degree under three groups.

Table 1: Standard deviation of 𝑏 value.

VPBFD VPWFD VPRandom VP-FS
Group 1 0.4197 0.1285 0.4200 0.1768
Group 2 0.1347 0.0863 0.1426 0.0877
Group 3 0.3984 0.1026 0.1494 0.0565

is totally the same manner in ascending order as the CPU
RU distribution. In the second group, CPU RU is in an even
distribution pattern; according to the above analysis, the
energy consumption results of VPBFD and VPWFD are also
in an even manner in Figure 4(b). In the third group, CPU
RU is in a bipolar distribution pattern; although VPBFD will
sort VMs in advance, the big RU values are much more than
the first group, so VMs in the front positions will be placed
to the sequential PMs. Thus, the energy consumption results

of VPBFD and VPRandom are also in disordered manner. In
any of these three groups, without sorting theVMs in advance
while considering proper frequency scaling, VP-FS method
leads to similar energy consumption in each PM.

As we all know, basic energy consumption contributes to
the large part of the total energy consumption of an active
PM. Including the basic energy consumption of the PM
number 9 and PM number 10, VP-FS still has the lowest total
energy consumption in the four VM placement algorithms.
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Figure 4: Energy consumption results under three groups.

Table 2: Basic energy consumption of each PM.

Physical machine PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM 8 PM 9 PM 10
Basic energy consumption (W) 94.57 95.35 99.42 96.84 95.88 94.78 94.50 94.81 95.12 94.37

Table 3: Energy saving between VP-FS and other algorithms.

VP-FS/VPBFD VP-FS/VPRandom VP-FS/VPWFD Average
1st group 8.90% 11.17% 11.03% 10.37%
2nd group 8.944% 8.946% 8.81% 8.89%
3rd group 1.84% 9.87% 10.16% 7.29%
Average 6.56% 9.99% 10% 8.85%
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Figure 5: Total energy consumption under three groups.

Figure 5 is the total energy consumption under each group of
data. In each of the three groups, VPRandom and VPWFD
methods get almost the same energy consumption. Table 3 is
detailed data which show the energy saving results between
VP-FS and other algorithms. From Figure 5 and Table 3, in
the first group, when CPUworkload is in a linear distribution
pattern, VP-FS has the best energy saving results of 10.37% to
the other traditional methods. VPBFD has the second best
energy consumption result. In the third group, the advantage
ofVP-FS is not very obvious compared toVPBFD.The energy
saving of VP-FS compared to VPBFD is only 1.84%. That
means when workloads is in a bipolar distribution, VPBFD
is almost as good as VP-FS method. On the average, VP-FS
has saved 6.56%, 9.99%, and 10% total energy compared with
VPBFD, VPRandom, and VPWFD, respectively. Obviously,
using frequency scaling in initial VMplacement, PM can find
the proper CPU frequency for the certain VM that allocated
to it.

6. Conclusions

In this paper, we consider workload characteristics with
dynamic CPU utilization and energy consumption with CPU
frequency scaling to the ordinary VM placement problem. If
a PMhas ℎ different CPU frequencies, then the solution space
of theVMplacement problemwill be expanded from𝑚

𝑛 to be
ℎ
𝑚

𝑚
𝑛. Using energy consumptionmodel, we verify that there

will be a CPU frequency that best fit for a CPU utilization
in PM with respect to the minimum energy consumption.
We then modeled the objectives of energy, resource balance
and SLA for optimal VM placement solution, and propose
an ACO-based CPU frequency scaling algorithm VP-FS. In
order to compare the effect, we put forward three typical
greedy algorithms, which are VPBFD, VPRandom, and
VPWFD. Each of them has different greedy policy.We design

three groups of VMs with different resource distribution,
so that we can have an evaluation of the impact which the
workloads bring to the algorithms in VMs consolidation and
energy saving. Our efforts show that, for workloads with
different CPU resource utilization, running under different
algorithms will produce different VMs allocation results. If
we consider the numbers of used PMs, then different group of
workload will have its most suitable algorithms for minimum
used PMs. VP-FS is not the best algorithms considering the
number of used PMs. However, because of its frequency scal-
ing policy, it has the lowest energy consumption compared
with the other three algorithms under three different groups
of VM workloads. In the future, we will further consider
workload awareness to dynamic VM allocation.

Notation

𝑛: Number of VMs
𝑚: Number of PMs
ℎ: Frequencies of a PM
𝑓: Instantaneous frequency of a PM
𝑐: Energy consumption of PM in its idle time
𝑉
𝑖
: VM 𝑖 (1 ≤ 𝑖 ≤ 𝑛)

𝑃
𝑗
: PM 𝑗 (1 ≤ 𝑗 ≤ 𝑚)

𝑑 : Dimension of the resources
𝑢
𝑟
: Utilization ratio of resource 𝑟,

𝑢
𝑟
∈ [𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑑
]

𝑤
𝑟
: Weight of resource 𝑟

𝑟𝑢
𝑗
: Remnant of the comprehensive resource
utilization of 𝑃

𝑗

𝑀
𝑖𝑗
: Placement solution; if 𝑉

𝑖
is placed in 𝑃

𝑗
,

then𝑀
𝑖𝑗
= 1, else𝑀

𝑖𝑗
= 0

𝑒
𝑖𝑗
: Energy consumption of 𝑉

𝑖
in 𝑃
𝑗
.
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