
Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2012, Article ID 312719, 17 pages
doi:10.1155/2012/312719

Review Article
A 125 GeV Higgs and Its Diphoton Signal in
Different SUSY Models: A Mini Review

Zhaoxia Heng

Department of Physics, Henan Normal University, Xinxiang 453007, China

Correspondence should be addressed to Zhaoxia Heng, zxheng@htu.cn

Received 22 May 2012; Revised 20 September 2012; Accepted 30 September 2012

Academic Editor: Stefano Moretti

Copyright q 2012 Zhaoxia Heng. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

In this paper we briefly review our recent studies on a 125GeV Higgs and its diphoton signal rate
in different low-energy supersymmetric models, namely, the minimal supersymmetric standard
model (MSSM), the next-to-minimal supersymmetric standard model (NMSSM), the nearly
minimal supersymmetric standardmodel (nMSSM), and the constrainedMSSM. Our conclusion is
as follows (i) in the allowed parameter space the SM-like Higgs boson can easily be 125GeV in the
MSSM, NMSSM, and nMSSM, while it is hard to realize in the constrainedMSSM; (ii) the diphoton
Higgs signal rate in the nMSSM and constrained MSSM is suppressed relative to the prediction of
the SM, while the signal rate can be enhanced in the MSSM and NMSSM; (iii) the NMSSM may
allow for a lighter top squark than the MSSM, which can thus ameliorate the fine-tuning problem.

1. Introduction

Considering the important role of the Higgs boson in particle physics, hunting for it has been
one of themajor tasks of the running LargeHadron Collider (LHC). Recently, both the ATLAS
and CMS collaborations have reported some evidence for a light Higgs boson near 125GeV
[1–12] with a diphoton signal rate slightly above the SM prediction [13].

As is well known, in new physics beyond the SM model several Higgs bosons are
predicted, among which the SM-like one may be near 125GeV [14–43]. Recently, in our
studies [42, 43]we examined the mass of the SM-like Higgs boson in several supersymmetric
(SUSY)models including the minimal supersymmetric standard model (MSSM) [44–47], the
next-to-minimal supersymmetric standard model (NMSSM) [48–61], and the constrained
MSSM [62–68]. At tree level, these SUSY models are hard to predict a Higgs boson near
125GeV, and sizable radiative corrections, which mainly come from the top and top-squark
loops, are necessary to enhance the Higgs boson mass [69–72]. Due to the different properties
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of these SUSYmodels, the loop contributions to the Higgs boson mass are different for giving
a 125GeV Higgs boson. Therefore, different models have different lower bounds on the top-
squark mass which is associated with the fine-tuning problem [73–75]. On the other hand,
since the di-photon Higgs signal is the most promising discovery channel for a light Higgs
boson at the LHC [76–80], in our recent study [81] we performed a comparative study for
the di-photon Higgs signal in different SUSY models, namely, the MSSM, NMSSM, and the
nearly minimal supersymmetric standard model (nMSSM) [82–90]. In this note we briefly
review these studies on a 125GeV Higgs boson and its di-photon signal rate in different
SUSY models.

This note is organized as follows. In the next section we briefly describe the Higgs
sector and the di-photon Higgs signal in these SUSY models. Then we present the numerical
results and discussions in Section 3. Finally, the conclusions are given in Section 4.

2. The Higgs Sector and Di-Photon Signal Rate in SUSY Models

2.1. The Higgs Sector in SUSY Models

Different from the SM, the Higgs sector in the supersymmetric models is usually extended by
adding Higgs doublets and/or singlets. The most economical realization is the MSSM, which
consists of two Higgs doublet Hu and Hd. In order to solve the μ-problem and the little
hierarchy problem in the MSSM, the singlet extension of MSSM, such as the NMSSM [48–51]
and nMSSM [82–90], has been intensively studied [91]. The differences between these models
come from their superpotentials and the corresponding soft-breaking terms, which are given
by

WMSSM = WF + μ̂Hu · ̂Hd,

WNMSSM = WF + λ̂Hu · ̂Hd
̂S +

1
3
κ ̂S3,

WnMSSM = WF + λ̂Hu · ̂Hd
̂S + ξFM

2
n
̂S,

VMSSM
soft = m̃2

u|Hu|2 + m̃2
d|Hd|2 +

(

BμHu ·Hd + h.c.
)

,

VNMSSM
soft = m̃2

u|Hu|2 + m̃2
d|Hd|2 + m̃2

S|S|2 +
(

AλλSHu ·Hd +
Aκ

3
κS3 + h.c.

)

,

V nMSSM
soft = m̃2

u|Hu|2 + m̃2
d|Hd|2 + m̃2

S|S|2 +
(

AλλSHu ·Hd + ξSM
3
nS + h.c.

)

,

(2.1)

where WF is the MSSM superpotential without the μ term, λ, κ and ξF are the dimensionless
parameters, and m̃u, m̃d, m̃S, B, Aλ, Aκ, and ξSM

3
n are soft-breaking parameters. Note that in

the NMSSM and nMSSM the μ-term is replaced by the μeff = λs when the singlet Higgs field
̂S develops a VEV s. The differences between the NMSSM and nMSSM reflect the last term in
the superpotential, where the cubic singlet term κ ̂S3 in the NMSSM is replaced by a tadpole
term ξFM

2
n
̂S in the nMSSM. This replacement in the superpotential makes the nMSSM have

no discrete symmetry and thus free of the domainwall problem that theNMSSM suffers from.
Actually, due to that the tadpole term ξFM

2
n does not induce any interaction, the nMSSM is
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Figure 1: The scatter plots of the samples in the MSSM and NMSSM (with λ > 0.53) satisfying various
constraints listed in the text (including 123GeV ≤ mh ≤ 127GeV), showing the correlation between the
mass of the lighter top squark and Xt/MS with MS ≡ √m

˜t1
m
˜t2
and Xt ≡ At − μ cot β. In the right panel

the circles (green) denote the pull-down case (the lightest Higgs boson being the SM-like Higgs), and the
times (red) denote the push-up case (the next-to-lightest Higgs boson being the SM-like Higgs).

identical to the NMSSM with κ = 0, except for the minimization conditions of the Higgs
potential and the tree-level Higgs mass matrices.

With the superpotentials and the soft-breaking terms giving above, one can get the
Higgs potentials of these SUSY models and then can derive the Higgs mass matrics and
eigenstates. At the minimum of the potential, the Higgs fields Hu, Hd, and S are expanded
as

Hu =

⎛

⎝

H+
u

vu +
φu + iϕu√

2

⎞

⎠, Hd =

⎛

⎝

vd +
φd + iϕd√

2
H−

d

⎞

⎠, S = s +
1√
2
(σ + iξ), (2.2)

with v =
√

v2
u + v2

d
= 174GeV. By unitary rotation the mass eigenstates can be given by

⎛

⎝

h1

h2

h3

⎞

⎠ = S

⎛

⎝

φu

φd

σ

⎞

⎠,

⎛

⎝

a
A
G0

⎞

⎠ = P

⎛

⎝

ϕu

ϕd

ξ

⎞

⎠,

(

H+

G+

)

= U

(

H+
u

H+
d

)

, (2.3)

where h1, h2, and h3 are physical CP-even Higgs bosons (mh1 < mh2 < mh3), a, A are CP-odd
Higgs bosons, H+ is the charged Higgs boson, and G0 G+ are Goldstone bosons eaten by Z
and W+. Due to the absence of the singlet field S, the MSSM only has two CP-even Higgs
bosons and one CP-odd Higgs bosons, as well as one pair of charged Higgs bosons.



4 Advances in High Energy Physics

200

300

400

500

600
700
800
900

1000

NMSSM

m
∼ t 1
(G

eV
)

m
∼t2

/m
∼t1

1 2 3 4 5 6 7 8 9 10

Figure 2: Same as Figure 1, but only for the NMSSM, showing the correlation between m
˜t1
and the ratio

m
˜t2
/m

˜t1
.

At the tree level, the Higgs masses in the MSSM are conventionally parameterized
in terms of the mass of the CP-odd Higgs boson (mA) and tan β ≡ vu/vd and the loop
corrections typically come from top and stop loops due to their large Yukawa coupling. For
small splitting between the stop masses, an approximate formula of the lightest Higgs boson
mass is given by [92]

m2
h � M2

Zcos
22β +

3m4
t

4π2v2
ln

M2
S

m2
t

+
3m4

t

4π2v2

X2
t

M2
S

(

1 − X2
t

12M2
S

)

, (2.4)

where MS =
√

m
˜t1
m
˜t2
and Xt ≡ At − μ cot β. The formula manifests that larger MS or tan β is

necessary to push up theHiggs bosonmass. And theHiggs bosonmass can reach amaximum
when Xt/MS =

√
6 for given MS (i.e., the so-called mmax

h scenario). Note that the lightest
Higgs boson is the SM-like Higgs boson h (with the largest coupling to vector bosons) in
most of the MSSM parameter space.

Different from the case in the MSSM, the Higgs sector in the NMSSM depends on the
following six parameters:

λ, κ, M2
A =

2μ(Aλ + κs)
sin 2β

, Aκ, tan β =
vu

vd
, μ = λs, (2.5)

and in the nMSSM the input parameters in the Higgs sector are

λ, tan β, μ Aλ, m̃S, M2
A =

2
(

μAλ + λξFM
2
n

)

sin 2β
. (2.6)
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Figure 3: Same as Figure 1, projected in the planes of m
˜t1
versus the reduced couplings Chγγ and Chgg ,

respectively.

Because of the coupling λ̂Hu ·̂Hd
̂S in the superpotential, the tree-level Higgs boson mass has

an additional contribution in the NMSSM and nMSSM

Δm2
h = λ2v2sin22β. (2.7)

In order to push up the tree-level Higgs boson mass, λ has to be as large as possible, and tan β
has to be small. The requirement of the absence of a landau singularity below the GUT scale
implies that λ � 0.7 at the weak scale, and the upper bound on λ at the weak scale depends
strongly on tan β and grows with increasing tan β [93]. However, this can still lead to a larger
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Figure 4: Same as Figure 1, but only for the MSSM, showing the correlation between mτ̃1 and the reduced
coupling Chγγ , μ, and tan β, respectively. The purple points correspond to Rγγ > 1.
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Figure 5: Same as Figure 1, but showing the dependence of the di-photon signal rate Rγγ on the effective
hbb coupling Chbb ≡ CSUSY

hbb
/CSM

hbb
(taken for [42]).

tree-level Higgs bosonmass than in theMSSM. Therefore, the radiative corrections tom2
h may

be reduced in the NMSSM and nMSSM, which may induce light top squark and ameliorate
the fine-tuning problem [94, 95].

In the NMSSM and nMSSM, due to the mixing between the doublet Higgs fields and
the singlet Higgs field, the SM-like Higgs boson h may either be the lightest CP-even Higgs
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d
with Sd = Chbb cos β.

boson or the next-to-lightest CP-even Higgs boson, which corresponds to the so-called pull-
down case or the push-up case [42], respectively. Although the mass of the SM-like Higgs
boson in the nMSSM is quite similar to that in the NMSSM, the Higgs signal is quite different.
This is because of the peculiarity of the neutralino sector in the nMSSM, where the lightest
neutralino χ̃0

1 as the lightest supersymmetric particle (LSP) acts as the dark matter candidate,
and its mass takes the form [96]

mχ̃0
1
� 2μλ2v2

μ2 + λ2v2

tan β
tan2β + 1

. (2.8)

This expression implies that χ̃0
1 must be lighter than about 60GeV for λ < 0.7 (perturbativity

bound) and μ > 100GeV (from lower bound on chargino mass). And χ̃0
1 must annihilate by

exchanging a resonant light CP-odd Higgs boson to get the correct relic density. For such a
light neutralino, the SM-like Higgs boson around 125GeV tends to decay predominantly into
light neutralinos or other light Higgs bosons [89, 90].
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2.2. The Diphoton Higgs Signal

Considering the di-photon signal is of prime importance to searching for Higgs boson near
125GeV, it is necessary to estimate its signal rate, and we define the normalized production
rate as

Rγγ ≡
σSUSY

(

pp −→ h −→ γγ
)

σSM
(

pp −→ h −→ γγ
)

�
[

Γ
(

h −→ gg
)

Br
(

h −→ γγ
)]

[

Γ
(

hSM −→ gg
)

Br
(

hSM −→ γγ
)]

=

[

Γ
(

h −→ gg
)

Γ
(

h −→ γγ
)]

[

Γ
(

hSM −→ gg
)

Γ
(

hSM −→ γγ
)] × Γtot(hSM)

Γtot(h)

= C2
hggC

2
hγγ ×

Γtot(hSM)
Γtot(h)

,

(2.9)

where Chgg and Chγγ are the couplings of Higgs to gluons and photons in SUSY with respect
to their SM values, respectively. In SUSY, the hgg coupling arises mainly from the loops
mediated by the third generation quarks and squarks, while the hγγ coupling has additional
contributions from loops mediated by W-boson, charged Higgs boson, charginos, and the
third generation leptons and sleptons. Their decay widths are given by [47]

Γ
(

h −→ gg
)

=
GFα

2
sm

3
h

36
√
2π3

∣

∣

∣

∣

∣

3
4

∑

q

ghqqA
h
1/2(τq) +

3
4
Agg

∣

∣

∣

∣

∣

2

Γ
(

h −→ γγ
)

=
GFα

2m3
h

128
√
2π

∣

∣

∣

∣

∣

∣

∑

f

NcQ
2
fghffA

h
1/2

(

τf
)

+ ghWWAh
1(τW) +Aγγ

∣

∣

∣

∣

∣

∣

2

,

(2.10)

with τi = m2
h/(4m

2
i ), and

Agg =
∑

i

ghq̃iq̃i

m2
q̃i

Ah
0

(

τq̃i
)

,

Aγγ = ghH+H−
m2

W

m2
H±

Ah
0(τH±) +

∑

f

gh ˜f ˜f

m2
˜f

Ah
0

(

τ
˜f

)

+
∑

i

ghχ+
i χ

−
i

mW

mχi

Ah
1/2

(

τχi

)

,

(2.11)

wherem
˜f andmχi are the mass of sfermion and chargino, respectively. In the limit τi � 1, the

asymptotic behaviors of Ah
i are given by

Ah
0 −→ −1

3
, Ah

1/2 −→ −4
3
, Ah

1 −→ +7. (2.12)

One can easily learn that the W-boson contribution to hγγ is by far dominant, however, for
light stau or squarkswith largemixing, the hγγ coupling can be enhanced, while light squarks
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with large mixing can suppress the hgg coupling. Therefore, light stau with large mixingmay
enhance the di-photon signal rate [92], while light squarks with large mixing have little effect
on the di-photon signal rate.

3. Numerical Results and Discussions

In our work the Higgs boson mass is calculated by the package NMSSMTools [97, 98], which
include the dominant one-loop and leading logarithmic two-loop corrections. Considering
the Higgs hints at the LHC, we focus on the Higgs boson mass between 123GeV and 127GeV,
furthermore, we consider the following constraints:

(1) the constraints from LHC experiment for the nonstandard Higgs boson,

(2) the constraints from LEP and Tevatron on the masses of the Higgs boson and
sparticles, as well as on the neutralino pair productions,

(3) the indirect constraints from B-physics (such as the latest experimental result of
Bs → μ+μ−) and from the electroweak precision observables such as MW , sin2θ�

eff,
and ρ� , or their combinations εi(i = 1, 2, 3) [99, 100],

(4) the constraints from the muon g−2: aexp
μ −aSM

μ = (25.5±8.2)×10−10 [101]. We require
SUSY to explain the discrepancy at 2σ level,

(5) the dark matter constraints from WMAP relic density (0.1053 < Ωh2 < 0.1193)
[102] and the direct detection exclusion limits on the scattering cross-section from
XENON100 experiment (at 90% C.L.) [103].

Note that most of the above constraints have been encoded in the package
NMSSMTools.

Natural supersymmetry is usually characterized by a small superpotential parameter
μ, and the third generation squarkswithmass�0.5–1.5TeV [104]. Therefore, we only consider
the case with

100GeV ≤ (MQ3 ,MU3

) ≤ 1TeV, |At| ≤ 3TeV. (3.1)

For the case with λ < 0.2 in the NMSSM, the property of the NMSSM is similar to the case
in the MSSM [42]. In order to distinguish the features between MSSM and NMSSM, we only
consider the case with λ > mZ/v � 0.53 in the NMSSM. We scan over the parameter space of
the MSSM and NMSSM under the above experimental constraints and study the property of
the Higgs boson for the samples surviving the constraints.

In Figure 1 we display the surviving samples in the MSSM and NMSSM (with λ >
0.53), showing the correlation between the lighter top-squark mass and the ratioXt/MS with
MS ≡ √m

˜t1
m
˜t2
. From the figure we see that for a moderate light ˜t1, large Xt is necessary to

satisfy mh ∼ 125GeV, and, for large m
˜t1
, the ratio Xt/MS decreases. In the MSSM, |Xt/MS| >

1.6 for m
˜t1

< 1TeV; that is, nomixing scenario (Xt = 0) cannot survive, and the top-squark
mass is usually larger than 300GeV. This implies that a large top-squark mass or a near-
maximal stop mixing is necessary to satisfy the Higgs mass near 125GeV. However, the case
is very different in the NMSSM, Xt ≈ 0 may also survive, and the lighter top-squark mass
can be as light as about 100GeV, which may alleviate the fine-tuning problem and make the
NMSSM seemsmore natural. In the case of lightm

˜t1
, |Xt/MS| is usually larger than

√
6, which

corresponds to a large splitting between m
˜t1
and m

˜t2
, as the Figure 2 shown.
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Figure 7: The scatter plots of the surviving sample in the CMSSM, displayed in the planes of the top-squark
mass and the LHC di-photon rate versus the Higgs boson mass. In the left frame, the crosses (red) denote
the samples satisfying all the constraints except Bs → μ+μ−, and the times (green) denote those further
satisfying the Br(Bs → μ+μ−) constraint. In the right frame, the crosses (red) are the same as those in
the left frame, while the times (sky blue) denote the samples further satisfying the R constraint (taken for
[43]).

Due to the clean background, the di-photon signal is crucial for searching for the Higgs
boson near 125GeV. As discussed in the Section 2, the signal rate is relevant with the coupling
Chγγ and Chgg and the total width of the SM-like Higgs boson. Both the coupling Chγγ and
Chgg are affected by the contributions from the squark loops, especially the light top-squark
loop, so in the Figure 3 we give the relationship between the lighter top-squark mass and
the coupling Chγγ and Chgg , respectively. The figure shows that the light m

˜t1
may suppress

the coupling Chgg significantly, especially in the NMSSM, while the light top squark has little
effect on the couplingChγγ because there are additional contributions, as (2.10) and shown. As
analyzed in the Section 2, light stau may enhance the coupling Chγγ , so in Figure 4 we give
the correlation between mτ̃1 and the coupling Chγγ in the MSSM. The figure clearly shows
that the coupling Chγγ can enhance to 1.25 for mτ̃1 ∼ 100GeV. Figure 4 also manifests that the
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Figure 8: Same as Figure 7, but for the NUHM2 (taken for [43]).

enhancement of the coupling Chγγ corresponds to large μ tan β, which leads to large mixing.
These results exactly verify the discussions in the Section 2.

Since h → bb is the main decay mode of the light Higgs boson, the total width of
the SM-like Higgs boson may be affected by the effective hbb coupling Chbb, as discussed in
[81]. Under the effect of the combination ChggChγγ/Chbb, the di-photon Higgs signal rate may
be either enhanced or suppressed, as shown in Figure 5, which also manifests that, for the
signal rate larger than 1, the effective hbb coupling is enhanced a little in the MSSM, while
it is suppressed significantly in the NMSSM. Therefore, we can conclude that the reason for
the enhancement in the signal rate is very different between the MSSM and NMSSM. In the
MSSM the enhancement of the signal is mainly due to the enhancement of the coupling Chγγ ,
while in the NMSSM it is mainly due to the suppression of the hbb coupling.

Due to the presence of the singlet field in the NMSSM, the doublet component in the
SM-like Higgs boson h may be different from the case in the MSSM, which will affect the
coupling hbb and accordingly affect the total width of h. At the tree-level, Chbb = Sd/ cos β.
In Figure 6 we show the dependence of the signal rate Rγγ on S2

d
. Obviously, for the signal
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rate larger than 1, S2
d is usually very small, which leads to large suppression on the reduced

coupling hbb. The figure also shows that the push-up case is more effective to enhance the
signal rate than the pull-down case. This is because the push-up case is easier to realize the
large mixing between the singlet field and the doublet field [42].

As the case in the NMSSM, nMSSM can also accommodate a 125GeV SM-like Higgs
[81]. However, due to the peculiar property of the lightest neutralino χ̃0

1 in the nMSSM
[96], the decay mode of the SM-like Higgs is very different from the case in the MSSM and
NMSSM. As discussed in the Section 2, h → χ̃0

1χ̃
0
1 may be dominant over h → bb in a major

part of parameter space in the nMSSM [81, 105], which induces a severe suppression on the
di-photon Higgs signal. Although the Higgs mass can easily reach to 125GeV, the di-photon
signal is not consistent with the LHC experiment. Therefore, the nMSSMmay be excluded by
LHC experiment.

We also considered the SM-like Higgs boson mass and its di-photon signal in
the constrained MSSM (including CMSSM and NUHM2) under various experimental
constraints, especially the limits from Bs → μ+μ−. Because Br(Bs → μ+μ−) ∝ tan6β/M4

A,
so it may provide a rather strong constraint on SUSY with large tan β. Considering the large
theoretical uncertainties for the calculation of Br(Bs → μ+μ−), we use not only the LHCb
data, but also the double ratio of the purely leptonic decays defined as R ≡ η/ηSM with
η ≡ (Br(Bs → μ+μ−)/Br(Bu → τντ))/(Br(Ds → τντ)/Br(D → μνμ)). The surviving
parameter space is plotted in Figure 7 for the CMSSM and Figure 8 for the NUHM2. It shows
that both the CMSSM and NUHM2 are hard to realize a 125GeV SM-like Higgs boson,
and also the di-photon Higgs signal is suppressed relative to the SM prediction due to the
enhanced hbb coupling. Therefore, the constrained MSSM may also be excluded by the LHC
experiment.

4. Conclusion

In this work we briefly review our recent studies on a 125GeV Higgs and its di-photon
signal rate in the MSSM, NMSSM, nMSSM, and the constrained MSSM. Under the current
experimental constraints, we find: (i) the SM-like Higgs can easily reach to 125GeV in the
MSSM, NMSSM, and nMSSM, while it is hard to satisfy in the constrained MSSM; (ii) the
NMSSM may predict a lighter top squark than the MSSM, even as light as 100GeV, which
can ameliorate the fine-tuning problem; (iii) the di-photon Higgs signal is suppressed in the
nMSSM and the constrained MSSM, but, in a tiny corner of the parameter space in the MSSM
and NMSSM, it can be enhanced.
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