
Software Validation using Power Profiles
 Raimondas Lencevicius Edu Metz Alexander Ran

 Nokia Research Center, 5 Wayside Road, Burlington, MA 01803, USA
 Raimondas.Lencevicius@nokia.com Edu.Metz@nokia.com Alexander.Ran@nokia.com

Abstract. The validation of modern software systems
incorporates both functional and quality requirements.
This paper proposes a validation approach for software
quality requirement—its power consumption. This
approach validates whether the software produces the
desired results with a minimum expenditure of energy. We
present energy requirements and an approach for their
validation using a power consumption model, test-case
specification, software traces, and power measurements.
Three different approaches for power data gathering are
described. The power consumption of mobile phone
applications is obtained and matched against the power
consumption model.

Keywords: software validation, software tracing,
power consumption

1 INTRODUCTION
While historically software validation focused on the

functional requirements, recent approaches also
encompass the validation of quality requirements; for
example, system reliability, performance or usability.
However, application development for mobile platforms
opens an additional area of quality�power consumption.
In PDAs or mobile phones, power consumption varies
depending on the hardware resources used, making it
possible to specify and validate correct or incorrect
executions. Consider the following example: Assume a
simple device model of CPU, display and network that
use some power when active and use zero power
otherwise. An application downloads a video stream from
the network and displays it on the mobile device's
display. In the test scenario the viewing of the video is
paused at a certain point. If the specification does not
allow video prefetching for caching on the mobile device,
the user expects that the network card activity would stop
when the video is paused. How would a test engineer
check this expectation? Simply running a test suite or
even tracing the software execution does not detect the
network activity, since a test suite usually reports only the
results of the software execution and not all system
activity. However, the extraneous network activity can be
detected by power measurements and power model
application (Figure 1). Power requirement violations such
as described above are probable in embedded SW
development, where developers have to deal with
numerous different devices, each with its own protocol,
requirements and software. Tools to find the power

inconsistencies and to validate software from the energy
point of view are needed.

Video paused here

CPU & display

Network

Power

Time

Network active
after pause

Figure 1. Hypothetical streaming video power
profile

This initial concept paper proposes an energy and
power validation approach. First, we argue that such
validation is useful, especially in mobile device domain.
Section 3 explains energy requirements, the energy and
power consumption models, test-case specifications and
the energy validation approach. Section 4 presents
different approaches to power data collection. Section 5
describes our power measurement framework. The paper
discusses energy and power validation of mobile phone
applications in section 6. We finish with related work and
conclusions.

Since power is energy expended over a period of time
(P = ∆E/∆t), we use the term "power" when we refer to
instantaneous measurements or profiles composed from
such measurements. We use "energy" to refer to the total
energy spent over a period of time. As the formula above
shows, these two quantities are easily calculated from
each other.

2 MOTIVATION
Validating modern systems is done against functional

and quality requirements. Test suites are designed to
validate the implementation of a system against the
requirements. Test suites provide an environment for the
controlled execution of the system in which the validation
can be performed. The test suite's results are usually
compared against the final output of the system and
perhaps against some events that occur during the
program's execution. Most of these events are user
interface events though in some areas other events such as
network messages are monitored [8]. However, executing
applications interact not only with display, but also with
various other hardware devices: processor, memory,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192431844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

network interface, and possibly hard drive. All these
devices consume energy during operation. This gives an
opportunity to monitor and record power levels during the
test suite execution. The recorded power levels can then
be used to validate energy requirements.

Energy quality requirements specify that the software
should execute with minimal power levels and energy
consumption. Rapid growth of intelligent handheld
devices requires the development of numerous software
applications. Developing software applications for mobile
devices is different than developing applications for
desktop computers. Mobile devices interact with a much
richer set of hardware. Mobile devices may use Bluetooth
interface [2], display, cellular interface, flash memory,
DSP chips, infrared communications and so on. In
addition, mobile devices have limited processing power
and memory as well as energy consumption constraints.
Energy constraints are an important issue in software
design for mobile devices. It is essential to design
software to minimize energy consumption, preventing
hardware accesses from depleting the battery of the
mobile device faster than necessary. For this reason,
extraneous hardware accesses that could be ignored in a
desktop environment have to be checked much more
closely in a mobile environment. We propose an approach
to validate software from the energy point of view. The
next section discusses the information needed for such
validation.

3 ENERGY CONSUMPTION
VALIDATION

The energy consumption validation has three parts:
energy consumption requirements, device power model,
and system observation.

Energy consumption requirements depend on a
concrete software and hardware system. This paper
outlines general intuitive requirements and mentions a
few of the possible extensions. Let us model the device's
software as a collection of run-time functions that are
executed, possibly in parallel. Hardware devices are
associated with software functions. The efficient energy
consumption requirement then is that only hardware
devices associated with active software functions should
be active. This requirement relates to the example given
in the introduction�when the video playback is paused,
the active software function is not associated with the
network card, so the network card should be inactive.
Some devices do not follow the model above and
therefore do not necessarily satisfy the above
requirement. For example, there may be hardware devices
controlled both by software and by hardware, e.g. speaker
volume control that has a physical volume dial and a
virtual scroll bar. Such device could be active even when
there is no active software associated with it. In such
cases the efficient energy consumption requirements are
more complicated.

 To validate the energy requirements, the device

power model, power measurements and software traces
are needed. We formalize and extend the power model
proposed by Cignetti and others [4] by using state
transition diagrams [3] and extended message sequence
charts to model the power consumption.

We model the device under validation as a collection
of hierarchical state machines representing power
consuming components. The model can be build top-down
or bottom-up. Top-down modeling starts from the whole
device and then divides it into power consuming
subsystems and components. In a bottom-up description,
one starts from a set of device's atomic hardware
components, for example, an LCD screen, a processor, a
network interface and flash memory. Each such
component is described by the state machine that contains
a set of states with specified power functions. We call a
hardware component "atomic" if it is not divided into
smaller parts in a device model. Certain components
together form device subsystems, for example, an audio
subsystem, a display and so on. Subsystems are modeled
as higher-level state machines containing nested state
machines. Sometimes components may work in parallel,
which is modeled as concurrent nested substates. Finally,
the device itself is the collection of all state machines of
its subsystems and components.

Audio Idle

Microphone
 Idle

Microphone
 Active

Audio Standby

Microphone

Earpiece Earpiece
Idle

Earpiece
Active

Figure 2. Audio subsystem state transition model

Figure 2 shows the state transition diagram of a
simplified audio subsystem of a mobile device. It shows
that the audio subsystem can be in an Audio Idle state or in
an Audio Standby state that nests parallel substates
describing microphone and earpiece activity. Both
microphone and earpiece can become independently
active or idle when the audio subsystem is in standby.

Each state and transition in the model�whether it is
atomic or composite�is characterized by a power level
function. In the simplest case, such function is a constant
for a state and zero for a transition. For example, the
display backlight consumes a constant amount of power
when it is on, so the PBacklightOn = PConstantBacklightOn.

However, the power consumption in a state may depend
on parameters. For example, the power consumption in a
processor depends on executed instructions, cache misses,
memory accesses, etc. The power consumption in a radio
antenna depends on the transmission frequency, signal
strength, transmission protocol and other parameters. It is
possible to use only constant power functions and to
model any parameter dependencies by introducing
additional states and transitions. However, such approach
is very cumbersome. For example, while a very detailed
state transition diagram could potentially model the
processor power consumption, such diagram would have
enormous number of states and would be difficult to
construct and understand. Non-constant power functions
allow us to use higher-level system abstractions in state
transition diagrams. In the processor example, it is
simpler to use just one state for an active processor and a
power function for this state that takes into account
average instruction mix and cache miss ratio.

 The power function of a composite state combines
the power functions of the state's components. For
example, the Audio Standby state's (Figure 2) power
function combines the constant standby power of the
audio subsystem PConstantAudioStandby and the power
functions of the microphone Pmicrophone and the earpiece
Pearpiece:

PAudioStandby = PConstantAudioStandby ° Pmicrophone ° Pearpiece

In simple cases, the composite function is a sum of the
component functions.

In the above-described model�the hierarchical state
transition diagram�the transitions between the power
states are triggered by global system events. Global
system events apply to all concurrent parts of the state
transition diagram, so when an event occurs, all such
parts perform the state transitions triggered by this event.
The power function of the system in each state determines
the overall power consumption of the system.

The model above coupled with the observation of the
global system events that trigger state transitions and with
power-level measurements at the time of each event is
sufficient for the energy requirement validation. Events
are observed as software traces. Power measurements and
software traces are described in the next section. During
the validation the events from a trace are applied to the
model in time order obtaining the state of the model and
the corresponding modeled power level at each moment
of time. This power level then is compared to the
measured power to check the consistency between
software traces, the power model and power
measurements. If the modeled and the measured power
levels differ, the consistency is violated.

Processor Audio Microphone Earpiece

Activate mic
Activate ear

St
an

db
y

Ac
tiv

e

T1
T2
T3

T4 Ac
tiv

e

T5
T6

Ti
m

e

Figure 3. Sequence chart specification for scenario
involving audio system

It is possible to obtain additional validation constraints
by adding to our approach test-case specifications
involving time. Such specifications can be modeled using
extended message-sequence charts. Such message
sequence charts not only determine the message and event
sequence in a test case, but also specify the time
constraints between events and messages similarly to
timed transition systems [7] and modecharts [9]. Figure 3
shows an example of a test case involving a processor and
audio subsystem of a device. The scenario starts at time
T1 when the processor becomes active. At time T2 it
sends a message putting the audio subsystem into a
standby mode. At the same time the audio subsystem
activates the microphone and at time T3 it activates the
earpiece. At time T4 the processor and the microphone
independently become idle, while the earpiece is active
until time T5. The time constraints in specifications would
not be expressed in absolute times, but in relative delay-
deadline intervals [7]. For example, the interval (T1, T4)
would be specified as the smallest�delay�and the
largest�deadline�possible interval between the
processor activation and shutdown. Assuming that the
power composition of the subsystems and components is
expressed as a sum, the energy specified in our example
scenario is:

∫∫∫∫ +++=
5

3

4

2

6

2
tan

4

1
Pr)()()()(

T

T
tiveEarpieceAc

T

T
ActiveMicrophone

T

T
dbyAudioS

T

T
iveocessorActScenario dttPdttPdttPdttPE

Here PProcessorActive(t), PAudioStandby(t), PMicrophoneActive(t),
and PEarpieceActive(t) are the power level functions of
subsystems in respective states. These functions may
depend on additional parameters, such as sound volume
and a melody. If the subsystems consume non-zero energy
in idle states or in transitions, the integrals of the power
functions of the idle states and transitions should also be
added to the EScenario function.

The test-case specifications allow to validate the
completeness and correctness of event traces. Time
intervals in the test-case specifications also specify
additional constraints on the power model that can be
checked through the power measurements. The power
measurements can indicate that a certain subsystem was
active shorter or longer than the time intervals of the test

case allow. For systems with test-case specifications, the
calculated energy can be compared to the actual energy
consumption.

4 POWER DATA COLLECTION
METHODS

The previous section described the formal approach
for the energy validation. Such validation needs power
measurements and global event tracing. This section
describes three data collection approaches.

The first and simplest approach to gather data is to
measure the power consumed by a device at regular time
intervals. This approach produces a power level graph
with no indications of what software was running and
what hardware was accessed during the execution. Such
graph may be useful in the software validation if tracing
of interesting software cannot be achieved; for example,
when the source code and symbol data are unavailable.
Using the power model the graph can be deciphered by
matching the power levels to the values given in the
model. A test engineer may be able to identify graph
segments corresponding to network activity, processor
sleep states and writes to the flash memory. Then the
annotated graph could be approximately matched to the
power specification to determine any serious
discrepancies. In addition this view can be used for a
quick high-level validation. An experienced test engineer
may see that the pattern of power levels is different than
expected. Such view is similar to execution murals [10].

The more informative second approach still reports
the power levels independently of the software execution
on the system. However, the report also specifies the
processes active at measurement points. Such approach is
used at CMU in PowerScope setup [6]. This approach
does not require explicit program instrumentation and yet
maps software processes to their energy consumption.
The accuracy of such mapping depends on the frequency
of the energy readings, but usually achieves a per-
procedure level. The drawback of PowerScope
implementation is that it needs kernel modification of the
underlying operating system and that it requires access to
the symbol tables of the executables that were running
during profiling.

 Finally, we propose the third approach that combines
tracing and the power measurements. Even though the
traces by themselves yield a lot of information, the power
measurements add an additional dimension to the trace
information. First, the tracing may not cover all hardware
access events. In such case the power measurements
allow to detect holes in tracing instrumentation and then
improve the tracing. Second, the power model may be
incomplete, leading to insufficient tracing. In such case
the measurements allow to improve the model and add
additional traces connected to it. Third, the power
measurements are used to calibrate the power functions
and numerical values in the model. Examples of the
power level measurements and modeling using the third

approach in mobile device software validation are given in
section 6.

 Given that the last approach is the most powerful, are
there any reasons to use one of the first two data gathering
approaches? The first two approaches do not require the
manual instrumentation of the source code. They provide
a high-level view of the system's power levels and energy
consumption, allowing coarse validation. They also help
test engineers to identify suspicious areas and then
concentrate on them with tracing. Ultimately, these three
approaches are complementary. In our work, we have used
both the first and the third data gathering approaches.

5 IMPLEMENTATION
We have implemented the data gathering for the

energy validation in mobile phones using the first and the
third approaches described in section 4. We measure the
current drawn by a device with a digital multimeter. The
multimeter is connected to the battery line of the mobile
phone (Figure 4). The high-speed GPIB (IEEE-488)
interface card plugs into a PCI slot of the PC and connects
to multimeter via a GPIB cable.

Agilent BenchLink Meter software [1] acquires the
measurement data with timestamps and exports it in
"comma-separated-value" (CSV) file format. The
BenchLink Meter software is used as a periodic trigger
source for current measurements. To minimize spikes and
ripple in our measurements software gathers five readings
per trigger and averages the readings. In such setup the
sample rate is approximately 33Hz. This sample frequency
allows to identify software application level events and
significant hardware events. The power levels are obtained
from the current readings by multiplying current with
battery voltage (P = VI). For measured scenarios the
battery voltage is considered constant.

Windows PC

Agilent 82350A
high speed PCI

GPIB card

Agilent
34401A

Multi Meter

G
PI

B
ca

bl
e

Agilent 34812A BenchLink Meter SW

Mobile
phone

Trace
cable

Windows
PC

Battery

Figure 4: Power measurement and tracing
environment

The software tracing is performed through a high-
speed proprietary interface to the mobile phone. The
timestamped trace is matched to the power measurements

in Excel. The synchronization of traces and power
measurements is performed using a synchronization event
on the mobile device that is recorded in the software trace
and produces a recognizable power spike in the power
readings. The clock drift between two traces did not occur
in our experiments. The experiments performed in this
setup are described in the next section.

6 EXPERIMENTS
We have used the experimental setup to obtain traces

and energy consumption data during the execution of
different mobile phone applications including games,
address book browser, calculator, SMS message edit and
send, and phone calls. During the execution, the
applications accessed different hardware components
including a processor, a display system, an audio system,
a cellular system and others. The power levels of these
components were known and included in the model
described in section 3. Some unmodeled hardware
components were active as seen by the spikes in the
graph.

The graph (Figure 5) shows the gathered measurement
data and modeled power levels for a phone application as
a function of time. As is visible from the graph, the model
closely predicts the actual measurements of the power
levels with the difference less than 5%. As seen from the
graph, the energy consumption of software applications is
determined by the hardware components accessed during
the execution, so the energy consumption model fits the
measured data.

The graph shows that different hardware devices have
very different behaviors. While device 1 is on for most of
the time, device 3 is turned on and off often and
repeatedly. Devices also differ in how they are activated
and deactivated. For example, parts of the keyboard
hardware become active when keys are pressed, while the
processor may be activated by periodic software activity
or by hardware generated interrupts. On the other hand,
some subsystems need to have power consuming
"standby" modes that are enabled for the fast activation of
their components.

The experiments above give the first evidence that
software can be validated for the energy consumption. We
are continuing to develop our model and obtaining
additional measurements and traces to check the
correctness of the phone applications.

7 RELATED WORK
There are numerous research projects investigating

energy-efficient software implementation. Our work was
inspired by the research at CMU on PowerScope [6]. As
mentioned in section 4, PowerScope approach is one of
the possible methods of gathering energy data.
Researchers at CMU have found some errors in
applications using PowerScope; however, there is no
systematic work on using PowerScope for the software
validation.

Device 1 Device 2 Device 3 Measured

Figure 5. Phone application power level graph

Duke's Milly Watt project [5] focuses on providing a
toolkit for energy measurements as well as developing an
energy management API between hardware, operating
system and applications. One of the tools will provide the
program trace data together with power measurements.
However, it is not currently available. Researchers from
Duke University also proposed an energy consumption
model for a Palm� device [4], which they used only for
the Palm� device simulation and not for the validation.
We formalized and extended their model using state
machine diagrams and extended message sequence charts.

A research group at MIT working on power efficient
systems has implemented JouleTrack [11] - a web based
system for software energy profiling. JouleTrack
currently simulates only the energy used by a processor in
application execution. Such system could provide a
detailed model and power function for a processor.

TTCN is defined by ISO/IEC [8] for the specification
of tests for communication systems, and has been used
for test case specification in various domains. The TTCN
test case specification contains a stepwise sequence of
message sends and replies including message parameters.
The sequence can also include Boolean correctness
conditions. The test outcome is specified at various levels
of message sequences. The strength of TTCN is its
capability to semi-formally specify communication
protocol test sequences. Many protocol specifications can
be directly used to define abstract test suites in TTCN.
TTCN is widely adopted and integrated in specification,
development, and testing tool suites such as Telelogic
Tau. TTCN allows validating communication or other
domain dependent protocols. However, the TTCN cannot
be used for overall system validation using energy profile
information

Real-time system modeling is a large research field.
Our power consumption model has some similarities with
timed transition systems [7] and modecharts [9]. Neither
timed transition systems nor modecharts were previously
used to model the energy consumption of the real-time
systems.

8 CONCLUSIONS
This paper proposes the validation approach for the

software quality requirement�its energy consumption.
We have developed the power consumption model and
test-case specifications that together with the software
traces and power measurements allow validating energy
requirements. By monitoring power levels and matching
the measurements against modeled power levels we were
able to validate the application power consumption. We
continue developing a more detailed power consumption
model to perform more exact software validation. We
believe that the energy validation adds another dimension
to the quality requirement validation.

9 ACKNOWLEDGEMENTS
We thank all the people from Nokia Mobile Phones

who supported this research. We thank anonymous
reviewers for valuable comments on this paper.

10 REFERENCES
[1] Agilent 34812A BenchLink Meter Software, Agilent

Technologies, May 2001.
[2] Bluetooth, www.bluetooth.com, May 2001.
[3] G. Booch, J. Rumbaugh, I. Jacobson, The Unified

Modeling Language User Guide (Addison-Wesley,
1999).

[4] T. Cignetti, K. Komarov, C. Ellis; Energy Estimation
Tools for the Palm�, Proceedings of ACM MSWiM
2000: Modeling, Analysis and Simulation of Wireless
and Mobile Systems, August 2000.

[5] C. Ellis; The Case for Higher-level Power
Management, Proceedings of the 7th Workshop on
Hot Topics in Operating Systems (HotOS), Rio Rica,
AZ, March 1999.

[6] J. Flinn, M. Satyanarayanan; PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications,
Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications, New Orleans,
Louisiana, February, 1999.

[7] T. A. Henzinger, Z. Manna, A. Pnueli. Temporal
proof methodologies for timed transition systems.
Information and Computation, 112, pp. 273-337,
1994.

[8] ISO/IEC 9646-3 (1991): "Information technology -
Open Systems Interconnection � Conformance testing
methodology and framework - Part 3: The Tree and
Tabular Combined Notation (TTCN)".

[9] F. Jahanian, A. Mok, Modechart: A Specification
Language for Real-Time Systems, IEEE Transactions
on Software Engineering, vol. 20, no. 12, December
1994.

[10] D. F. Jerding, J. T. Stasko; The Information Mural: A
technique for displaying and navigating large
information spaces. In Proceedings of the IEEE
Visualization `95 Symposium on Information
Visualization, pages 43-50, Atlanta, GA, October
1995.

[11] A. Sinha, A. Chandrakasan; JouleTrack - A Web
Based Tool for Software Energy Profiling,
Proceedings of the 38th Design Automation
Conference, Las Vegas, June 2001 (to appear),
http://dry-martini.mit.edu/JouleTrack/

