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Free shippingwith conditions has become one of themost effectivemarketing tools;more andmore companies especially e-business
companies prefer to offer free shipping to buyers whenever their orders exceed the minimum quantity specified by them. But in
practice, the demands of buyers are uncertain, which are affected by weather, season, and many other factors. Firstly, we model
the centralization ordering problem of retailers who face stochastic demands when suppliers offer free shipping, in which limited
distributional information such as known mean, support, and some deviation measures of the random data is needed only. Then,
based on the linear decision rulemainly for stochastic programming, we analyze the optimal order strategies of retailers and discuss
the approximate solution. Further, we present the core allocation between all retailers via dual and cooperative game theory. The
existence of core shows that each retailer is pleased to cooperate with others in the centralization problem. Finally, a numerical
example is implemented to discuss how uncertain data and parameters affect the optimal solution.

1. Introduction

With the rapid development of e-commerce and logistics
industry, free shipping offered by e-business companies
has become an effective means of attracting and keeping
customers. Many business-to-consumer and business-to-
business (B2B) companies now offer free shipping to buyers
who spend more than a specific amount. More and more
companies and businesses begin to take free shipping strat-
egy, such as Amazon online bookstore; when the cost reaches
$25, the buyer can get free shipping service. Taobao and
Dangdang also offer free shipping if the certain amount is
satisfied.The growth and evolution of the e-commerce sector
have highlighted the importance of shipping and handling
(S&H) fees for business models. The supplier can effectively
reduce order processing costs and implementation costs, if
they can reduce the frequent small shipments. Otherwise,
if many retailers are joined together to order, the cost may
be saved for the satisfaction of free shipping. Therefore, free
shipping schedules have become an interest study for both
the supplier and demander. Survey evidence indicates that

shipping fees are the main complaint of more than 50 percent
of online shoppers and thatmore than 60 percent of shoppers
have abandoned an order when shipping fees are added.
Academic work has further confirmed that fulfillment issues
are a key driver of customer satisfaction.

In this paper, we study the centralization ordering prob-
lem with uncertain demands considering free shipping.
Considering a supply chain includes a supplier and a number
of retailers whose demands for commodities are uncertain,
and retailers focus on how free shipping schedules impact
their ordering strategies. Lewis et al. [1] used an ordered
probability model to account for the effects of nonlinear
and discontinuous free shipping on purchasing decisions.
It shows that the retailers are very sensitive to shipping
charges, and promotions such as free shipping and free
shipping for orders that exceed some size threshold are
very effective in generating additional sales. Leng et al. [2,
3] considered the free shipping strategies of business-to-
consumer and business-to-business environments compa-
nies by modeling the problem as a leader-follower game
under complete informationwhere the leader is the seller and
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the follower is the buyer. Yang et al. [4] analyzed the price-
threshold relationship which was inverted-U shaped and
explored how prices and the free shipping threshold interact
to affect the optimal policy. The initial price level dictates the
price dispersion for homogenous goods increases when the
threshold is lowered. Zhou et al. [5] gave the management
of stochastic inventory systems with free shipping option.
Abad and Aggarwal [6] studied the pricing decisions with
random demand in order to reduce transport costs, which
is free shipping with condition. Hua et al. [7] studied the
optimal order strategy of a retailer who faces deterministic
or stochastic demand when suppliers offer free shipping.
It analyzes the impacts of the transportation cost on the
retailer’s optimal order strategy based on EOQ model and
newsvendor model.

One issue of the above study is the assumption of full
distributional knowledge of the uncertain data. Because
such information may rarely be available in practice, it has
rekindled recent interests in robust optimization as an alter-
native perspective of data uncertainty. In robust optimization,
compared with the full distributional knowledge which is
hardly got, limited distributional information such as known
mean, support, and some deviation measures of the random
data is required only. So in this paper, we consider the
uncertain demand in general and study the optimal ordering
model with free shipping.

The paper is organized as follows. In Section 2, we give
the stochastic programming model of optimal order strategy
about the retailers, in which the demands are uncertain
with free shipping option. In Section 3, based on the linear
decision rules, we analyze the robust counterpart of the
stochastic programming model and formulate a new equiva-
lent determinedmodel. In Section 4we use cooperative game
theory to get the core of all retailers. In Section 5, a numerical
experiment confirms that order incidence is affected by free
shipping option and varying interval of demand. Finally,
Section 6 concludes this paper.

2. Problem Description

Assuming there are a supplier and a number of retailers,
who just trade only a type of goods. The supplier offers
the goods to retailers whose demands for commodities are
uncertain. All retailers order goods uniformly and order price
is constant. Only when the total ordering amount reaches
a certain threshold, the supplier can offer free shipping for
retailers. Here we consider how to maximize the benefits of
all retailers by selecting their optimal order quantity. In this
problem, we take the following assumptions.The retailers are
all rational and their inventories are inadequate to meet the
real demands, so they are willing to participate in group to
order goods according to their actual situation. In addition,
there is no competition among retailers and they are willing
to participate in the group to pay the total minimum fee. So
the problem aims to minimize the total cost of all retailers
with constraint that their demands are met.

At first, we denote the following notions. The notions
𝑚 and 𝑐 are the retail price and order price of the goods

separately and 𝑞 is the known threshold of free shipping.
The notion 𝑛 is the number of retailers, and the random
demand of the 𝑖th retailer is 𝑑

𝑖
(𝑧̃) in which 𝑧̃means random

environment, and all 𝑑
𝑖
(𝑧̃) are independent. 𝐿

𝑖
is the current

inventory of the 𝑖th retailer. We denote the order quantity 𝑥
𝑖

by the decision variable. Only when the condition ∑𝑛
𝑖=1
𝑥
𝑖
≥

𝑞 holds, the supplier can offer free shipping for retailers;
otherwise the retailers should cost the𝑓(∑𝑛

𝑖=1
𝑥
𝑖
).The symbol

𝑦 is 0-1 variable, in which 1 means payoff for the transport
and 0 is free shipping. The symbol 𝑤

𝑖
(𝑧̃) is the amount of the

shortage of goods of the 𝑖th retailer, which is caused by 𝑑
𝑖
(𝑧̃)

in uncertain environment. Then the model of optimal order
strategy with free shipping option is given as follows (1):

min 𝑐 × (

𝑛

∑

𝑖=1

𝑥
𝑖
) + 𝑓(

𝑛

∑

𝑖=1

𝑥
𝑖
) × 𝑦 + 𝑚 × 𝐸(

𝑛

∑

𝑖=1

𝑤
𝑖 (
𝑧̃)) ,

s.t.

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑥
𝑖
+ 𝑤
𝑖 (
𝑧̃) + 𝐿 𝑖

≥ 𝑑
𝑖 (
𝑧̃) , 𝑖 = 1, 2, . . . 𝑛,

𝑥
𝑖
, 𝑤
𝑖 (
𝑧̃) ≥ 0, 𝑖 = 1, 2, . . . 𝑛,

𝑦 = 0, if
𝑛

∑

𝑖=1

𝑥
𝑖
≥ 𝑞,

𝑦 = 1, if
𝑛

∑

𝑖=1

𝑥
𝑖
< 𝑞,

(1)

where the objective function contains the ordering cost,
transportation cost, and penalty cost incurred at the retailers
if the demands are not satisfied. For the penalty cost is
relevant to uncertain realization of 𝑧̃, the expectation is taken
here. According to the objective function, we require that the
order quantity of the goods be not toomuch to add inventory
and at the same time the shortage be not toomuch to increase
cost. The first constraint means that, for the 𝑖th retailer, the
sum of ordering quantity, shortage, and inventory quantity
be not less than their demand. The second constraint shows
that the decision variables of ordering quantity and shortage
are nonnegative. The third constraint ensures that when the
ordering quantity is not less than the given threshold 𝑞, the
supplier can offer free shipping for retailers; otherwise the
retailers should pay for the transportation cost.

The slack variable V
𝑖
(𝑧̃) is added in the first constraint, so

model (1) can be rewritten to the model

min 𝑐 × (

𝑛

∑

𝑖=1

𝑥
𝑖
) + 𝑓(

𝑛

∑

𝑖=1

𝑥
𝑖
) × 𝑦 + 𝑚 × 𝐸(

𝑛

∑

𝑖=1

𝑤
𝑖 (
𝑧̃)) ,

s.t.

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑥
𝑖
+ 𝑤
𝑖 (
𝑧̃) + 𝐿 𝑖

− V
𝑖 (
𝑧̃) = 𝑑𝑖 (

𝑧̃) , 𝑖 = 1, 2, . . . 𝑛,

𝑥
𝑖
, 𝑤
𝑖 (
𝑧̃) , V𝑖 (𝑧̃) ≥ 0, 𝑖 = 1, 2, . . . 𝑛,

𝑦 = 0, if
𝑛

∑

𝑖=1

𝑥
𝑖
≥ 𝑞,

𝑦 = 1, if
𝑛

∑

𝑖=1

𝑥
𝑖
< 𝑞.

(2)

In this paper, we assume the random demand 𝑑
𝑖
(𝑧̃)

is generalized variable, whose only limited distributional
information is known, but distributional function and other
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full knowledge are unknown.Then, we discuss the solvability
approximately of the stochastic programming (2).

3. Approximation via Decision Rule

It is difficult to solve the general stochastic programming;
besides this, the full distributional knowledge of the uncer-
tain data is needed, which may rarely be available in practice.
But assuming only limited distribution information is known
such as mean, support, and some deviation measures of
the random data, linear decision rule is the key enabling
method that permits scalability to multistage models [8].
Interesting applications include designing supplier-retailer
contracts, network design under uncertainty, and crashing
projects with uncertain activity times. Even though linear
decision rule allows us to derive tractable formulations in a
variety of applications, it may lead to infeasible instances [9].
This fact motivates people to refine linear decision rule and
improve it to a general linear decision rule, which improves
the objective value. Chen et al. [10] gave the conclusion that
when complete recourse exists, the general linear decision
rule is equal to the linear decision rule. Because the recourse
matrix in this paper is special and the support is bounded
closed set, it is feasible to analyze the solvability of model (2)
using the linear decision rule.

3.1. A Two-Stage Stochastic Linear Programming Model. The
linear decision rule is used mainly to solve the multistage
stochastic programming. For the stochastic linear program-
ming (3), decision 𝑥 has to be made before the actual value
of 𝑧̃ is realized which consists the first stage. After applying
the decision and after the uncertainty is realized, the subjects
of (3) may be not satisfied and the optimal second-stage
decisions or recourse decisions are carried out, in which𝑤(𝑧̃)
is recourse variable and𝑊 is recourse matrix. So the subjects
of (3) are satisfied and, at the same time, the cost that is
aroused by the recourse in (4) is minimized. The problems
(3) and (4) can be rewritten in model (5) equivalently:

min 𝑐
𝑇
𝑥 + 𝐸 (𝑄 (𝑥, 𝑧̃)) ,

s.t. {

𝑇 (𝑧̃) 𝑥 = ℎ (𝑧̃) ,

𝑥 ≥ 0,

(3)

𝑄 (𝑥, 𝑧̃) = min 𝑚𝑤 (𝑧̃) ,

s.t. 𝑇 (𝑧̃) 𝑥 +𝑊𝑤 (𝑧̃) = ℎ (𝑧̃) ,
(4)

min 𝑐
𝑇
𝑥 + 𝑚𝐸 (𝑤 (𝑧̃)) ,

s.t. {

𝑇 (𝑧̃) 𝑥 +𝑊𝑤 (𝑧̃) = ℎ (𝑧̃) ,

𝑥 ≥ 0.

(5)

Comparing models (2) and (5), we know easily that (2)
is also a two-stage stochastic linear program with the special
recourse matrix.

3.2. ProblemAnalysis Based on Linear Decision Rule. Accord-
ing to the literature [10], assuming the stochastic program-
ming with the relatively complete recourse, the second-stage

problem is surely feasible for any choice of feasible first-stage
decision vector 𝑥. The complete recourse is defined on the
matrix𝑊 such that, for any 𝑡, there exists 𝑤 ≥ 0, satisfying
𝑊𝑤 = 𝑡. Hence, the definition of complete recourse depends
only on the structure of the matrix 𝑊, which makes the
problem easier to solve. For the model (2), if we let 𝑊

𝑖
=

[−1, 1] for each retailer, there exists a simple case of complete
recourse where the special matrix is

W =

[

[

[

[

−1 1

−1 1

⋅ ⋅ ⋅

−1 1

]

]

]

]

. (6)

So it is feasible to analyze the solvability of the problem
(2) via the linear decision rule. Based on the linear decision
rule given in [9], we assume both the recourse variable 𝑤

𝑖
(𝑧̃)

and the slack variable V
𝑖
(𝑧̃) are the affine functions. For

convenience, we describe them by using vector form below.
Let 𝑤(𝑧̃) = 𝑤

0
+ ∑
𝑁

𝑘=1
𝑤
𝑘
𝑧̃
𝑘
, where the coefficients 𝑤𝑘 are

unknown. At the same time, the demands of all retailers are
in the same linear form 𝑑(𝑧̃) = 𝑑

0
+ ∑
𝑁

𝑘=1
𝑑
𝑘
𝑧̃
𝑘
. Generally for

the uncertain variable 𝑧̃, we may assume its mean is 0 and
the support is𝑊

𝑧̃
= [−𝑧, 𝑧], 𝑧 > 0, 𝑧 > 0, which is also the

value set of 𝑧̃. So the model can be adjusted to the following
problem:

𝑍STOC = min 𝑐
𝑇
𝑥 + 𝑓 (𝑥) 𝑦 + 𝑚𝑒

𝑇
𝑤
0
,

s.t.

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝑥 + 𝐿 + 𝑤
0
− V0 = 𝑑0,

𝑤
𝑘
− V𝑘 = 𝑑𝑘, 𝑘 = 1, 2, . . . , 𝑁,

𝑥, 𝑤, V ≥ 0,

𝑦 = 0, if
𝑛

∑

𝑖=1

𝑥
𝑖
≥ 𝑞,

𝑦 = 1, if
𝑛

∑

𝑖=1

𝑥
𝑖
< 𝑞.

(7)

Theorem 1. For model (7), the third subject 𝑤(𝑧̃) ≥ 0, for all
𝑧̃ ∈ 𝑊

𝑧̃
= [−𝑧, 𝑧], holds if and only if there is𝑤0 ≥ 𝑧∑𝑁

𝑘=1
𝑡
1𝑘
+

𝑧∑
𝑁

𝑘=1
𝑠
1𝑘.

Proof. Let 𝑤𝑘 = 𝑠1𝑘 − 𝑡1𝑘; 𝑠1𝑘, 𝑡1𝑘 ∈ 𝑅𝑛; 𝑠1𝑘, 𝑡1𝑘 ≥ 0, then the
following equivalence relations are easy to get:

𝑤 (𝑧̃) = 𝑤
0
+

𝑁

∑

𝑘=1

𝑤
𝑘
𝑧̃
𝑘
≥ 0

⇐⇒ 𝑤
0
≥ −

𝑁

∑

𝑘=1

𝑤
𝑘
𝑧̃
𝑘
= −

𝑁

∑

𝑘=1

(𝑠
1𝑘
− 𝑡
1𝑘
) 𝑧̃
𝑘

=

𝑁

∑

𝑘=1

(𝑡
1𝑘
𝑧̃
𝑘
− 𝑠
1𝑘
𝑧̃
𝑘
)

⇐⇒ 𝑤
0
≥ max

𝑁

∑

𝑘=1

(𝑡
1𝑘
𝑧̃
𝑘
− 𝑠
1𝑘
𝑧̃
𝑘
) = 𝑧

𝑁

∑

𝑘=1

𝑡
1𝑘
+ 𝑧

𝑁

∑

𝑘=1

𝑠
1𝑘
.

(8)
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Similar analysis is considered for vector V in model (7),
and based on the assumption that the transportation cost is
linear function, the uncertain model (7) is rewritten to the
determinate model

𝑍LDR = min 𝑐
𝑇
𝑥 + 𝑟𝑒

𝑇
𝑥𝑦 + 𝑚𝑒

𝑇
𝑤
0
,

s.t.

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑥 + 𝐿 + 𝑤
0
− V0 = 𝑑0,

𝑤
𝑘
− V𝑘 = 𝑑𝑘, 𝑘 = 1, 2, . . . 𝑁,

𝑤
0
≥ 𝑧

𝑁

∑

𝑘=1

𝑡
1𝑘
+ 𝑧

𝑁

∑

𝑘=1

𝑠
1𝑘
,

V0 ≥ 𝑧
𝑁

∑

𝑘=1

𝑡
2𝑘
+ 𝑧

𝑁

∑

𝑘=1

𝑠
2𝑘
,

𝑥, 𝑠
1
, 𝑡
1
, 𝑠
2
, 𝑡
2
≥ 0,

𝑦 = 0, if
𝑛

∑

𝑖=1

𝑥
𝑖
≥ 𝑞,

𝑦 = 1, if
𝑛

∑

𝑖=1

𝑥
𝑖
< 𝑞.

(9)

Because model (9) is the linear case of the model (7), the
following conclusion is obtained.

Theorem 2 (𝑍STOC ≤ 𝑍LDR). Hence, by introducing the linear
decision rule for the primal model (2), we get the robust model
(7), whose optimal value is approximate to the value of the
determinate model (9). Regarding the issue of the bound on the
objective function, the literature [10]made detailed discussions.

4. Cooperative Game of the Ordering
Centralization Problem

In the ordering centralization problem considering free
shipping, we only focus on the allocation of the expected cost.
Whether it is possible to derive a stable allocation of the actual
cost for each demand realization, the cost of each retailer is
reduced. In this section, based on the dual theory of stochastic
programming, we analyze the centralization problem with
free shipping.

First we briefly introduce the concepts of cooperative
game theory that will be used. Let 𝑁 = {1 ⋅ ⋅ ⋅ 𝑛} be the set
collection of players. A collection of players 𝑆 ⊆ 𝑁 is called
a coalition. A characteristic cost function is defined for each
coalition 𝑆 ⊆ 𝑁. A cooperative game is defined by the pair
(𝑁, 𝐶). Given a cooperative game, there are many ways to
divide the cost allocation of the game among the players. The
cost allocation has been extensively studied in the literature.
We focus on the core allocation, which is defined below.

A vector 𝑙 = (𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
) is called an imputation of the

game (𝑁, 𝐶) if ∑
𝑗∈𝑁

𝑙
𝑗
= 𝐶(𝑁) and 𝑙

𝑗
≤ 𝐶({𝑗}) for every 𝑗 ∈

𝑁. One can interpret an imputation as a division of𝐶(𝑁) that
charges every player at most as much as that they will play by
themselves. When this idea is generalized to every coalition
of players, the notion of core is given.

Definition 3. An allocation 𝑙 = (𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
) is in the core of

the game of (𝑁, 𝐶), if ∑
𝑗∈𝑁

𝑙
𝑗
= 𝐶(𝑁) and ∑

𝑗∈𝑆
𝑙
𝑗
≤ 𝐶(𝑆) for

every 𝑆 ⊆ 𝑁.

Then, we consider the following two-stage stochastic
linear programming:

min V𝑇
1
𝑥
1
+ 𝐸 [V𝑇

2
𝑥
2
] ,

s.t. 𝐴
11
𝑥
1
= 𝑏
1
,

𝐴
12
𝑥
1
+ 𝐴
22
𝑥
2
= 𝑏
2 (
𝑧̃) ,

𝑥
1
, 𝑥
2
≥ 0,

(10)

where 𝑥
1
is the decision variable of the first stage, 𝑥

2
is the

recourse variable of the second stage in which 𝐴
12
𝑥
1
= 𝑏
2
(𝑧̃)

is not satisfied for the realization of 𝑧̃, and V𝑇
2
𝑥
2
is the recourse

cost.
The dual problem of problem (10) is

max 𝐸 [𝑏
𝑇

1
𝜋
1
+ 𝑏
2(
𝑧̃)
𝑇
𝜋
2 (
𝑧̃)] ,

s.t. 𝐴
𝑇

11
𝜋
1
+ 𝐸 [𝐴

𝑇

12
𝜋
2 (
𝑧̃)] ≤ V

1
,

𝐴
𝑇

22
𝜋
2 (
𝑧̃) ≤ V

2
.

(11)

For the realization of 𝑧̃ ∈ 𝑊, if 𝑊 is a finite set,
then model (10) is a linear programming and the strict dual
condition is satisfied. Otherwise, the strict dual condition
may not be satisfied [11]. In the literature [12], there is a
conclusion that the optimal value of (10) is equal to the
optimal value of model (11) when model (10) is feasible and
has relatively complete recourse matrix. So we can study
the dual problem of the primal problem (1) to find the
relationship of them.

Here, assuming that the condition of free-transportation
cost holds, the problem (1) is equal to the problem (12). In
the model (12), for every collaboration 𝑆 ⊆ 𝑁, let the set 𝑆
replace the set 𝑁; then the collaboration model (13) is given
as follows:

𝐶 (𝑆) = min 𝑐(

𝑛

∑

𝑖=1

𝑥
𝑖
) + 𝑚𝐸(

𝑛

∑

𝑖=1

𝑤
𝑖 (
𝑧̃)) ,

s.t.
{
{
{
{

{
{
{
{

{

𝑛

∑

𝑖=1

𝑥
𝑖
≥ 𝑞,

𝑥
𝑖
+ 𝑤
𝑖 (
𝑧̃) ≥ 𝑑𝑖 (

𝑧̃) − 𝐿 𝑖
, 𝑖 = 1, 2, . . . 𝑛,

𝑥
𝑖
, 𝑤
𝑖 (
𝑧̃) ≥ 0, 𝑖 = 1, 2, . . . 𝑛,

(12)

min 𝑐(∑

𝑖∈𝑆

𝑥
𝑖
) + 𝑚𝐸(∑

𝑖∈𝑆

𝑤
𝑖 (
𝑧̃)) ,

s.t.
{
{
{

{
{
{

{

∑

𝑖∈𝑆

𝑥
𝑖
≥ 𝑞,

𝑥
𝑖
+ 𝑤
𝑖 (
𝑧̃) ≥ 𝑑𝑖 (

𝑧̃) − 𝐿 𝑖
, 𝑖 ∈ 𝑆,

𝑥
𝑖
, 𝑤
𝑖 (
𝑧̃) ≥ 0, 𝑖 ∈ 𝑆.

(13)
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It is easy to see that the dual problem of model (13) is

𝐷 (𝑆) = max 𝑞𝛼 +
|𝑆|

∑

𝑖=1

𝐸 ((𝑑
𝑖 (
𝑧̃) − 𝐿 𝑖

) 𝛼
𝑖 (
𝑧̃)) ,

s.t.
{
{

{
{

{

𝐸 (𝛼
𝑖 (
𝑧̃)) + 𝛼 ≤ 𝑐, 𝑖 ∈ 𝑆,

𝛼
𝑖 (
𝑧̃) ≤ 𝑚, 𝑖 ∈ 𝑆,

𝛼, 𝛼
𝑖 (
𝑧̃) ≥ 0, 𝑖 ∈ 𝑆.

(14)

In Section 3, we have given the example that the relatively
complete recourse matrix exists in the inventory centraliza-
tion problem considering free shipping. Hence we propose
the following results.

Theorem 4. For any collection of retailers 𝑆 ⊆ 𝑁, the optimal
value of (13) is equal to the optimal value of (14).

Theorem 5. The allocation in the core of retailers exists in
model (1) of cooperative ordering game with free shipping
option.

Proof. For 𝑆 = 𝑁, we denote by (𝛼∗
𝑗
(𝑧̃), 𝛼
∗
) the optimal

solution of problem Dual(𝑁) and let

𝑙
𝑗
= 𝜀
𝑗
+ 𝐸 ((𝑑

𝑗 (
𝑧̃) − 𝐿𝑗

) 𝛼
∗

𝑗
(𝑧̃)) , (15)

where ∑𝑁
𝑗=1
𝜀
𝑗
= 𝑞𝛼, 𝜀

𝑗
≥ 0. FromTheorem 4, we know that

∑

𝑗∈𝑁

𝑙
𝑗
= ∑

𝑗∈𝑁

(𝜀
𝑗
+ 𝐸 ((𝑑

𝑗 (
𝑧̃) − 𝐿𝑗

) 𝛼
∗

𝑗
(𝑧̃))) = 𝐶 (𝑁) . (16)

On the other hand, for every 𝑆 ⊆ 𝑁, because (𝛼∗
𝑗
(𝑧̃), 𝛼
∗
)

is a feasible solution to Dual(𝑆), we have the following
inequality:

∑

𝑗∈𝑆

𝑙
𝑗
= ∑

𝑗∈𝑆

(𝜀
𝑗
+ 𝐸 ((𝑑

𝑗 (
𝑧̃) − 𝐿𝑗

) 𝛼
∗

𝑗
(𝑧̃))) ≤ 𝑞𝛼

+ ∑

𝑗∈𝑆

𝐸 ((𝑑
𝑗 (
𝑧̃) − 𝐿𝑗

) 𝛼
∗

𝑗
(𝑧̃)) ≤ 𝐶 (𝑆) .

(17)

By Definition 3, the vector (𝑙
1
⋅ ⋅ ⋅ 𝑙
𝑁
) defined by (15) is

an allocation in the core of the cooperative inventory game
(𝑁, 𝐶).

In general, a core is the set of cost allocations under
which no coalitions should be charged more than they
would pay if they were to separate and follow an optimal
strategy for themselves. That is, no coalition will be better
off by deviation from the grand coalition. Since the core is
nonempty, there is at least one allocation of the cost that is
considered advantageous by all players. So for each retailer
of the inventory centralization problem, he is pleased to
cooperate with others based on the cost-vector (𝑙

1
⋅ ⋅ ⋅ 𝑙
𝑁
)

defined by (15).

5. Numerical Experiment

Assuming that there are three retailers and they order goods
from the same supplier. The retail price of the unit goods is

Table 1: The relationship between support and the optimal value.

Support of 𝑧̃ [−1, 2] [−1, 1] [−2, 2] [−3, 3] [−4, 4] [−5, 5]

The optimal value
𝑍LDR

2770 2796.6 2871.6 4017.5 3676.7 3728.7

Table 2: The relationship between threshold and the optimal value.

Threshold of 𝑞 45 50 55 60 65 70 75 80
The optimal value
𝑍LDR

3280 3159 2770 2770 2803 3026 3026 3026

𝑚 = 70 and the order price is 𝑐 = 40. The transportation
function is proportional to order quantity; that is, 𝑟 = 4. The
given threshold is 𝑞 = 60. The current inventory of retailers
is 5, 8, and 10, respectively, and their demands are all in the
same form 𝑑

𝑖
(𝑧̃) = 30+ 𝑧̃, where the mean of 𝑧̃ is zero and the

support is 𝑧̃ ∈ [−1, 2].
Solvingmodel (9) with the above data byMATALB solver,

we get the optimal ordering strategy of three retailers being
24, 21, and 19, respectively and the optimal cost value is 2770,
in which the free shipping is satisfied for the total ordering
number which is 64. On the other hand, if the free shipping
is not satisfied, the optimal ordering strategy is 20, 17, and
15, respectively, and the total ordering number is 52, and the
optimal cost value is 3338. This numerical experiment shows
that if all retailers participate in group to order goods, the total
cost may reduce for more ordering quantity. So all rational
retailers are willing to order jointly when their inventories are
inadequate to meet the real demands with the consideration
of free shipping option.

Then we consider how the support of 𝑧̃ affects the
optimal value. For the normal demand is 30 with a little
uncertain changes, we test other 5 kinds of support with the
maximal interval being 5. There are global optimal solutions
in the cases of [−1, 2], [−1, 1], and [−2, 2], but in other
cases MATALB solver shows the current solution may be
nonoptimal and the local optimal solutions can be found after
more than one hundred iterations.The experiment shows the
support has obvious effect on the optimal value of model (9)
which is given in Table 1.

Further, we consider how the threshold 𝑞 influences the
optimal value. At the beginning we take the value 5 times
according to the current value that is 60, and the optimal
function values are given in Table 2 (the current value may
be local optimal according to the solver for the cases that
the threshold is more than 70). It shows that the optimal
cost value increases from 𝑞 = 45 to 𝑞 = 55; then the
minimal value reaches the bottom from 𝑞 = 55 to 𝑞 = 60;
afterwards it increases from 𝑞 = 60 to 𝑞 = 80. In order to
find the relationship better, get 35 groups of the threshold and
optimal value (𝑞 = 45, 46, . . . , 80 resp.), which are displayed
in Figure 1. The experiment shows that the optimal value
obeys piecewise function with obvious character.

At last we try to compute the core of the primal problem
above based on the discussion in Section 4. For the condition
of free-transportation cost is satisfied, the total minimal cost
is 2770. In (14), the total maximal payment is equal to 2770
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Figure 1: The detailed relationship between threshold and the
optimal value.

also. According to dual theory, we have 𝛼∗ = 0, and the
costs that three retailers should take are 𝑙

1
= 25𝐸(𝛼

1
(𝑧̃)),

𝑙
2
= 22𝐸(𝛼

2
(𝑧̃)), and 𝑙

3
= 20𝐸(𝛼

3
(𝑧̃)) with constraint

𝐸(𝛼
𝑖
(𝑧̃)) ≤ 40 and for 𝛼

𝑖
(𝑧̃) ≤ 70 all 𝑖, where 𝛼

𝑖
(𝑧̃) is random

decision variable.The allocations satisfying restrictions above
are feasible.

6. Conclusions

It is a key research content of supply chain management.
This research will provide effective effort for scientific deci-
sion making and e-business activity. This paper studied the
optimal order problem under the uncertainty of demand and
proposed the stochastic programming model, in which the
objective function is to minimize the total cost. Considering
the limited information of the uncertain variable in the
model, we used the linear decision rule; one of the robust
optimization methods to analyze this model and get the
approximate model which is tractable. Afterwards, evidence
attained from the numerical experiment strongly suggested
its effectiveness and efficiency. Furthermore, this paper
analyzed the core allocation between all retailers via dual
and cooperative game theory. The results showed that the
ordering centralization can save the cost of all retailers and
it is economic for the society. We will study the application
of robust optimization to supply management with other
uncertainties or in the view of supplier.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This paper is supported by the National Nature Science
Foundation of China (NSFC) (Grant no. 71250002) and
Independent Innovation Foundation of Shandong University
(Grant no. IFW12107).

References

[1] M. Lewis, V. Singh, and S. Fay, “An empirical study of the impact
of nonlinear shipping and handling fees on purchase incidence

and expenditure decisions,”Marketing Science, vol. 25, no. 1, pp.
51–64, 2006.

[2] M. Leng andM. Parlar, “Free shipping and purchasing decisions
in B2B transactions: a game-theoretic analysis,” IIE Transac-
tions, vol. 37, no. 12, pp. 1119–1128, 2005.

[3] M. Leng and R. Becerril-Arreola, “Joint pricing and contingent
free-shipping decisions in B2C transactions,” Production and
Operations Management, vol. 19, no. 4, pp. 390–405, 2010.

[4] Y. Yang, S. Essegaier, and D. R. Bell, “Free shipping and repeat
buying on the internet: theory and evidence,” Manuscript,
Wharton School, University of Pennsylvania, 2005.

[5] B. Zhou, M. N. Katehakis, and Y. Zhao, “Managing stochastic
inventory systems with free shipping option,” European Journal
of Operational Research, vol. 196, no. 1, pp. 186–197, 2009.

[6] P. L. Abad andV. Aggarwal, “Incorporating transport cost in the
lot size and pricing decisions with downward sloping demand,”
International Journal of Production Economics, vol. 95, no. 3, pp.
297–305, 2005.

[7] G.-W. Hua, J. Li, X. Tian, and F. M. Yang, “Optimal order
strategy with free shipping option,” System Engineering Theory
and Practice, vol. 30, no. 3, pp. 506–512, 2010 (Chinese).

[8] A. Shapiro and A. Nemirovski, “On complexity of stochastic
programming problems,” in Continuous Optimization, pp. 111–
146, Springer, New York, NY, USA, 2005.

[9] X. Chen,M. Sim, and P. Sun, “A robust optimization perspective
on stochastic programming,”Operations Research, vol. 55, no. 6,
pp. 1058–1071, 2007.

[10] X. Chen, M. Sim, P. Sun, and J. Zhang, “A linear decision-
based approximation approach to stochastic programming,”
Operations Research, vol. 56, no. 2, pp. 344–357, 2008.

[11] X. Chen and J. Zhang, “A stochastic programming dual-
ity approach to inventory centralization games,” Operations
Research, vol. 57, no. 4, pp. 840–851, 2009.

[12] R. T. Rockafellar and R. J.-B. Wets, “Stochastic convex pro-
gramming: relatively complete recourse and induced feasibility,”
SIAM Journal on Control and Optimization, vol. 14, no. 3, pp.
574–589, 1976.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


