
Hindawi Publishing Corporation
Journal of Nanotechnology
Volume 2011, Article ID 471241, 6 pages
doi:10.1155/2011/471241

Review Article

A Review of Electronic Band Structure of Graphene and Carbon
Nanotubes Using Tight Binding

Davood Fathi

School of Electrical and Computer Engineering, Tarbiat Modares University (TMU), P.O. Box 14115-194, Tehran, Iran

Correspondence should be addressed to Davood Fathi, davfathi@gmail.com

Received 15 March 2011; Revised 5 July 2011; Accepted 8 July 2011

Academic Editor: Ashavani Kumar

Copyright © 2011 Davood Fathi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The electronic band structure variations of single-walled carbon nanotubes (SWCNTs) using Huckle/tight binding approximation
theory are studied. According to the chirality indices, the related expressions for energy dispersion variations of these elements are
derived and plotted for zigzag and chiral nanotubes.

1. Introduction

Carbon nanotubes (CNTs) are graphene sheets rolled up
into cylinders with diameter of the order of a nanometer
varying from 0.6 to about 3 nm [1]. Depending on their
chirality (the direction along which the graphene sheets are
rolled up), they can be either metallic with no bandgap, or
semiconducting with a distinct bandgap [2].

Because of their extremely desirable properties of high
mechanical and thermal stability, high thermal conductivity,
and unique electrical properties such as large current
carrying capacity [3–7], CNTs have aroused a lot of research
interest in their applicability as VLSI interconnects of the
future.

Semiconducting CNTs are being extensively studied as
the future channel material for ultrahigh performance and
scaled field-effect transistors (FETs) and are expected to be
the successors of silicon transistors. Interconnect technology
has to be commensurately scaled to reap the benefits of these
novel transistors. Metallic CNTs have been identified as pos-
sible interconnect material of future technology generations
and the heir to aluminum (Al) and Cu interconnects [8].

2. The Energy Variations of Graphene

Graphite is a 3D (three-dimensional) layered hexagonal
lattice of carbon atoms and a single layer of graphite forms

a 2D (two-dimensional) material, called 2D graphite or
a graphene layer [9, 10]. Figure 1 shows the lattice of a
graphene sheet in which the two fundamental carbon atoms
1 and 2 are the basic elements of overall lattice and form a
unit cell. Thus, the lattice of unit cells is periodic.

Each point on the periodic lattice of Figure 1 can be

described by
−→
R = m−→a 1 + n−→a 2 where m and n are two inte-

gers, a1 and a2 are the two unit vectors which are defined as
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where a = 2.46 Å is the lattice constant of graphene [11].
The tight binding theorem implies that [11]

φ = c1φ1 + c2φ2, (2)

where φ is the wave function due to the unit cell, and φ1 and
φ2 are the wave functions related to the 2py atomic orbitals
of atoms 1 and 2 in Figure 1, respectively, and c1 and c2 are
two constants. We will be using Bloch’s theorem [11]

ψ(x) =
∑
R

ei
−→
K ·−→Rφ(x − R), (3)
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where ψ(x) is the total wave function of lattice,
−→
K is the wave

vector, and R is the lattice vector. With considering the over-
lap between the two above-mentioned orbitals, we will have

〈
φ1(x)|H|ψ(x)

〉 = ε
〈
φ1(x) | ψ(x)

〉
,〈

φ2(x)|H|ψ(x)
〉 = ε

〈
φ2(x) | ψ(x)

〉
,

(4)

whereH is the Hamiltonian operator [11] and ε is the energy
dispersion of graphene lattice. Also using the previously
mentioned relations, we can write

〈
φ1(x)|H|ψ(x)

〉 = εc1,〈
φ2(x)|H|ψ(x)

〉 = εc2.
(5)

With noticing Huckel/tight binding approximation and the
previous relations, we will have

〈
φ1(x)|H|ψ(x)

〉 = c1α + c2β
(

1 + e−i
−→
K ·−→a 1 + e−i

−→
K ·−→a 2

)
,

〈
φ2(x)|H|ψ(x)

〉 = c2α + c1β
(

1 + ei
−→
K ·−→a 1 + ei

−→
K ·−→a 2

)
.

(6)

By substituting (4)–(5) in (6), we can obtain

c1(α− ε) + c2β
(

1 + e−i
−→
K ·−→a 1 + e−i

−→
K ·−→a 2

)
= 0,

c1β
(

1 + ei
−→
K ·−→a 1 + ei

−→
K ·−→a 2

)
+ c2(α− ε) = 0.

(7)

For having nonzero responses for the homogenous equation
(7), the following condition should be established

∣∣∣∣∣∣∣∣
α− ε β

(
1 + e−i

−→
K ·−→a 1 + e−i

−→
K ·−→a 2

)

β
(

1 + ei
−→
K ·−→a 1 + ei

−→
K ·−→a 2

)
α− ε

∣∣∣∣∣∣∣∣ = 0.

(8)

With solving (8), we obtain the total energy dispersion
variations as

ε = α± β
√

3 + cos
(−→
K · −→a 1

)
+ 2 cos

(−→
K · −→a 2

)
+ 2 cos

[−→
K · (−→a 1 −−→a 2

)]
. (9)

With considering that
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(
kx + iky

)
· a
(√

3
2

+ i
1
2

)
= a

2

(√
3kx + ky

)
,

−→
K · −→a 2 =

(
kx + iky

)
· a
(√

3
2
− i1

2

)
= a

2

(√
3kx − ky

)
,

−→
K · (−→a 1 −−→a 2

) = (kx + iky
)
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(10)

where
−→
K = (kx + iky), which kx and ky are the wave

numbers related to the reciprocal lattice. Therefore, the
energy dispersion variations versus kx and ky will be obtained
as

ε = α± β
√

3 + cos
(
a

2

(√
3kx + ky

))
+ 2 cos

(
a

2

(√
3kx − ky

))
+ 2 cos

(
aky

)
. (11)

In Figure 2, the energy dispersion variations ε in (11) has
been plotted versus kx and ky in the range of [−2π/a, 2π/a],
using MATLAB [12].

In Figure 3, the primitive unit cell and the Brillouin
zone, related to the graphene lattice and the reciprocal lattice
of graphene, respectively, have been shown. In this figure−→a 1 and −→a 2 are the unit vectors of the graphene lattice,

respectively, and
−→
b 1 and

−→
b 2 are the unit vectors of the

reciprocal lattice of graphene, respectively.

We can express the reciprocal lattice vectors
−→
b 1 and

−→
b 2

versus the lattice vectors −→a 1 and −→a 2 as

−→
b 1 = 2π

−→a 2 ×−→z 0−→a 1 ·
(−→a 2 ×−→z 0

) ,

−→
b 2 = 2π

−→z 0 ×−→a 1−→a 2 ·
(−→z 0 ×−→a 1

) ,

(12)
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Figure 1: The periodic lattice of graphene consisting of the unit cell
of two carbon atoms.
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Figure 2: The energy dispersion variations of graphene lattice.
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Figure 3: The primitive unit cell and the Brillouin zone in
graphene.
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Figure 4: Vectors definition of graphene for converting to a carbon
nanotube.

where −→z 0 is the unit vector along the z-axis, which will play
no important role in our discussion since we talk about the
electronic states in the x-y plane assuming that different
planes along the z-axis are isolated [9]. By substituting (1)
in (12) we will have

−→
b 1 =

(
2π√
3a

,
2π
a

)
,

−→
b 2 =

(
2π√
3a

,−2π
a

)
.

(13)

3. The Energy Dispersion Variations of
an SWCNT

In Figure 4, the vectors definition of graphene plane for
converting to a carbon nanotube has been shown where−→
Ch, θ, and

−→
T are the chirality (circumference) vector, the

chirality angle, and the translational vector, respectively.

With considering that OA = |−→Ch| and OB = |−→T | we can

express
−→
Ch versus the unit vectors −→a 1 and −→a 2 as

−→
Ch = n−→a 1 +m−→a 2, (14)

where n and m are two integer numbers and are defined as
carbon nanotube indices [11, 13]. Also, we can express the
diameter of carbon nanotube versus a, n, and m as [11, 13]

dt =
∣∣∣−→Ch

∣∣∣
π

= a
√
n2 +m2 + nm

π
. (15)

On the other hand, the vector
−→
T can be defined versus the

unit vectors −→a 1 and −→a 2 as [11]

−→
T = t1

−→a 1 + t2
−→a 2, (16)
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Figure 5: Vectors definition for the reciprocal lattice of graphene.

where

t1 = 2m + n

dR
,

t2 = −2n +m

dR
,

dR = GCD of (2m + n), (2n +m),

(17)

which we can express dR easier as

dR =
⎧⎨
⎩

3d, if (n−m) is multiple of 3d,

d, if (n−m) is not multiple of 3d,
(18)

where

d = GCD of n,m. (19)

Figure 5 shows the vectors of reciprocal lattice of graphene.

In this figure,
−→
k ⊥ and

−→
k || are the reciprocal lattice vector

related to
−→
Ch and the reciprocal lattice vector related to

−→
T ,

respectively. With considering that
−→
Ch and

−→
T are orthogonal

to each other, we have
−→
Ch ·

−→
k ⊥ = 2π,

−→
Ch ·

−→
k || = 0,

−→
T ·−→k || =

2π, and
−→
T · −→k ⊥ = 0.

For obtaining
−→
k ⊥ and

−→
k || versus the other parameters,

we have |−→Ch × −→T | equal to the area of CNT unit cell, and
|−→a 1 × −→a 2| equal to the area of primitive unit cell (as in
Figure 3). Thus the number of primitive unit cells per CNT
unit cell will be as

N =
∣∣∣−→Ch ×−→T

∣∣∣∣∣−→a 1 ×−→a 2
∣∣ . (20)

It should be noted that in above relations, “×” and “·” are
the outer product and the inner product representations,

respectively. Therefore the vectors
−→
k ⊥ and

−→
k || can be

expressed as

−→
k ⊥ = 1

N

(
−t2
−→
b 1 + t1

−→
b 2

)
,

−→
k || = 1

N

(
m
−→
b 1 − n1

−→
b 2

)
.

(21)

The energy dispersion relation of an SWCNT (single-walled
carbon nanotube) can be obtained from the energy relation

of graphene sheet, which the related nanotube is made up
of. With considering the periodic boundary conditions on−→
Ch, we find that the wave vector

−→
k ⊥ associated with

−→
Ch

(circumference) direction is quantized [11]. On the other
hand, for a one-dimensional nanowire such as a carbon
nanotube with the length 	, the wave vector associated with−→
T (translational) direction is discrete with

Δk = 2π
	
. (22)

It should be noted that for a carbon nanotube of infinite
length, as cleared from (22), the wave vector along the
nanotube axis can be assumed continuous. Since in carbon
nanotube which is a one-dimensional material, only

−→
k || is a

reciprocal lattice vector and
−→
k ⊥ gives discrete k values in the

direction of
−→
Ch.

Since an SWCNT is a rolled-up sheet of graphene,
the energy band structure can be obtained simply from
that of two-dimensional graphene. This work can be done
easily by imposing appropriate boundary conditions in the
circumferential direction around the SWCNT [11, 14]. As
shown in Figure 6, the one-dimensional band structure of
SWCNTs can be obtained from cross-sectional cutting of the
energy dispersion of two-dimensional graphene.

For the continuous wave vector
−→
k along the nanotube

axis, we can write the energy dispersion variations for one-
dimensional carbon nanotube, using the two-dimensional
graphene relation (11) as [11]

ES
(−→
k
)
= ε

⎛
⎜⎝s−→k ⊥ +

−→
k ||∣∣∣−→k ||∣∣∣k

⎞
⎟⎠, (23)

where S = 0, 1, . . . ,N − 1 and −π/a < k < π/a. This means
that the N pairs of energy dispersion curves given by (23),
correspond to the cross-sections of the two-dimensional
energy dispersion given by (11) and shown in Figure 2. These

cross-sections are made on [s
−→
k ⊥ + (

−→
k ||/|

−→
k |||)k] lines.

For a zigzag carbon nanotube with n = 0 and m = 6,
we can obtain the parameters dR, d, t1, and t2 using (17)–

(19) equal to 6, 6, 2, and−1, respectively. Also
−→
Ch and

−→
T can

be obtained using (14), (16) equal to 6a2 and (2−→a 1 − −→a 2),
respectively. Thus using (20), N can be obtained equal to 12.

Using (21), the parameters
−→
k ⊥ and

−→
k || will be calculated

as
−→
k ⊥ = (

−→
b 1 + 2

−→
b 2)/12 and

−→
k || =

−→
b 1/12, respectively.

Therefore, the argument in (23) will be

s
−→
k ⊥ +

−→
k ||∣∣∣−→k ||∣∣∣k =

⎛
⎜⎝ s

12
+

k∣∣∣−→b 1

∣∣∣
⎞
⎟⎠−→b 1 +

s

6

−→
b 2. (24)

Using (13) for
−→
b 1 and

−→
b 2, (24) will be obtained as

s
−→
k ⊥ +

−→
k ||∣∣∣−→k ||∣∣∣k =

(
s

2
√

3
π

a
+
k

2

)
+ i

(
− s

6
π

a
+

√
3

2
k

)
, (25)
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Figure 6: The 1D band structure of an SWCNT is obtained by cross-sections of 2D energy dispersions for (b) a metallic SWCNT and (c) a
semiconducting SWCNT [14].
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Figure 7: The energy dispersion variations of zigzag carbon
nanotubes. One nanotube is metallic with n = 0 and m = 6, and
the other is semiconductive with n = 0 and m = 5.

where i presents the imaginary part. Recall that
−→
K = kx +

iky , (25) implies that for calculating the energy dispersion
variations of CNT, it is adequate to replace kx and ky in (11)
with the real part and the imaginary part of (25), respectively,
as

k(0,6)
x = s

2
√

3
π

a
+
k

2
,

k(0,6)
y = − s

6
π

a
+

√
3

2
k.

(26)

With a similar way as described above, we can obtain kx and
ky for the case that n = 0 and m = 5, as

k(0,5)
x = 3s

5
√

3
π

a
+
k

2
,

k(0,5)
y = − s

5
π

a
+

√
3

2
k.

(27)

In Figure 7, the energy dispersion variations versus k have
been plotted for the two carbon nanotubes, which one
nanotube is metallic with n = 0 and m = 6 and the other
is semiconducting with n = 0 and m = 5. As shown in this
figure, the band gap for the metallic nanotube is almost zero,
and for the semiconductive nanotube is a nonzero value.

For a chiral carbon nanotube with n = 4 andm = 2, with
the similar way as described for the two zigzag nanotubes in
Figure 7, kx and ky will be obtained as

k(4,2)
x = 9s

14
√

3
π

a
− k

2
√

7
,

k(4,2)
y = s

14
π

a
+

3
√

3
2
√

7
k.

(28)

In Figure 8, the energy dispersion variations versus k has
been plotted for a chiral carbon nanotube with n = 4 and
m = 2, which is neither metallic nor semiconductive.

4. Conclusions

In this paper we have studied the basic structure of
graphene and its resulted element carbon nanotube. Using
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Figure 8: The energy dispersion variations of a chiral carbon
nanotube, with m = 2 and n = 4.

the tight binding approximation theory, we have analyzed
the variations of energy band gap for SWCNTs (single-
walled carbon nanotubes). According to the chiral indices,
the related expressions for energy dispersion variations of
these elements have been analyzed and also plotted using
MATLAB [12] for zigzag and chiral nanotubes.
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