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This communication proposes a simplified model of pseudorandom bit generator, based on two Chirikov standard maps filtered
with shrinking rule. The study also demonstrates that the generated keystreams have excellent properties of randomness and
resistance to statistical attacks, which is proven by using the NIST, ENT, and DIEHARD testing suites.

1. Introduction

The chaotic maps and the shrinking rules have been used
widely in the fields of random simulations and secure
communications. Patidar and Sud [1] introduced a pseudo-
random bit generator with good cryptographic properties
by using two Chirikov standard maps [2] combined with a
threshold function. Lian et al. [3] and Fu et al. [4] proposed
standard map-based pseudorandom confusion processes,
which they used in chaotic image encryption schemes. Ye and
Huang [5] presented two shuffle image encryption schemes,
based on standard map orbit ergodicity. Coppersmith et al.
[6] used two linear feedback shift registers, named shrinking
generator, to create a third source of pseudorandom bits,
which has better quality than the initial sources. Stoyanov
[7] proposed new chaotic cryptographic scheme constructed
from the Lorenz butterfly attractor and filtered by 32-bit bent
Boolean function.

The aim of the paper is referred on the method of
synthesis of a pseudorandom bit generation scheme based
on two standard maps which are filtered by Jabri shrinking
generator (JSG) [8].The proposed combiner is tested byNIST
[9], DIEHARD [10], and ENT [11] batteries of tests.

2. The Proposed Pseudorandom Bit Generator

The Chirikov standard map is an area-conserving chaotic
map defined by a set of difference equations:
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where the quantities 𝑝 and 𝑥 (momentum and coordinate)
are taken modulo 2𝜋. The stochasticity parameter𝐾 controls
the degree of chaos. The nonlinearity of the map grows with
large 𝐾.

Jabri pointed out that using the classic shrinking function
leads to statistical disadvantage and proposed a modified
shrinking rule, which addresses the problem. If 𝑔

1
and 𝑔
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two bit generators, the sequences from these generators are
denoted by b = {𝑏
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, . . . , } and s = {𝑠
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, . . . , }, respectively.

An output sequence, z = {𝑧
0
, 𝑧
1
, . . . , }, corresponding to

the Jabri search-based output was then built from these
sequences by using the following rule: 𝑧

𝑘
= 𝑏
𝑖𝑘
for 𝑘 = 0, 1, . . .,

where 𝑖𝑘 is the 𝑘th position for which 𝑏
𝑖
and 𝑠
𝑖
are different.

That is, the sequence z will include only those bits 𝑏
𝑖
of the

sequence b, which are different from s, while the other bits
are ignored.
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Figure 1: Schematic description of the proposed chaos based generator.

This study was inspired by the work of Patidar and Sud
[1]. The original pseudorandom bit generator is based on the
following two Chirikov standard maps:
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where the initial conditions 𝑝
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modulo 2𝜋. The maps are starting from six floating-value
numbers: (𝑝
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are real numbers greater than 18.9.The

pseudorandom bits are generated by comparing two outputs
of both maps in the following way:
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The keystream from the above scheme is produced by using
two output values from the Chirikov standard maps. In order
to use all computed values in the output stream calculation,
we propose a novel pseudorandom bit generator by adding to
the above generator a second threshold function:
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Then we shrink the constructed couple of bits from ℎ and 𝑗
with the Jabri shrinking rule.The schematic description of the
proposed chaotic based generator is shown in Figure 1. The
novel hybrid scheme is based on the combination of all four
outputs of two Chirikov standard maps and it has the extra
security features of the search-based rule.

3. Experimental Statistical Tests

The proposed pseudorandom bit generator is implemented
softwarely in Dev-C++ 5.0 beta 9.2 (4.9.9.2) environments
withMingw/GCC 3.4.2.We produced a set of 1000 sequences
of 1000000 bits each, using the following initial numbers:
𝑝
1,0

= 2.56, 𝑥
1,0

= 3.05, 𝑝
2,0

= 1.24, 𝑥
2,0

= 3.27, 𝐾
1
=

1500, and 𝐾
2
= 2100.37. In order to test the randomness of

the novel scheme, we used the NIST, DIEHARD, and ENT
statistical test packages.

The NIST suite [9, 12] includes 15 tests, which were
developed to check the randomness of binary sequences
produced by pseudorandom generators. These tests are as
follows: frequency (monobit), block-frequency, cumulative
sums (forward and reverse), runs, longest run of ones,
rank, fast Fourier transform (spectral), nonoverlapping tem-
plates, overlapping templates, Maurers “universal statistical”,
approximate entropy, random excursion, random-excursion
variant, serial, and linear complexity. The testing process
consists of the following steps.

(1) State the null hypothesis. Assume that the zero/one
sequence is random.

(2) Compute a sequence test statistic. Testing is carried
out at the bit level.

(3) Compute the 𝑃 value, 𝑃 value ∈ [0, 1].
(4) Fix 𝛼, where 𝛼 ∈ [0.0001, 0.01]. Compare the 𝑃

value to 𝛼. Success is declared whenever 𝑃 value ≥ 𝛼;
otherwise, failure is declared.

The NIST suite calculates the proportion of sequences that
pass the particular tests. The range of acceptable proportion
is determined using the confidence interval defined as

𝑝 ± 3√
𝑝 (1 − 𝑝)

𝑚
, (5)

where 𝑝 = 1 − 𝛼 and 𝑚 is the number of binary tested
sequences. NIST recommends that, for these tests, the user
should have at least 1000 sequences of 1000000 bits each. In
our setup𝑚 = 1000. Thus the confidence interval is

0.99 ± 3√
0.99 (0.01)

1000
= 0.99 ± 0.0094392. (6)

The proportion should lie above 0.9805607 with exception
of random excursion and random excursion variant tests.
These two tests only apply whenever the number of cycles in
a sequence exceeds 500. Thus the sample size and minimum
pass rate are dynamically reduced taking into account the
tested sequences.

The distribution of 𝑃 values is examined to ensure
uniformity. The interval between 0 and 1 is divided into 10
subintervals. The 𝑃 values that lie within each subinterval
are counted. Uniformity may also be specified through an
application of a 𝜒2 test and the determination of a 𝑃 value
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Table 1: NIST test results.

NIST Proposed generator
Statistical test 𝑃 value Pass rate
Frequency (monobit) 0.228367 994/1000
Block frequency 0.186566 983/1000
Cumulative sums (forward) 0.759756 990/1000
Cumulative sums (reverse) 0.003224 991/1000
Runs 0.647530 993/1000
Longest run of ones 0.960198 990/1000
Rank 0.670396 992/1000
FFT 0.187581 988/1000
Nonoverlapping templates 0.482512 990/1000
Overlapping templates 0.166260 987/1000
Universal 0.281232 987/1000
Approximate entropy 0.903338 988/1000
Random-excursion 0.532463 590/599
Random-excursion variant 0.409049 591/599
Serial 1 0.066465 986/1000
Serial 2 0.442831 989/1000
Linear complexity 0.985788 984/1000

corresponding to the goodness-of-fit distributional test on
the 𝑃 values obtained for an arbitrary statistical test, 𝑃 value
of the 𝑃 values. This is implemented by calculating

𝜒
2
=

10

∑

𝑖=1

(𝐹
𝑖
− 𝑠/10)

2

𝑠/10
, (7)

where 𝐹
𝑖
is the number of 𝑃 values in subinterval 𝑖 and

𝑠 is the sample size. A 𝑃 value is computed such that
𝑃 value

𝑇
= IGAM (9/2, 𝜒

2
/2), where IGAMC is the comple-

mented incomplete gamma statistical function. If 𝑃 value
𝑇
≥

0.0001, then the sequences can be considered to be uniformly
distributed.

The empirical results we obtained are presented inTable 1.
All the 𝑃 values from all 1000 sequences are distributed
uniformly and the pass rate is also in an acceptable range.

The minimum pass rate for the random excursion (vari-
ant) test is approximately 585 for a sample size of 599 binary
sequences for the proposed pseudorandom algorithm.

The Marsaglias Diehard test package consists of 18 sta-
tistical tests: Birthday spacings, Overlapping 5-permutations,
Binary rank (31 × 31), Binary rank (32 × 32), Binary rank
(6 × 8), Bitstream, Overlapping-Pairs-Sparse-Occupancy,
Overlapping-Quadruples-Sparse-Occupancy, DNA, Stream
count-the-ones, Byte-count-the-ones, Parking lot, Minimum
distance, 3D spheres, Squeeze, Overlapping sums, Runs (up
and down), and Craps. The tests return 𝑃 values, which
should be uniform in [0, 1), if the input file contains truly
independent pseudorandom bits. The 𝑃 values are obtained
by 𝑝 = 𝐹(𝑦), where 𝐹 is the assumed distribution of the
sample random variable 𝑦, often the normal distribution.

We will introduce the particular tests briefly [10, 13]:
Birthday spacings chooses 𝑚 random points (birthdays)
in a year of 𝑛 days. The spacings between the points
should be asymptotically Poisson distributed. Overlapping

Table 2: Diehard test results.

DIEHARD Proposed generator
Statistical test 𝑃 value
Birthday spacings 0.576866
Overlapping 5-permutation 0.191766
Binary rank (31 × 31) 0.393875
Binary rank (32 × 32) 0.326959
Binary rank (6 × 8) 0.532371
Bitstream 0.489218
OPSO 0.462404
OQSO 0.462404
DNA 0.559898
Stream count-the-ones 0.521853
Byte count-the-ones 0.596708
Parking lot 0.861929
Minimum distance 0.765773
3D spheres 0.383131
Squeeze 0.496864
Overlapping sums 0.008502
Runs up 0.289339
Runs down 0.449145
Craps 0.497628

5-permutations looks at a sequence of one million 32-bit
random integers where the 120 possible permutations of 5
consecutive random numbers occur with equal statistical
probability. Three Binary rank tests, (31 × 31), (32 × 32), and
(6 × 8) form a binary matrix and determines the rank of the
matrix. Bitstream counts the number of missing 20-bit words
in a string of 221 overlapping 20-bit words. OPSO, OQSO,
and DNA analyse overlapping 2-letter, 4-letter, and 10-letter
words.The words which do not appear in the entire sequence
should be very close to normally distributed. Stream and Byte
count-the-ones uses the probabilities of the number of ones
to determine different 4-letter and 5-letter words. Parking lot
is an empty 100 by 100 matrix which is randomly filled with
elements (cars). The number of successful attempts without
crash with one already parked is very closely normally
distributed.Minimum distance chooses 8,000 random points
in a square of side 10,000. Measures the squared distance
between random points. The square distance should be very
close to exponentially distributed. 3D spheres chooses 4,000
random points in a cube of side 1,000. Eachpoint centers
a sphere large enough to reach the next closest point. The
volume of the smallest such sphere should be exponentially
distributed. Squeeze is where the test finds the number of
iterations necessary to reduce the number𝑚 = 231 to 1, using
the reduction𝑚 = ⌈𝑚 ∗𝑈⌉, where the function ⌈𝑥⌉ gives the
smallest integer ≥ 𝑥 and 𝑈 is provided by floating integers
from the input file. Overlapping sums forms sequences of
overlapping sums of uniform variables. Runs counts runs up
and runs down in a sequence of uniform [0, 1) variables.
Craps plays 200,000 games of craps. The number of wins
should be a normally distributed.
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Table 3: ENT test results.

ENT Proposed generator
Statistical test Results
Entropy 7.997502 bits per byte

Optimum compression OC would reduce the size of this
125000000 byte file by 0%

𝜒
2 distribution

For 125000000 samples is 438239.72
and randomly would exceed this value
less than 0.01% of the times

Arithmetic mean value 127.5013
Monte Carlo 𝜋 estim. 3.140569010 (error 0.03%)

Serial correl. coeff. −0.000147
(totally uncorrelated = 0.0)

Table 2 shows results obtained from testing a single 80
million bits file used for experimental purposes. It is evident
that all Diehard tests pass for our novel pseudorandom bit
generator. The output streams did not exhibit a noticeable
deviation from randomness.

The ENT suite performs 6 tests to sequences of bytes
stored in files and outputs the results of those tests. We tested
output stream of 125000000 bytes of the proposed scheme.
The results are summarized in Table 3 and show that the novel
pseudorandom binary generator passed all the tests of ENT.

4. Conclusions

In summary, we propose a novel chaos-based pseudorandom
bit generator, which uses two Chirikov standardmaps filtered
by a search-based rule. We did detailed analysis by NIST,
Diehard, and ENT statistical packages to show that the
novel generator did not reveal a noticeable deviation from
randomness.
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