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The influence of pressure on the oscillations of Shubnikov-de Haas (ShdH) and de Haas-van Alphen (dHvA) in semiconductors is
studied. Working formula for the calculation of the influence of hydrostatic pressure on the Landau levels of electrons is obtained.
The temperature dependence of quantum oscillations for different pressures is determined. The calculation results are compared
with experimental data. It is shown that the effect of pressure on the band gap is manifested to oscillations and ShdH and dHvA
effects in semiconductors.

1. Introduction

Currently a variety of experimental methods for the study of
influence of pressure on the oscillations ShdH and dHvA are
tested in new types of semiconductors. Most quantum oscil-
lation phenomena in semiconductors are due to oscillation
density of energy states in a strong magnetic field [1–5].

The works of [6, 7] studied the temperature dependence
of the density of states in quantizing magnetic fields. These
studies showed that the continuous spectrum of the density
measured at the temperature of liquid nitrogen at low
temperatures turns into discrete Landau levels. Mathematical
modeling of processes using the experimental values of
the continuous spectrum of the density of states makes it
possible to calculate the discrete Landau levels. The work
of [8] examined the effect of temperature on the oscillation
dHvA effect using this model. Here, the obtained oscillation
dHvA effects take into account the thermal broadening of
the Landau levels. However, these studies did not consider
the effect of pressure on the effects of oscillations ShdH and
dHvA in semiconductors.

The aim of this work is a theoretical study of the influe-
nce of hydrostatic pressure on the quantum oscillation phe-
nomena in semiconductors.

2. Method of Calculation of the Density
of the Energy States

Consider the dynamics of the free electron gas in a quantizing
magnetic field. In the presence of a magnetic field parallel
to the 𝑧 direction, the energies of electrons and holes in the
conduction bands and valence bands are as follows:

𝐸𝑐 (𝑁, 𝑘𝑧) = 𝐸𝑔 + (𝑁 + 12) ℏ𝜔𝑐 +
ℏ2𝑘2𝑧2𝑚𝑐 ±

12𝑠𝑔𝜇𝐵𝐵 (1)

𝐸𝜐 (𝑁, 𝑘𝑧) = − (𝑁 + 12) ℏ𝜔𝜐 −
ℏ2𝑘2𝑧2𝑚𝜐 ±

12𝑠𝑔𝜇𝐵𝐵. (2)

Here, 𝜔𝑐 and 𝜔𝜐 represent cyclotron frequency of elec-
trons and holes, 𝑠 represents spin quantum number, and 𝐵
represents the magnetic field induction.

For parabolic zone [9], 𝐸 = ℏ2𝑘2/2𝑚 and 𝑆 = 𝜋𝑘2⊥ =𝜋(𝑘2 − 𝑘2𝑧).
Hence, the cyclotron mass

𝑚𝑐 = ℏ22𝜋 𝜕𝑆𝜕𝐸 = 𝑚. (3)

We now find the number of states in the interval between
two Landau levels. Using expression (3), let us find the
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difference between the areas of cross-sections of two equal-
energy surfaces, which differ in energy Δ𝐸 = ℏ𝜔𝑐:

Δ𝑆 = 2𝜋𝑚𝑐ℏ2 Δ𝐸 = 2𝜋𝑚𝑐ℏ2 ℏ𝜔𝑐. (4)

For the determination of the oscillation effects of ShdH
and dHvA in the conduction band, primarily we must
calculate the oscillations of the density of energy states in
quantizing magnetic field. We will consider a box with large
but finite sides 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 (themain area of the crystal) [9]. As
you can see from expressions (1), the second term is called the
energy of the electron motion in the plane 𝑥𝑦 and changing
discretely. Hence, the number of states per unit area in a
plane 𝑘𝑥𝑘𝑦 will be 𝐿𝑥𝐿𝑦/(2𝜋)2. That is, the number of states
between two quantum orbits equals

𝐿𝑥𝐿𝑦
(2𝜋)2Δ𝑆 =

𝑚𝜔𝑐2𝜋ℏ 𝐿𝑥𝐿𝑦. (5)

From (1) we obtained the following:

𝑘𝑧 = (2𝑚𝑛)
1/2

ℏ ⋅ √𝐸 − (𝐸𝑔 + ℏ𝜔𝑐 (𝑁 + 12)). (6)

Then

𝑘𝑧 = 2𝜋𝐿𝑧 𝑛𝑧. (7)

According to expressions (6) and (7) the number of states in
the energy range from (𝑁 + 1/2)ℏ𝜔𝑐 to 𝐸 is equal to

𝑛𝑧 = (2𝑚)1/2𝜋ℏ ⋅ √𝐸 − (𝐸𝑔 + ℏ𝜔𝑐 (𝑁 + 12)). (8)

Then the total number of quantum states with energies less
than 𝐸 is equal to

𝑁(𝐸) = 𝐿𝑥𝐿𝑦𝐿𝑧𝑚3/2𝜋2ℏ3 ℏ𝜔𝑐
⋅ 𝑁max∑
𝑁=0

(𝐸2 + 𝐸𝑔 (𝐸 − (𝑁 + 1/2) ℏ𝜔𝑐)𝐸𝑔 )
1/2

.
(9)

As a result, we determine the density of the energy states
in the presence of a magnetic field to the sample with a
parabolic dispersion law:

𝑁𝑆 (𝐸,𝐻) = 𝑑𝑁 (𝐸)𝑑𝐸
= (𝑚)3/2
(2)1/2 𝜋2ℏ3

ℏ𝜔𝑐2
𝑁max∑
𝑁=0

1
√𝐸 − (𝐸𝑔 + ℏ𝜔𝑐 (𝑁 + 1/2)) .

(10)

As is known, the band gap depends on the magnetic
field, temperature, and pressure. The dependence of the
semiconductor band gap at hydrostatic pressure changes as
follows [10, 11]:

𝐸𝑔 (𝑃) = 𝐸𝑔 (0) − 𝛽𝑃. (11)

Here, 𝛽 represented pressure coefficients, characterizing
the change in position of the edges of the valence band and
the conduction band with pressure.

The dependence of the Fermi level from pressure can be
written in the following form:

𝐸𝐹 (𝑃, 𝑇) = −𝐸𝑔 (𝑃)2 + 34𝑘𝑇 ln(
𝑚∗ℎ𝑚∗𝑒 ) . (12)

Then the derivative with respect to the energy from
Fermi-Dirac distribution function has the following form:

𝜕𝑓0 (𝐸, 𝐸𝐹 (𝑃, 𝑇) , 𝑇)𝜕𝐸 = − 1𝑘𝑇
exp ((𝐸 − (−𝐸𝑔 (𝑃) /2 + (3/4) 𝑘𝑇 ln (𝑚∗ℎ/𝑚∗𝑒 ))) /𝑘𝑇)

[1 + exp ((𝐸 − (−𝐸𝑔 (𝑃) /2 + (3/4) 𝑘𝑇 ln (𝑚∗ℎ/𝑚∗𝑒 ))) /𝑘𝑇)]2
. (13)

Thedependence of the effectivemass from the hydrostatic
pressure can be represented by the following expression [10,
11]:

𝑚∗𝑐 (𝑃) = 𝑚∗𝑐 (0) ⋅ (1 − Δ𝐸𝑔𝐸𝑔 (0)) = 𝑚
∗
𝑐 (0) ⋅ 𝐸𝑔 (𝑃)𝐸𝑔 (0) ; (14)

or cyclotron frequency depends on the pressure:

𝜔𝑐 (𝑃) = 𝑒𝐵𝑚∗𝑐 (𝑃) . (15)

3. Influence of Pressure on the
Oscillations Effects of ShdH and dHvA
in Semiconductors

It is known that in the case of the density of states Landau
quantization is a periodic function of the magnetic field.
This leads to oscillations ShdH and dHvA that are periodic
in the strong magnetic field. The relaxation time takes the
following form: 𝜏 = 𝜏0𝐸𝑟. The exponent 𝑟 has different values
for different scattering mechanisms. For example, in the case
of scattering by acoustic vibrations of impurity ions, the
exponent is equal to −1/2 and 3/2 [12]. Naturally, the effects
of oscillations ShdH and dHvA appear on the change in the
density of energy states in semiconductors. Hence, we define
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Figure 1: Comparison of oscillations effects of ShdH in Si at different
pressures.

the dependence of the oscillation effects of ShdH [9] and
dHvA [12] on the full pressure with the help of expressions
(10)–(15):

𝜎𝑧𝑧 (𝐵, 𝑇, 𝑃) = 𝐴 ⋅ ℏ𝜔𝑐 (𝑃)
⋅ ∫∞
ℏ𝜔
𝑐
(𝑃)
∑
𝑁

𝜏𝑁 (𝐸)
√𝐸 − (𝐸𝑔 (𝑃) + ℏ𝜔𝑐 (𝑃) (𝑁 + 1/2))

⋅ (−𝜕𝑓0 (𝐸, 𝐸𝐹 (𝑃, 𝑇) , 𝑇)𝜕𝐸 )𝑑𝐸,
(16)

and longitudinal resistance 𝜌𝑧𝑧(𝐵, 𝑇, 𝑃) = 1/𝜎𝑧𝑧(𝐵, 𝑇, 𝑃).
Here, 𝐴 = −(2𝑚)1/2𝑒2/𝜋2ℏ3.
𝜒 (𝐵, 𝑇, 𝑃)
= 2𝜇2𝐵 ∫∞

0
∑
𝑁

1
√𝐸 − (𝐸𝑔 (𝑃) + ℏ𝜔𝑐 (𝑃) (𝑁 + 1/2))

⋅ (−𝜕𝑓0 (𝐸, 𝐸𝐹 (𝑃, 𝑇) , 𝑇)𝜕𝐸 )𝑑𝐸.
(17)

Here, 𝜇𝐵 represents Bohr magneton. 𝜒 represents magnetic
susceptibility.

Now, we must determine the critical pressure (𝑃𝑘) in a
strong magnetic field. If the pressure is equal to or greater
than the critical value (𝑃 ≥ 𝑃𝑘), the Landau levels begin
to shift from the edges of the conduction band. For the
calculation of critical pressure, consider the simplest case:𝑁 = 0, (1/2)ℏ𝜔𝑐 − 𝛽𝑃𝑘 = 0, or 𝑃𝑘 = (1/2𝛽)ℏ𝜔𝑐. Consider
estimation for semiconductor Si: (𝛽 = −1,5 ⋅ 10−11 eV/Pa) at𝐵 = 2T (20 kGs) [10, 11]. 𝑃𝑘 = (1/2𝛽)ℏ𝜔𝑐 ≈ 2 ⋅ 108 Pa. This
means that, for Si, if the pressure of 𝑃 ≥ 2 ⋅ 108 Pa, it will
change shape oscillations ShdH and dHvA.

Now, we get the graphics effects oscillations ShdH and
dHvA by means of formulas (16) and (17). Figure 1 shows
the dependence of the oscillations effects of ShdH and dHvA
on the hydrostatic pressure in Si at low temperatures. As

0
1E80,6

2E81,4

0,8

1,2

1

P

3E8

1,2

1

1,4

0,8
B

4E8

1,6

0,6

1,8
2

5E80,4

Figure 2:The dependence of the longitudinal magnetoresistance on
hydrostatic pressure in Si.
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Figure 3: Influence of the hydrostatic pressure on the oscillations of
magnetosusceptibility in Si.

seen from these figures, with increasing pressure, the shape
of the Landau levels strongly changes. In Figures 2 and 3,
three-dimensional image oscillations ShdH and dHvA are
shown at different pressures in Si. With increasing pressure
to 5 ⋅ 108 Pa semiconductors Si was observed a decrease the
number of Landau levels oscillations ShdH and dHvA at 𝑇 =
5K. Figure 4 shows the oscillations of the longitudinal mag-
netoresistance in Si at different temperatures and pressures.
With increasing temperature, the pressure of the Landau
levels is noticeably reduced. From Figure 4 it is seen that
without pressure and at a temperature of 40K Landau levels
are manifested, but 𝑃 = 6 ⋅ 108 Pa and 𝑇 = 40K oscillations
disappear. Figure 5 shows the influence of pressure on the
temperature dependence of the oscillations ShdH in the
three-dimensional image.

4. Influence of Nonparabolicity Energy
Bands on the Oscillations Longitudinal
Magnetoresistance in Narrow-Gap
Semiconductors

The work of [4] investigated the oscillations longitudinal
magnetoresistance at hydrostatic pressures up to 1 GPa in
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Figure 4: Influence of pressure on the temperature dependence of the oscillations ShdH in Si.
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Figure 5: Temperature dependence of the oscillations ShdH in Si. (a) At no pressure; (b) at the pressure, 𝑃 = 6 ⋅ 108 Pa.

HgSe1−𝑥S𝑥. In this work, the quantum oscillations of ShdH
were observed at 𝑇 = 4.2 K. Figure 6 shows the oscillations
ShdH of pressure 𝑃 = 0,38GPa in the samples with 𝑥 = 0.104
[4]. In these semiconductors bandgap varies from 0.1 eV to
0.4 eV, for different values of 𝑥 [4, 13]. An important feature

of the semiconductor with a narrow band gap is a strong
nonparabolicity conduction band [13]. The limiting case of
Kane’s model is realized. The low value of the band gap
narrow-gap semiconductors leads to its stronger dependence
on pressure, temperature, and external fields. The work of
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Figure 6: Oscillations effects of ShdH in HgSe0.896S0.104 at 𝑇 = 4.2 K. (a) Experimental data [4]; (b) calculated from formula (19).

[14] obtained a formula for the density of energy states in
quantizing magnetic field with Kane dispersion law:

𝑁𝑛𝑆 (𝐸,𝐻)
= (𝑚)3/2
(2)1/2 𝜋2ℏ3

ℏ𝜔𝑐2
𝑁max∑
𝑁=0

2𝐸/𝐸𝑔 + 1
√𝐸2/𝐸𝑔 + 𝐸 − (𝑁 + 1/2) ℏ𝜔𝑐 .

(18)

Here, 𝑁𝑛𝑆 (𝐸,𝐻) refers to the density of energy states in
a quantizing magnetic field with Kane dispersion law. 𝐸𝑔
refers to band gap without pressure. 𝐸 represents energy free
electrons in the conduction band. Influence of pressure on
the oscillations effect of ShdH with the Kane dispersion law
according to formula (18) is determined from expression (16):

𝜎𝑛𝑧 (𝐵, 𝑃) = 𝐴 ⋅ ℏ𝜔𝑐 (𝑃)
⋅ ∫∞
ℏ𝜔
𝑐
(𝑃)
∑
𝑁

2𝐸/𝐸𝑔 (𝑃) + 1
√𝐸2/𝐸𝑔 (𝑃) + 𝐸 − (𝑁 + 1/2) ℏ𝜔𝑐 (𝑃)𝜏𝑁 (𝐸)

⋅ (−𝜕𝑓0 (𝐸)𝜕𝐸 )𝑑𝐸.
(19)

Here, 𝜎𝑛𝑧(𝐵, 𝑃) stands for longitudinal conductivity with a
nonparabolic dispersion law.

As a result, we obtain graph dependence of the effect
of oscillations ShdH on the pressure in HgSe1−𝑥S𝑥 with
nonquadratic dispersion law. Figure 6(b) shows oscillation
longitudinal resistance in HgSe0.896S0.104 at 𝑃 = 0,38GPa.
These figures show the oscillations effects of ShdH at low
constant temperatures. The working equation (19) makes it
possible to build charts oscillations ShdH of the sample at
different temperatures and pressures.

5. Conclusion

The influence of pressure and temperature on the oscillations
effects of ShdHanddHvA is considered in semiconductor. An
analytical expression for the longitudinal magnetoresistance
in semiconductors with Kane dispersion law for electrons is
obtained. The calculation results are compared with experi-
mental data. It is shown that the effect of pressure on the band

gap is manifested to oscillations and ShdH and dHvA effects
in semiconductors. The above results are valid when there
is not any Lifshitz transition or any other pressure-induced
phase transition.
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