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Planetary gearbox torsional vibration signals are free from the extra amplitude modulation effect due to time-varying transmission
paths and have simpler frequency structure than translational ones. Gear faults result in modulation on the torsional resonance
vibration and are manifested by the modulation feature. These merits are exploited for planetary gearbox fault diagnosis in this
paper. Gear fault induced torsional vibrations in resonance region aremodelled as amplitudemodulation and frequencymodulation
(AM-FM) processes, the explicit equation of Fourier spectrum is derived, and the sideband characteristics are summarized. To avoid
complex sideband analysis, amplitude and frequency demodulation analysis methods are exploited.The equations of amplitude and
frequency demodulated spectra are derived in closed form, and their frequency structures are revealed. For fault diagnosis based
on above theoretical derivations, a resonance frequency identification approach is proposed through time-frequency analysis of
torsional vibrations during variable speed processes, according to the independence nature of resonance frequency on running
conditions.The theoretical derivations and proposed approach are illustrated by numerical simulated signal analysis and are further
validated through dynamicsmodelling and lab experimental tests. Localized faults on the sun, planet, and ring gears are successfully
diagnosed.

1. Introduction

Planetary gearboxes are widely used in various types of
machines, such as wind turbines, helicopters, and trucks.
Once fault occurs in a planetary gearbox, itmay lead to reduc-
tion in transmission efficiency and even breakdown of the
entire drive train.Hence, fault diagnosis has great significance
to maintain reliable operation of planetary gearboxes [1, 2].

To date, researchers have made many important contri-
butions to planetary gearbox fault diagnosis, but they mainly
focus on translational vibration signals. To name a few, for
example, McFadden [3, 4] and Samuel and Pines [5], respec-
tively, proposed a vibration separation method of planet and
sun gears by generalizing the time domain averagingmethod.
Liang et al. [6] developed a signal decomposition technique
to extract the vibration signal corresponding to one tooth of a
planet gear for planet gear tooth crack detection. Barszcz and
Randall [7] applied spectral kurtosis to gear fault detection,

and they diagnosed the ring gear tooth crack in a wind
turbine planetary gearbox. Lei et al. [8] proposed an adaptive
stochastic resonance method to suppress noise interference
and enhance fault signature and applied it to weak fault
feature extraction of planetary gearboxes. Yoon et al. [9]
developed spectral averaging via enveloping and Welch’s
spectral averaging for planetary gearbox fault diagnosis.
These works have enriched our understanding on planetary
gearbox fault diagnosis.

Translational vibration signals are subject to extra ampli-
tude modulation (AM) effect caused by the planet carrier
rotation, and they exhibit intricate spectral structures. Trans-
lational vibration signals are usually measured by sensors
fixed on gearbox casing or bearing housing. The distance
from sun-planet and planet-ring gear meshing locations to
the sensor varies with the planet carrier rotation. This results
in a time variant vibration transfer path and thereby an extra
AM effect on translational vibrations. McFadden and Smith
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[10], McNames [11], and Mosher [12] found that the trans-
lational vibration signal spectrum of planetary gearboxes is
typically asymmetric due to the planet carrier rotation. The
spectral complexity leads to difficulty in planetary gearbox
fault diagnosis via translational vibration signal analysis.

Torsional vibration signals are free from the extra AM
effect due to the planet carrier rotation and show simpler
spectral structures than translational ones. Torsional vibra-
tion sensors are usually connected to the input or output shaft
of a gearbox, and the distance from sun-planet and planet-
ring gear meshing locations to the sensor is isotropic cir-
cumferentially. As such, the torsional vibration transfer paths
are time invariant, even though the sun-planet and planet-
ring gear meshing locations vary during gearbox running.
Inspired by this property, Feng and Zuo [13] exploited the
merit of torsional vibrations to avoid the intricate spectral
structure existing with translational vibrations and extracted
the sun, planet, and ring gear fault feature around gear
meshing frequency or its harmonics.

Gear fault information is not only carried by gearmeshing
vibrations, but also conveyed by resonances [14, 15]. Local-
ized defects on a gear tooth surface will generate sudden
changes in torque as it meshes with mating gears. These
sudden changes will further excite torsional resonances.
Torsional resonances vanish due to damping effect, but they
arise repetitively at the gear fault frequency during gearbox
running. In this sense, the resonance region contains gear
fault information. However, to our best knowledge, research
on planetary gearbox fault diagnosis via torsional vibration
signal analysis, particularly in the resonance region, has been
very limited.

In this paper, we propose to extract gear fault torsional
vibration signature in resonance region. To implement this
idea, we firstly identify the torsional resonance frequency via
time-frequency analysis of torsional vibration signals during
variable speed processes. This resonance frequency identifi-
cation method overcomes the difficulty in exciting torsional
resonances via traditional hammer impact technique. Then,
we extract gear fault features around the resonance frequency
via sideband analysis in Fourier spectrum, and amplitude and
frequency demodulation analysis. In summary, this proposed
methodology does not only offer an alternative solution
to avoid the complexity issue existing with translational
vibrations due to extra amplitude modulation effect by the
time-varying vibration propagation paths, but also provides
a new insight into gear fault induced torsional vibration
signatures.

Hereafter, this paper is organized as follows. Section 2
derives the explicit equations of Fourier spectrum, enve-
lope spectrum, and the Fourier spectrum of instantaneous
frequency in the resonance frequency region, respectively.
Section 3 introduces the resonance frequency identification
approach and the sensitive component separation method
and summarizes the analysis procedure as well. Section 4
illustrates the torsional resonance vibration characteristics
via a numerically simulated signal analysis. Sections 5 and 6
validate the proposed method via dynamics modelling data
of a planetary gear set and lab experimental signals of a
planetary gearbox. Section 7 draws conclusions.

2. Gear Fault Characteristics in Torsional
Resonance Region

In this section, we extract gear fault features in the torsional
resonance frequency region, instead of around gear meshing
frequency and its harmonics that are usually focused in con-
ventional methods. Therefore we derive explicit equations of
Fourier spectrum, envelope spectrum, and Fourier spectrum
of instantaneous frequency, for better understanding their
spectral structure.

2.1. Torsional Vibration Signal Model in Resonance Region.
Suppose we have a localized fault on the tooth surface of
sun, planet, or ring gear. Under constant speed operation, as
the fault area strikes mating gear teeth, sudden changes in
torque will be generated. Consequently, the repeating sudden
torque changes excite the torsional resonance of gear-shaft
system periodically. Such resonance vanishes rapidly due to
damping before the next resonance comes, resulting in the
AM phenomenon. Meanwhile, in one repeating cycle, the
resonance exists in the early portion and the instantaneous
frequency equals approximately the resonance frequency,
while in the later portion, the resonance vanishes due to
damping and the instantaneous frequency becomes 0. This
means the instantaneous frequency changes periodically,
resulting in frequency modulation (FM). Therefore, the
fault exciting torsional vibration signals around resonance
frequency can be modelled as an amplitude modulation and
frequency modulation (AM-FM) process, with the carrier
frequency equal to resonance frequencies and themodulating
frequency equal to the gear fault frequency harmonics.

Without loss of generality, we focus on one resonance
frequency 𝑓𝑛 and the fundamental gear fault frequency
𝑓𝑔 only. Then, the torsional vibration signal model in the
resonance region can be simplified as

𝑥 (𝑡) = [1 + 𝐴 cos (2𝜋𝑓𝑔𝑡 + 𝜙)]
⋅ cos [2𝜋𝑓𝑛𝑡 + 𝐵 sin (2𝜋𝑓g𝑡 + 𝜑) + 𝜃] ,

(1)

where 𝐴 > 0 and 𝐵 > 0 are the AM and FM magnitude,
respectively, and 𝜙, 𝜑, and 𝜃 are the initial phases.
2.2. Fourier Spectrum. According to the property of Bessel
functions [17],

exp [𝑗𝑧 sin (𝜃)] =
∞

∑
𝑚=−∞

𝐽𝑚 (𝑧) exp (𝑗𝑚𝜃) , (2)

where 𝐽𝑚(𝑧) is the first class of Bessel function with integer
order 𝑚 and argument 𝑧 and the identities of trigonometric
functions. Then, (1) can be rewritten as

𝑥 (𝑡) = [1 + 𝐴 cos (2𝜋𝑓g𝑡 + 𝜙)] ×
∞

∑
𝑚=−∞

𝐽𝑚 (𝐵)

⋅ cos [2𝜋 (𝑓𝑛 + 𝑚𝑓𝑔) 𝑡 + 𝑚𝜑 + 𝜃] =
∞

∑
𝑚=−∞

𝐽𝑚 (𝐵)
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⋅ cos [2𝜋 (𝑓𝑛 + 𝑚𝑓𝑔) 𝑡 + 𝑚𝜑 + 𝜃] + 𝐴
2
∞

∑
𝑚=−∞

𝐽𝑚 (𝐵)

⋅ cos {2𝜋 [𝑓𝑛 + (𝑚 + 1) 𝑓𝑔] 𝑡 + 𝑚𝜑 + 𝜃 + 𝜙} + 𝐴
2

⋅
∞

∑
𝑚=−∞

𝐽𝑚 (𝐵)

⋅ cos {2𝜋 [𝑓𝑛 + (𝑚 − 1) 𝑓𝑔] 𝑡 + 𝑚𝜑 + 𝜃 − 𝜙} .
(3)

Applying Fourier transform to (3) yields the Fourier
spectrum

𝑋(𝑓) =
∞

∑
𝑚=−∞

𝐽𝑚 (𝐵) 𝛿 [𝑓 − (𝑓𝑛 + 𝑚𝑓𝑔)]

⋅ exp [𝑗 (𝑚𝜑 + 𝜃)] + 𝐴
2
∞

∑
𝑚=−∞

𝐽𝑚 (𝐵)

⋅ 𝛿 {𝑓 − [𝑓𝑛 + (𝑚 + 1) 𝑓𝑔]} exp [𝑗 (𝑚𝜑 + 𝜃 + 𝜙)]

+ 𝐴
2
∞

∑
𝑚=−∞

𝐽𝑚 (𝐵) 𝛿 {𝑓 − [𝑓𝑛 + (𝑚 − 1) 𝑓𝑔]}

⋅ exp [𝑗 (𝑚𝜑 + 𝜃 − 𝜙)] ,

(4)

where 𝛿(⋅) denotes the Dirac delta function.
According to (4), peaks appear in the Fourier spectrum

at frequency locations𝑓𝑛±𝑚𝑓𝑔.They form sidebands around
the resonance frequency 𝑓𝑛, with a sideband spacing equal
to the gear fault frequency 𝑓𝑔. Based on such characteristics,
we can diagnose gear fault according to the presence of
sidebands or changes in their magnitudes, and particularly
the associated sideband spacing, in the resonance frequency
region.

2.3. Envelope Spectrum. For the signalmodel (1), the AMpart

𝑒 (𝑡) = 1 + 𝐴 cos (2𝜋𝑓𝑔𝑡 + 𝜙) (5)

contains gear fault information, because its modulating fre-
quency equals the gear fault frequency 𝑓𝑔. This motivates
us to reveal gear fault signature via amplitude demodulation
analysis.

Applying Fourier transform to (5) yields the envelope
spectrum

𝐸 (𝑓) = 𝛿 (𝑓) + 𝐴𝛿 (𝑓 − 𝑓𝑔) exp (𝑗𝜙) . (6)

According to (6), in the envelope spectrum, peak appears
at the gear fault frequency 𝑓𝑔 only. If we consider higher
order harmonics of amplitudemodulating frequencies, peaks
will also appear at the gear fault frequency harmonics 𝑘𝑓𝑔.
Therefore, we can detect gear fault according to the existence
of gear fault frequency harmonics 𝑘𝑓𝑔 or increase in their
magnitudes in the envelope spectrum.

2.4. Fourier Spectrum of Instantaneous Frequency. According
to the signal model (1), the FM part also contains gear fault
information, since its modulating frequency is the gear fault
frequency. Hence, we can detect gear fault via frequency
demodulation analysis.

For the signal model, given in (1), its instantaneous phase
is

𝛼 (𝑡) = 2𝜋𝑓𝑛𝑡 + 𝐵 sin (2𝜋𝑓𝑔𝑡 + 𝜑) + 𝜃. (7)

The instantaneous frequency can be derived as a deriva-
tive of the instantaneous phase 𝛼(𝑡) with respect to time 𝑡:

𝑓 (𝑡) = 1
2𝜋

𝑑𝛼 (𝑡)
𝑑𝑡 = 𝑓𝑛 + 𝐵𝑓𝑔 cos (2𝜋𝑓𝑔𝑡 + 𝜑) . (8)

Applying Fourier transform to (8) yields the Fourier
spectrum of instantaneous frequency

𝐹 (𝑓) = 𝑓𝑛𝛿 (𝑓) + 𝐵𝑓𝑔𝛿 (𝑓 − 𝑓𝑔) exp (𝑗𝜑) . (9)

Equation (9) implies that peaks appear at the gear fault
frequency 𝑓𝑔 in addition to 0, in the Fourier spectrum of
instantaneous frequency. If we consider higher harmonics
of the frequency modulating frequency, peaks will also
exist at the gear fault frequency harmonics 𝑘𝑓𝑔. Based on
such features, we can detect gear fault according to the
frequency locations of peaks present in the Fourier spectrum
of instantaneous frequency.

3. Analysis Procedure

Figure 1 shows the flowchart of our proposed analysis
method. Firstly, we identify the torsional resonance fre-
quency via time-frequency analysis of torsional vibration
signals during variable speed processes (to be explained
in Section 3.1). Then, we extract gear fault symptoms by
sideband analysis around the resonance frequency in Fourier
spectrum. Next, we separate the resonance component via
bandpass filtering around the resonance frequency and dis-
cern gear fault signature in its envelope spectrum.We further
decompose the filtered resonance component into mono-
components via ensemble empirical mode decomposition
(EEMD), choose a sensitive monocomponent (to be intro-
duced in Section 3.2), and pinpoint gear fault information
from the Fourier spectrum of its instantaneous frequency.
Finally, we diagnose gear fault by combining the findings
from sideband analysis in Fourier spectrum, and amplitude
and frequency demodulation analyses.

3.1. Torsional Resonance Frequency Identification. To extract
gear fault signatures around torsional resonance frequency,
it is necessary to identify the resonance frequency first.
Hammer impact technique is commonly used in translational
resonance identification. However, it is difficult to apply
an impact to a gear-shaft torsional vibration system. To
overcome this difficulty, we exploit the independence nature
of resonance frequency on running conditions, particularly
the running speed, and propose a resonance frequency
identification approach via time-frequency analysis.
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Torsional resonance frequency identi�cation via time-frequency analysis under variable speeds

Torsional vibration signals under constant speeds

Torsional resonance component separation via bandpass �ltration

Fourier spectrum Amplitude envelope estimation
via Hilbert transform

Monocomponent
decomposition via EEMD

Sideband analysis around
resonance frequency

Envelope spectrum Instantaneous frequency
estimation via Hilbert transform

Sensitive IMF selection by
instantaneous frequencyPeak frequency identi�cation

Fourier spectrum of sensitive
IMF instantaneous frequency

Peak frequency identi�cation

Figure 1: Analysis flowchart.

Gear meshing and resonance vibrations are major com-
ponents of gearbox vibrations, but they exhibit distinct
behavior during variable speed conditions. Gear meshing
vibrations are manifested by meshing frequency harmonics
and associated sidebands with spacing equal to gear char-
acteristic frequencies. These frequencies are proportional to
the gearbox running speed. During variable speed processes,
they follow the time-varying speed profile and change over
time. For resonance vibrations, during gearbox running,
sudden changes in meshing stiffness, due to gear fault
and/or alternation in number of engaging gear pairs, generate
impulses in load torque and further excite torsional res-
onance vibrations. Resonance frequencies are independent
on running conditions, thus being time invariant during
variable speed processes. Therefore, resonance frequencies
show up as constant ones on time-frequency plane, which
are parallel to the time axis but vertical to the frequency
axis. On the contrary, gearmeshing frequency harmonics and
associated sidebands emerge as curves on time-frequency
plane. According to this property, resonance frequencies can
be discriminated from gear meshing frequency harmonics
and associated sidebands and can be recognized as constant
frequencies on time-frequency plane. Furthermore, gear fault
feature can be extracted in the resonance region via sideband,
amplitude, and frequency demodulation analyses.

3.2. Sensitive Component Separation. For amplitude demod-
ulation analysis, it is necessary to separate the signal compo-
nent of interest before envelope spectrum analysis. Because
gear fault induced torsional vibration rides on the resonance
frequency, we separate the resonance vibration component
of interest using a band pass filter centered around the

resonance frequency, to avoid interferences from other com-
ponents.

For frequency demodulation analysis, instantaneous fre-
quency estimation requires the signal to bemonocomponent.
To satisfy this requirement, we further decompose the filtered
resonance component into monocomponent intrinsic mode
functions (IMFs) via ensemble empirical mode decompo-
sition (EEMD) by exploiting its capability to decompose
multicomponent signal into constituent monocomponents
[18]. Among the obtained IMFs, we choose the earliest
IMF with an instantaneous frequency fluctuating around
the resonance frequency for further frequency demodulation
analysis, because (1) EEMD extracts IMFs in an order
from higher to lower frequency [18, 19], (2) impulsive gear
fault vibrations have significant features in higher frequency
band, and (3) the signal carrier frequency is the resonance
frequency.

4. Numerical Simulation

In this section, we illustrate the above theoretical derivations
via a numerical simulated signal analysis. Considering the
gear fault impulsive vibration nature in resonance region, we
generate a numerical simulated signal as a series of damped
sinusoids

𝑥 (𝑡) =
𝑀

∑
𝑚=1

𝐴𝑚 exp [−2𝜋𝜁𝑓𝑛 (𝑡 − 𝑚𝑇)]

⋅ sin [2𝜋𝑓𝑛 (𝑡 − 𝑚𝑇)] 𝑢 (𝑡 − 𝑚𝑇) + 𝑛 (𝑡) ,
(10)

where the amplitude 𝐴𝑚 = 1.5, the damping ratio 𝜁 = 0.15,
the natural (resonance) frequency 𝑓𝑛 = 6550Hz, the period
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Figure 2: Simulated signal analysis: (a) signal waveform, (b) Fourier spectrum, (c) envelop spectrum, (d) IMFs, (e) instantaneous frequencies
of IMFs, and (f) Fourier spectrum of instantaneous frequency.

of repeating impulses 𝑇 = 0.0164 s, accordingly the gear fault
frequency 𝑓𝑔 = 1/𝑇 = 61Hz, 𝑢(𝑡) is a unit step function, and
𝑛(𝑡) is a Gaussian white noise at a signal to noise ratio of 10 dB
to simulate background noise.

Figures 2(a) and 2(b) show the simulated signal wave-
form and its Fourier spectrum, respectively. In the Fourier
spectrum, peaks appear around the resonance frequency 𝑓𝑛,
and their frequency locations correspond to the resonance
frequency plus or minus the gear fault frequency harmonics

𝑓𝑛 ± 𝑘𝑓𝑔, 𝑘 = 1, 2, . . .. These peaks form sidebands with a
regular spacing equal to the gear fault frequency 𝑓𝑔. This
behavior is consistent with the theoretical expectation from
equation (4).

To avoid intricate sideband analysis, amplitude demod-
ulation analysis is conducted. Since the simulated signal is
mainly composed of resonance, bandpass filtration is omitted
here. Figure 2(c) displays the envelope spectrum. The gear
fault frequency harmonics 𝑘𝑓𝑔 (where 𝑘 = 1, 2, . . .) are
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Figure 3: Dynamic model of a planetary gear set [16].

Table 1: Planetary gear set configuration.

Parameter Sun Planet Ring Planet carrier
Number of teeth 19 31 (4) 81 —
Module (mm) 3.2 3.2 3.2 —
Pressure angle (∘) 20 20 20 —
Face width (m) 0.0381 0.0381 0.0381 —
Young’s modulus (Pa) 2.068 × 1011 2.068 × 1011 2.068 × 1011 2.068 × 1011

Poisson’s ratio 0.3 0.3 0.3 0.3
Mass (kg) 0.7000 1.8220 5.9820 4.5000
𝐽/𝑟2 (kg) 0.5292 1.2732 7.5923 3.0000
Base circle radius (m) 0.0283 0.0462 0.1208 0.0745
Stiffness (N/m2) 𝑘𝑐 = 𝑘𝑠 = 𝑘𝑝 = 𝑘𝑟 = 1 × 109, 𝑘𝑡𝑐 = 𝑘𝑡𝑠 = 𝑘𝑡𝑝 = 0, 𝑘𝑡𝑟 = 1 × 1010
Note. Number of planets in parenthesis.

dominant. They directly link to the gear fault signature, in
accordance with the theoretical derivation from (6).

To avoid intricate sideband analysis in Fourier spectrum,
frequency demodulation analysis is also carried out. The
simulated signal is decomposed into a number of IMFs
through EEMD. In EEMD, the added noise amplitude is set
to 0.02, and the ensemble number is set to 100 according to
the suggestion in [19]. Figures 2(d) and 2(e) show the first
three IMFs and their instantaneous frequencies, respectively.
According to the proposed sensitive IMF selection criterion
in Section 3.2, IMF1 is treated as the sensitive component
for further analysis, since its instantaneous frequency fluc-
tuates around the resonance frequency 6550Hz. Figure 2(e)

presents the Fourier spectrum of sensitive IMF1 instanta-
neous frequency. Prominent peaks appear at the gear fault
frequency harmonics 𝑘𝑓𝑔, 𝑘 = 1, 2, . . ., directly relating
to the gear fault. This feature complies with the theoretical
derivation from (9).

5. Dynamics Simulation

In this section, we validate the theoretical derivations of gear
fault signature in torsional resonance region using dynamics
modelling and simulation data of a planetary gear set [16].

5.1. Gear Configuration and Dynamics Simulation. Table 1
lists a single stage planetary gear set configuration, where 𝐽 is
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Table 2: Characteristic frequencies (Hz).

Meshing frequency Rotating frequency Fault frequency
Sun Planet carrier Planet Sun Ring

11.97 0.7778 0.1478 0.3861 0.7722 2.52 0.5912

Root
circle

Base
circle

Straight
line

Figure 4: Simulated crack on sun gear tooth.

the polar moment of inertia,𝐾 is the linear stiffness in lateral
directions (perpendicular to the shaft axis),𝐾𝑡 is the torsional
stiffness, and subscripts 𝑐, 𝑟, 𝑝, and 𝑠 denote planet carrier,
ring, planet, and sun gear, respectively.

Figure 3 shows the dynamic model of a planetary gear
at the initial time (time zero). Using the same method of
dynamics modelling and simulation, in accordance with the
theoretical derivation from (11), as in [16], the first torsional
resonance frequency of this planetary gear set is calculated
as 𝑓𝑛 = 3542.7Hz. To simulate gear crack fault, a crack of
length 3.9mm along the straight dotted line is introduced
to one of the sun gear teeth, as shown in Figure 4. The
sun gear rotating frequency is set to 0.7778Hz. Torsional
vibrations are generated and sampled at 10000Hz. Given the
gear configuration and running speed, the planetary gear set
characteristic frequencies can be calculated [20, 21], as listed
in Table 2.

Equations of motion for the sun gear are

𝑚𝑠�̈�𝑠 + 𝑐𝑠𝑥�̇�𝑠 + 𝑘𝑠𝑥𝑥𝑠 +∑𝐹𝑠𝑝𝑛 cos𝜓𝑠𝑛
= 𝑚𝑠𝑥𝑠Ω2 + 2𝑚𝑠 ̇𝑦𝑠Ω + 𝑚𝑠𝑦𝑠Ω̇,

𝑚𝑠 ̈𝑦𝑠 + 𝑐𝑠𝑦 ̇𝑦𝑠 + 𝑘𝑠𝑦𝑦𝑠 +∑𝐹𝑠𝑝𝑛 sin𝜓𝑠𝑛
= 𝑚𝑠𝑦𝑠Ω2 − 2𝑚𝑠�̇�𝑠Ω − 𝑚𝑠𝑥𝑠Ω̇,

𝑚𝑠 ̈𝑦𝑠 + 𝑐𝑠𝑦 ̇𝑦𝑠 + 𝑘𝑠𝑦𝑦𝑠 +∑𝐹𝑠𝑝𝑛 sin𝜓𝑠𝑛
= 𝑚𝑠𝑦𝑠Ω2 − 2𝑚𝑠�̇�𝑠Ω − 𝑚𝑠𝑥𝑠Ω̇,

(𝐽𝑠𝑟𝑠)
̈𝜃𝑠 +∑𝐹𝑠𝑝𝑛 = 𝑇𝑖

𝑟𝑠 ,

(11)

where 𝑚, 𝑐, 𝑘 denote mass of sun gear, damping coefficient,
and stiffness of sun gear bearing; 𝑥 and 𝑦 denote the 𝑥-
direction and 𝑦-direction displacement of the sun gear; 𝜓𝑛 is

circumferential angle of 𝑛th planet;Ω is rotation speed of the
carrier; 𝐽𝑠 and 𝑟𝑠 are mass moment of inertia and base circle
radius of the sun gear;𝑇𝑖 denotes input torque on the sun gear;𝐹𝑠𝑝𝑛 represents the dynamic force of the 𝑛th sun-planet gear
mesh:

𝐹𝑠𝑝𝑛 = 𝑘𝑠𝑝𝑛𝛿𝑠𝑝𝑛 + 𝑐𝑠𝑝𝑛 ̇𝛿𝑠𝑝𝑛,
𝛿𝑠𝑝𝑛 = (𝑥𝑠 − 𝑥𝑝𝑛) cos𝜓𝑠𝑛 + (𝑦𝑠 − 𝑦𝑝𝑛) sin𝜓𝑠𝑛 + 𝑟𝑠𝜃𝑠

+ 𝑟𝑝𝑛𝜃𝑝𝑛 − 𝑟𝑐𝜃𝑐 cos𝛼,
𝜓𝑠𝑛 = 𝜋

2 − 𝛼 + 𝜓𝑛,

𝜓𝑛 = 2 (𝑛 − 1) 𝜋
𝑛 ,

(12)

where 𝛼 is pressure angle of gear pairs, 𝛿 is relative displace-
ment on the lines of action, and 𝜃 is angular displacement.

5.2. Signal Analysis. Figure 5 shows the signal analysis result.
In the Fourier spectrum, Figure 5(b), we concentrate on the
resonance region around 𝑓𝑛 = 3542.7Hz to extract gear fault
signature through sideband analysis. In addition to those at
𝑓𝑛−3𝑓𝑠+4𝑓𝑐 and𝑓𝑛−5𝑓𝑠+4𝑓𝑐, most peaks appear at𝑓𝑛±𝑘𝑓𝑠,
and they form sidebands with a regular spacing equal to the
sun gear fault frequency𝑓𝑠. To separate the resonance compo-
nent for further demodulation analysis, the raw signal is band
pass filtered around the resonance frequency 𝑓𝑛 = 3542.7Hz
with a bandwidth of 300Hz. Figure 5(c) displays the envelope
spectrum. Most of dominant peaks correspond to the sun
gear fault frequency harmonics 𝑘𝑓𝑠, besides 5𝑓𝑠 − 4𝑓𝑐 and10𝑓𝑠 − 4𝑓𝑐. Several IMFs are generated through EEMD of
the separated resonance component. In EEMD, the added
noise amplitude is set to 0.02, and the ensemble number is
set to 100, following the suggestion in [19]. Among them,
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Figure 5: Dynamics modelling signal analysis: (a) torsional vibration signal, (b) Fourier spectrum, (c) envelop spectrum, (d) IMFs, (e)
instantaneous frequencies of IMFs, and (f) Fourier spectrum of instantaneous frequency.

IMF1 has an instantaneous frequency fluctuating around the
resonance frequency 𝑓𝑛 = 3542.7Hz and hence is selected
for frequency demodulation analysis. Figure 5(f) shows the
Fourier spectrumof IMF1 instantaneous frequency.Although
the sun gear fault frequency harmonics plus or minus
four times the planet carrier rotating frequency 𝑘𝑓𝑠 ± 4𝑓𝑐

dominate, the sun gear fault frequency harmonics 𝑘𝑓𝑠 also
have prominent magnitudes. In the above Fourier spectrum,
and amplitude and frequency demodulated spectra, all the
peaks relate to the sun gear fault frequency 𝑓𝑠. These findings
imply the sun gear fault, in accordance with actual settings in
dynamics modelling.
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(1) (4) (5) (6)(3)(2)

Figure 6: Planetary gearbox test rig: (1) drive motor, (2) signal conditioner, (3) torque-speed transducer, (4) planetary gearbox, (5) signal
collector, and (6)magnetic powder brake.

(a)

(b)

(c)

Figure 7: Localized fault on (a) sun, (b) planet, and (c) ring gear.
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Figure 8: Resonance frequency identification: (a) drive motor speed, (b) detrended torsional vibration signal, and (c) reassigned Morlet
scalogram.

Table 3: Gear configuration parameters.

Gear Sun Planet Ring
Number of gear teeth 13 38 (3) 92
Note. Number of planet gears in parentheses.

6. Experimental Validation

In this section, we validate the proposed idea using lab
experimental signals of a planetary gearbox under healthy
and faulty gear conditions, respectively.

6.1. Experimental Setting. Figure 6 shows the planetary gear-
box test rig. Table 3 lists the gearbox configuration param-
eters. The planetary gearbox is driven by a drive motor
through the sun gear shaft, and a load of 25 lb⋅in is applied
by a magnetic powder brake via the planet carrier shaft. A
speed-torque transducer is installed between the drive motor
and the planetary gearbox. The torque sensor we used is an
integrated sensor, and its output is torsional vibration signal
only. During experiments, the torque (torsional vibration)
and speed are collected at 20480Hz.

To simulate localized gear fault, one tooth of the sun,
one planet, and ring gear are locally chipped, respectively, as

shown in Figure 7. Four types of tests are conducted: baseline
casewhen all gears are healthy and faulty sun, planet, and ring
gear case when the sun, one planet, and the ring gear alone
are locally chipped, respectively. For each case, two running
speed conditions are set. One is a constant speed condition
to be used for fault feature extraction, when the drive motor
speed is set to 23.5Hz.The other is a variable speed condition
for resonance frequency identification, when the drive motor
speeds up linearly.

Given the gearbox configuration parameters and running
speed, gear characteristic frequency can be calculated [20, 21],
as listed in Table 4.

6.2. Signal Analysis. In this section, we firstly identify the
resonance frequency via time-frequency analysis of torsional
vibration signals during speed-up processes.Then, we extract
gear fault signature through sideband analysis in Fourier
spectrum within resonance region, and amplitude and fre-
quency demodulation analysis of sensitive resonance compo-
nent. For demodulation analysis, we separate the component
of interest using a bandpass filter with a center frequency
equal to the identified resonance frequency and a bandwidth
of 200Hz. In EEMD, the added noise amplitude is set to 0.02,
and the ensemble number is 100 according to the suggestion
in [19].
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Figure 9: Baseline signal analysis: (a) detrended torsional vibration signal, (b) Fourier spectrum, (c) envelop spectrum, (d) IMFs, (e)
instantaneous frequencies of IMFs, and (f) Fourier spectrum of instantaneous frequency.

Table 4: Gearbox characteristic frequencies (Hz).

Meshing frequency Rotating frequency Fault frequency
Sun gear Planet carrier Sun gear Planet gear Ring gear

267.676 23.5 2.91 61.77 7.044 8.73
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Figure 10: Resonance frequency identification: (a) drive motor speed, (b) detrended torsional vibration signal, and (c) reassigned Morlet
scalogram.

6.2.1. Baseline. In the baseline case, a speed-up test is
conducted for resonance frequency identification via time-
frequency analysis. The drive motor speeds up from 5Hz
to 15Hz in 10 seconds approximately. Figures 8(a), 8(b),
and 8(c) show the speed, torsional vibration signal, and
its reassigned Morlet scalogram, respectively. In Figure 8(c),
within the frequency band [6400, 6600]Hz, the dominant
frequency is constant and corresponds to 6518Hz. Other
frequencies change over time. The frequencies higher than
6518Hz increase in direct proportionality to the variable
speed, while those lower than 6518Hz decrease in inverse
proportionality to the variable speed. They form a dispersive
sideband structure symmetric about 6518Hz, as indicated by
red dash lines. According to this feature, 6518Hz is treated as a
resonance frequency for further sideband analysis in Fourier
spectrum, and amplitude and frequency demodulation anal-
ysis under constant speed conditions.

Figures 9(a) and 9(b) show the torsional vibration signal
and its Fourier spectrum under constant speed. In Fourier
spectrum, sidebands appear around the resonance frequency,
such as the resonance frequency plus or minus the planet
carrier and sun gear rotating frequency harmonics 𝑓𝑛 ± 𝑘𝑓𝑐,𝑓𝑛 ±𝑙𝑓(𝑟)𝑠 , where 𝑘, 𝑙 = 1, 2, . . ..This does not indicate any gear
fault, because gearbox manufacturing or assembling errors
will generate torque fluctuation at the sun gear and planet
carrier shaft rotating frequencies, resulting in presence of the
sidebands.

For amplitude demodulation analysis, we separate the
component of interest using a bandpass filter. Figure 9(c)
displays the envelope spectrum of separated resonance com-
ponent. Prominent peaks exist at the planet carrier rotating
frequency harmonics 𝑘𝑓𝑐, the sun gear rotating frequency
harmonics 𝑙𝑓(𝑟)𝑠 , and their combinations 𝑙𝑓(𝑟)𝑠 ± 𝑘𝑓𝑐, such as
4𝑓𝑐, 2𝑓(𝑟)𝑠 , 3𝑓(𝑟)𝑠 , 6𝑓(𝑟)𝑠 , and 4𝑓(𝑟)𝑠 +2𝑓𝑐. For frequency demod-
ulation analysis, we decompose the separated resonance
component via EEMD and calculate their instantaneous
frequencies, as shown in Figures 9(d) and 9(e). According
to the sensitive IMF selection criterion, we choose IMF1 for
further analysis, since its instantaneous frequency fluctuates
around the resonance frequency. Figure 9(f) presents the
frequency demodulated spectra. Peaks emerge at the sun gear
rotating frequency harmonics 𝑙𝑓(𝑟)𝑠 , their combinations with
the planet carrier rotating frequency harmonics 𝑙𝑓(𝑟)𝑠 ± 𝑘𝑓𝑐,
such as (1, 2, 3, 6)𝑓(𝑟)𝑠 , 2𝑓(𝑟)𝑠 − 𝑓𝑐, 2𝑓(𝑟)𝑠 + 3𝑓𝑐, 3𝑓(𝑟)𝑠 − 2𝑓𝑐, and3𝑓(𝑟)𝑠 + 2𝑓𝑐. In both amplitude and frequency demodulated
spectra, the peaks do not link to any gear fault frequency or
their harmonics. As such, they do not imply fault existence
on any gear.

6.2.2. Sun Gear Fault. Figure 10 shows the time-frequency
analysis result of torsional vibration signal during a speed-
up process under sun gear fault. In this case, the resonance
frequency is identified as 6514Hz, according to its time
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Figure 11: Sun gear fault signal analysis: (a) detrended torsional vibration signal, (b) Fourier spectrum, (c) envelop spectrum, (d) IMFs, (e)
instantaneous frequencies of IMFs, and (f) Fourier spectrum of instantaneous frequency.

invariant nature under variable speeds; see Figure 10(c). The
identified resonance frequency differs somewhat from that in
the baseline case, since the gearbox dynamic property might
change after replacing a gear.

Figure 11 displays the Fourier spectrum, and amplitude
and frequency demodulation analysis results. In the Fourier

spectrum, Figure 11(b), in addition to the sidebands cor-
responding to the sun gear rotating frequency 𝑓𝑛 ± 𝑙𝑓(𝑟)𝑠 ,
𝑙 = 1, 2, . . ., new sidebands emerge. They correspond to
the resonance frequency plus or minus the sun gear fault
frequency 𝑓𝑛 ± 𝑓𝑠, and the resonance frequency plus or
minus combination (sum or difference) of the sun gear
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Figure 12: Resonance frequency identification: (a) drive motor speed, (b) detrended torsional vibration signal, and (c) reassigned Morlet
scalogram.

fault frequency and three times the planet carrier rotat-
ing frequency 𝑓𝑛 ± 𝑓𝑠 ± 3𝑓𝑐. The expressions in these
new sidebands all have a common term equal to the sun
gear fault frequency, indicating existence of the sun gear
fault.

In the envelope spectrum of filtered resonance com-
ponent, the sun gear rotating frequency and the planet
carrier rotating frequency harmonics still exist. Moreover,
pronounced peaks also appear at 1/3 harmonics of the sun
fault frequency plus or minus the planet carrier rotating
frequency harmonics 1/3𝑛𝑓𝑠±𝑘𝑓𝑐. In the Fourier spectrum of
sensitive IMF1 instantaneous frequency, Figure 11(f), the sun
gear rotating frequency and its harmonics 𝑙𝑓(𝑟)𝑠 , 𝑙 = 1, 2, . . .,
also show up. Meanwhile, prominent peaks appear at the sun
gear fault frequency and its harmonics (such as 𝑓𝑠 and 2𝑓𝑠),
as well as 1/3 harmonics of the sun fault frequency plus or
minus the planet carrier rotating frequency harmonics (e.g.,
4/3𝑓𝑠+3𝑓𝑐, 5/3𝑓𝑠+2𝑓𝑐, 2𝑓𝑠−2𝑓𝑐, and 2𝑓𝑠+2𝑓𝑐).These peaks
are higher than those of the baseline signal, and they relate
to the sun gear fault frequency, indicating the sun gear fault.
Due to manufacturing error, planet gears are not perfectly
identical. When they mesh with the faulty sun gear tooth,
the generated fault impulses differ among planet gears. In this
case, the sun gear fault frequency can bemodified by dividing
by the number of planet gears 3. This is why 1/3 harmonics of
the sun fault frequency are present.

6.2.3. Planet Gear Fault. In this case, the resonance frequency
is recognized as 6520Hz; see the time-frequency analysis
of torsional vibration signal during a speed-up process,
Figure 12(c).

The sideband around the resonance frequency in Fourier
spectrum is exhibited in Figure 13(b). In addition to the
sidebands related to the sun gear rotating frequency𝑓𝑛±𝑙𝑓(𝑟)𝑠 ,
𝑙 = 1, 2, . . ., prominent peaks exist at the resonance frequency
plus orminus the planet gear fault frequency harmonics, such
as 𝑓𝑛 − 6𝑓𝑝, 𝑓𝑛 + 3𝑓𝑝, and 𝑓𝑛 ± 𝑛𝑓𝑝, 𝑛 = 1, 2, . . ..

In the envelope spectrum of filtered resonance compo-
nent, Figure 13(c), the planet gear fault frequency harmonics
𝑛𝑓𝑝 (e.g., 2𝑓𝑝 and 4𝑓𝑝) and their sum or difference combi-
nation with the planet carrier rotating frequency harmonics
𝑛𝑓𝑝 ± 𝑘𝑓𝑐 are present. In the Fourier spectrum of sensitive
IMF1 instantaneous frequency, Figure 13(f), although the sun
gear rotating frequency 𝑓(𝑟)𝑠 is dominant, prominent peaks
emerge at the planet fault frequency harmonics 𝑛𝑓𝑝, and
their sum or difference combinations with the planet carrier
rotating frequency harmonics 𝑛𝑓𝑝 ± 𝑘𝑓𝑐. These peaks in both
amplitude and frequency demodulation spectra relate to the
planet gear fault frequency, and they are higher than the
baseline signal, implying fault existence on one planet gear.

6.2.4. Ring Gear Fault. In this case, the resonance frequency
is discerned as 𝑓𝑛 = 6512Hz, through the time-frequency
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Figure 13: Planet gear fault signal analysis: (a) detrended torsional vibration signal, (b) Fourier spectrum, (c) envelop spectrum, (d) IMFs,
(e) instantaneous frequencies of IMFs, and (f) Fourier spectrum of instantaneous frequency.

analysis of torsional vibration signal during a speed-up
process; see Figure 14(c).

In the Fourier spectrum around the resonance frequency
𝑓𝑛 = 6512Hz, Figure 15(b), sidebands relevant to the ring
gear fault frequency 𝑓𝑟 or its 1/3 harmonics 1/3𝑓𝑟 show up
(such as 𝑓𝑛 ± 4𝑓𝑟, 𝑓𝑛 ± 19/3𝑓𝑟, and 𝑓𝑛 − 7𝑓𝑟,), in addition
to those associated with the sun gear rotating frequency.

In the envelope spectrum of filtered resonance component,
Figure 15(c), dominant peaks appear at 1/3 harmonics of ring
gear fault frequency 1/3𝑛𝑓𝑟, 𝑛 = 1, 2, . . .. In the Fourier spec-
trum of sensitive IMF1 instantaneous frequency, Figure 15(f),
except the dominant peaks at three times the planet gear
fault frequency 3𝑓𝑝 and the sun gear rotating frequency
𝑓(𝑟)𝑠 , all the prominent peaks correspond to 1/3 harmonics
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Figure 14: Resonance frequency identification: (a) drive motor speed, (b) detrended torsional vibration signal, and (c) reassigned Morlet
scalogram.

of the ring gear fault frequency 1/3𝑛𝑓𝑟. The presence of 1/3
harmonics of the ring gear fault frequency is reasonable,
because of nonidentical planet gears. In Fourier spectrum,
and amplitude and frequency demodulation spectra, all the
peaks related to the ring gear fault frequency are higher
than the baseline signal. This feature implies the ring gear
fault.

The above analyses illustrate the effectiveness of our
proposed approach in diagnosing planetary gearbox faults via
torsional vibration signal analysis in resonance region.

7. Conclusions

Torsional vibration signals are free from the additional
amplitude modulation effect due to time-varying vibration
transmission paths, and they have simpler spectral structure
than translational vibration signals, being able to reflect
gear fault more effectively. Localized gear faults generate
impulses in load torque, thus exciting torsional resonance
vibrations and leading to modulation effect on resonance
vibration. Therefore, torsional vibration in resonance region
can be modelled as an AM-FM process. Its Fourier spec-
trum, and amplitude and frequency demodulated spectra
are derived explicitly. In Fourier spectrum, the sideband
around resonance frequency has a spacing equal to gear fault
frequency. In both amplitude and frequency demodulated

spectra, peaks directly link to gear fault frequency harmonics.
For fault diagnosis based on above theoretical derivations,
a torsional resonance frequency identification method via
time-frequency analysis of torsional vibration signals dur-
ing variable speed process is proposed, by exploiting the
independence nature of resonance on running speed. The
resonance frequency can be recognized as the frequency
corresponding to a straight line parallel to the time axis on the
time-frequency plane. Given the resonance frequency, gear
fault can be diagnosed by sideband analysis, and amplitude
and frequency demodulation analysis of the sensitive com-
ponent in resonance region. The theoretical derivations and
proposed approach are illustrated by a numerical simulation
and are validated with both dynamics modelling data of a
planetary gear set and lab experimental signals of a planetary
gearbox.
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Figure 15: Ring gear fault signal analysis: (a) detrended torsional vibration signal, (b) Fourier spectrum, (c) envelop spectrum, (d) IMFs, (e)
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