
Scheduling and Partitioning for Multiple Loop Nests�

Zhong Wang
Dept of Comp Sci & Engr
University of Notre Dame

Notre Dame, IN 46556

zwang1@cse.nd.edu

Qingfeng Zhuge
Department of Comp Sci

University of Texas at Dallas
Richardson, TX 75083

qfzhuge@utdallas.edu

Edwin H.-M. Sha
Department of Comp Sci

University of Texas at Dallas
Richardson, TX 75083

edsha@utdallas.edu

ABSTRACT
This paper presents the multiple loop partition scheduling
technique, which combines the loop partition and prefetch-
ing. It can exploit the data locality better than the tradi-
tional loop partition, which only focus on a singleton nested
loop, and loop fusion. Moreover, multiple loop partition
scheduling balances the computation and memory loading,
such that the long memory latency can be hidden e�ectively.
The experiments shows that multiple loop partition schedul-
ing can achieve the signi�cant improvement over the existed
methods.

1. INTRODUCTION
Multi-dimensional applications on image processing, DSP

processing, etc, comprise of lots of computation in the form
of multi-dimensional loops. These loops access the array
data in rather regular patterns. The time cost for loading
the data from the memory plays an important role in deter-
mining the overall performance. To reduce the ineÆciency
caused by the long memory access time, two methods can
be applied: use prefetching to hide the memory access time
by computation, and enhance the data locality to reduce
the number of memory references. In this paper, we pro-
pose a new technique base on loop partition. This multiple
loop partition scheduling technique combines the above two
approaches. The experiments show that it can achieve the
improvement over the traditional methods by about 15% to
45% for di�erent benchmarks.
The traditional loop partition technique [1, 10] is an e�ec-

tive method to exploit the data locality in a singleton nested
loop. However, it is usual that a program includes several
loop nests in the consecutive order. A lot of computational
overhead is caused by the repetitive access to array data
elements. Separately partitioning each loop will not take
full advantage of the data reuse occurred between di�erent
loop nests, thereby incur much more memory reference than

�This work is partially supported by Graduate Fellowship
of the Center for Applied Mathematics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

multiple loop partition scheduling. This is demonstrated
by the experiments in Section 5. Therefore, the traditional
loop partition technique may be achieve a good result for
a singleton nested loop, it cannot perform well to multi-
ple loop nests. Multiple loop partition scheduling technique
deal with multiple loop nests together and partition them at
the same time, such that the data locality can be exploited
to the largest extent.
Our technique can be used in the architecture with mul-

tiple processors or a processor with multiple function units.
They shared a memory hierarchy. We assume two levels
memory in this paper, in which the �rst and second levels
memory can be regarded as the on-chip and o�-chip memo-
ries, respectively. The model consists of multiple ALU and
memory units. The ALU units are for computation, while
the memory units execute the memory operations to prepare
the data in the �rst level memory. Two kinds of memory
operation are supported by the memory units. Prefetch op-
eration is used to load the data in advance, and keep oper-
ation is used to keep the data in the �rst level memory for
the near future use. The objective of keep operation is to
prevent unnecessary long time data swapping. It is needed
when the �rst level memory is really restrictive. When the
�rst level memory is large enough, the keep operation can
be neglected because such data still remain in the �rst level
memory. The overall schedule includes the memory schedule
and ALU schedule, corresponding to arranging the memory
and ALU operations in the respective units. This model can
be found in DSP processors, embedded system and shared-
memory multiprocessors computer systems. For example,
separated ALU and memory units exist in TMS320C64x.
In the past, a lot of work has been done on loop fusion [4]

and loop tiling [8, 2]. Loop fusion is used to fuse the consec-
utive loops into a single loop to exploit the data locality and
reduce the additional synchronization. However, the mem-
ory reference maybe too much to be hidden eÆciently even
after the loops are fused. Therefore, we use multiple loop
partition scheduling in order to exploit more data locality.
Moreover, the partition size is carefully selected such that
the computation time and memory loading time are bal-
anced and memory latency is tolerated e�ectively. In fact,
loop fusion can be thought of as a special case of our tech-
nique when the partition size is 1. Loop tiling is a technique
for grouping elemental computation points so as to increase
computation granularity and thereby reduce communication
time. The traditional loop tiling only considers the single-
ton loop and lack of the consideration of prefetching and
scheduling.

13183

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192430278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Another technique related to the memory access latency
is data layout optimizations [3]. They modify the memory
storage order of multi-dimensional arrays so as to reduce the
cache miss rate. Loop partition is in the higher level above
the data layout transformation. We assume full associativity
in the �rst level memory. For the lower associativity, data
layout transformation can be applied �rst to prevent the
cache conict.
The rest of the paper is organized as follows. In Section

2, the program models and their representation are intro-
duced. Section 3 presents the concept of partition. Section
4 describe multiple loop partition scheduling in detail and
Section 5 is the experimental results.

2. PROGRAM MODEL
Multiple loop nests are represented by Loop Dependence

Graph (LDG), as de�ned below.

Definition 1. A loop dependence graph (LDG) G = (V;E;DL)
is an edge-weighted directed multigraph, where V is the set
of loop nests, E 2 V � V is the set of dependence edges be-
tween the loop nests, and DL is a function from E to Zn,
representing the set of loop dependency vectors between two
nodes, where n is the number of loop dimension.

The LDG is a directed multigraph because multiple de-
pendences can exist from one loop nest to another arising
from di�erent variables. Figure 1(a) shows an example of
LDG and Figure 1(b) shows the corresponding code seg-
ment. In this example, V = fA;B;C;Dg and E = fe1; e2 :
(A;B); e3; e4 : (B;C); e5 : (C;C); e6 : (C;D); e7 : (A;C); e8 :
(D;A)g where, DL(e1) = (2; 1), DL(e2) = (1; 1), DL(e3) =
(0; 1), DL(e4) = (0;�2), DL(e5) = (1; 0), DL(e6) = (0;�1),
DL(e7) = (0; 1), DL(e8) = (2; 1). Note that multiple edges
exist between nodes A, B and B, C, due to the di�erent
array elements access.

(0
,−

1)
(0

,−
2)

(0
,1)(1

,1)

(1,0)

(2
,1)

B

D

C

(2
,1)

(0
,1)

A

(a) LDG

DO 10 i = 0, n
A: DO 20 j=0, m

a[i][j] = e[i � 2][j � 1]
20 CONTINUE

B: DO 30 j= 0,m
b[i][j] = a[i� 1][j � 1]

+a[i� 2][j � 1]
30 CONTINUE

C: DO 40 j= 0,m
c[i][j] = b[i][j + 2] � a[i][j � 1]

+b[i][j � 1]
d[i][j] = c[i� 1][j]

40 CONTINUE
D: DO 50 j= 0,m

e[i][j] = c[i][j + 1]
50 CONTINUE
10 CONTINUE

(b) Program segment

Figure 1: The code and its LDG

In this paper, we only consider the loops with uniform
data dependence. A lot of applications in DSP and im-
age processing �t in this category. Also the importance
can be justi�ed by the fact that aÆne index access can
be uniformized �rst [9]. The idea of multiple loop parti-
tion scheduling is illustrated with multiple two-dimensional

nested loops. The weight of edges in the corresponding LDG
can be written as DL = (DL[1]; DL[2]). The two di�erent
target program models are shown in the Figures 2(a) and
2(b), respectively.

DO K1 i = 0, n
DO K2 j=0, m
: : :

K2 CONTINUE

DO K3 j= 0,m
: : :

K3 CONTINUE

.

.

.

K1 CONTINUE

(a) Nested Multiple
Loops

DO K1 i = 0, n
DO K2 j=0, m
: : :

K2 CONTINUE
K1 CONTINUE

DO K3 j= 0,m
DO K4 j=0, m
: : :

K4 CONTINUE
K3 CONTINUE

.

.

.

(b) Multiple Nested
Loops

Figure 2: Program Model

Both two models comprise of several uniform loop nests
without the intervening code between them. All the loop
nests are conformable with each other. Conformability is a
binary equivalence relation. Two loop nests are said to be
conformable if their corresponding loops have the same type
(serial in this paper) and identical iteration space size (loop
bounds). The data dependences between loop nests are con-
stant, as well as lexically forward (from the earlier loop to
the later). Program transformations may be used to obtain
a program segment that belongs to the above models. For
instance, code motion may be employed to obtain a sequence
of loops with no intervening code. Loop permutation may
be used to ensures that loop nests are conformable.
The di�erence between two models is that multiple se-

quential loops have the same outer-most loop in the nested
multiple loops program model, while the loops in the mul-
tiple nested loops model are realatively independent. Thus,
there will be some loop-carried data dependence introduced
by the outer-most loop in the �rst model, which may cause
a dependence cycle in the corresponding LDG. To guaran-
tee the correctness of the execution order, there should not
exist the dependence that ows backwards with respect to
the iteration execution order. A set of nested multiple loops
is illegal if no execution order exists to sastify all the data
dependence. The following lemma ensure the legality in the
�rst program model.

Lemma 1. A set of nested multiple loops is legal if each
cycle in its corresponding LDG sastify W (c) � (1;�1) 1

and DL(e)[1] >= 0; 8e 2 E, where W (c) is the weight sum-
mation for all edges in a cycle.

On the contrary, there is no data dependence from a loop
nest to its ancester in the second program model. Its LDG
is always acyclic. The existence of cycle in LDG brings a
little more complication on the in-partition execution order,
which is discussed in the next section.

1In this paper, all the comparsion between two vectors is
based on the lexicographic order

14184

3. CONCEPT OF PARTITION SCHEDUL-
ING

Partitioning is an e�ective technique to improve the data
locality. Due to the general short data dependence rela-
tive to the iteration space size, grouping several iteration
executions can increase both the cache and register local-
ity. The partitioning of multiple loop nests is built upon the
partitioning of an individual loop nest. The former is the
extension of the latter, taking the data dependence between
loop nests into consideration. It is necessary to review the
partitioning technique for an individual loop nest.
An individual nested loop can be described by a multi-

dimensional data ow graph (MDFG) [6]. Each node in the
MDFG corresponds to a computation. An edge between
two nodes represents that these two nodes have a data de-
pendence. Its weight (de) is the data dependence vector
between these two nodes. A partition is a parallelogram in
the iteration space. All iterations with integer index vectors
which lie in this parallelogram belong to the same partition.
A partition is characterized by its shape and size. Its shape
is delimited by two direction vectors: Px and Py, where Py
is anti-clockwise to Px. The following property guarantees
all the data dependence vectors lie between Px and Py, such
that the data dependence for a singleton nested loop can be
maintained after partition.

Property 1. It is a legal partition shape if and only if
the cross products de � Px � 0; de � Py � 0; 8 data
dependence de in MDFG.

CS 1:
CS 2:
CS 3:
CS 4:
CS 5:
CS 6:
CS 7:
CS 8:
CS 9:
CS 10:
CS 11:
CS 12:
CS 13:
CS 14:
CS 15:
CS 16:
CS 17:

Prefetch
Part

1

101112

2
3 4 5 6 7
8 9

5 6

7
8 9

10
1112

1
2 3

4

MemoryALU

Part
Keep

Figure 3: Partition schedule

A partition schedule, as shown in Figure 3, is made up of
the ALU schedule, which schedules the ALU operations, and
memory schedule, which schedules the prefetch and keep op-
erations. The ALU schedule is formed by Multi-dimensional
Rotation Scheduling Algorithm [7]. In fact, any loop pipelin-
ing scheme can be used to schedule the ALU operation. The
reason we use this algorithm is that it is proven to be opti-
mal [7]. The entire ALU schedule is the simple duplication of
a single iteration schedule achieved by Rotation Scheduling
Algorithm for each iteration in the partition. To arrange the
memory operation, the data dependence is analyzed to col-
lect the prefetch and keep operations for a partition. These
operations are scheduled in the sequence of prefetch, keep
operations, as well as maintain the time relation between

the ALU execution and memory operation i.e., the keep op-
erations must be issued after the corresponding execution.
A partition size is determined to make the ALU and mem-
ory schedules balanced, such that the large memory access
latency can be tolerated by the ALU operations. A balanced
partition schedule is de�ned to be a partition schedule in
which the memory schedule is at most one keep operation
time longer than the ALU schedule length.
Another important aspect of partitioning technique is the

partition execution order. Instead of the general row-wise
order along X axis or column-wise order along Y axis in the
unit of iterations, the loop nest is executed in the unit of
partitions in the row-wise manner: execute all the �rst line
of partitions along X, then the second line, the third line,
etc.
In the case of partitioning multiple loop nests, A partition

consists of several subpartitions. Figure 4 plots an example
of a single partitoin. In a partition, all the iterations which
belong to the same iteration space constitute a subpartition.
In this �gure, L1, L2 and L3 are the iteration spaces for the
�rst, second and third loop nests, respectively. SP1, SP2
and SP3 are the subpartitions in L1, L2 and L3, respectively.

Z

L1 L2 L3

Partition

Iteration
Space

X

Y

SP3SP1 SP2

Figure 4: Partition and subpartitions

Multiple loop partition exploits not only the data locality
inside each iteration space, but also the data locality among
di�erent loop nests. Take Figure 5 as an example, SP1 and
SP2 represent the subpartitions in iteration space L1 and
L2, respectively. The dark circles denote the iterations. It-
erations I1, I2, and I3 lie in SP1, while iterations I4 and I5
lie in SP2. Therefore, data dependences d1 and d2 belong to
the dependences inside a single loop nest, d3 and d4 belong
to the dependence between di�erent loop nests. Assuming
iterations I2 and I3 are in di�erent rows, so do iterations I4
and I5. They all need the outcome from the computation of
iteration I1. According to the general row-wise order, the
result of iteration I1 will be fetched from the memory for 4
times. On the contrary, this result is still in the �rst level
memory and no fetch is needed with the multiple loop parti-
tion scheduling technique. With the row-wise partition ex-
ecution order, di�erent grained in-partition execution order
can be applied. The coarse-grained in-partition execution
order is shown in Fig 6(a). The �rst subpartition is �nished
�rst, then the second subpartition, until the last subparti-
tion's execution ends. On the other hand, we can execute
the iterations alternatively in the loop nests. Figure 6(b)
shows this �ne-grained in-partition execution order. After
the execution of the �rst line of iterations in each subparti-
tion along loop sequence, we jump to the �rst subpartition
and begin to execute the second line. A partition is �nished

15185

Y

Z

X

SP1 SP2

d1 d4
d2 d3

I1

I2

I3

I4

I5

Iteration

Figure 5: Di�erent data dependences

until all the lines of iterations are executed in this manner.

SP2 SP3SP1

(a) Coarse-grained

SP1 SP2 SP3

(b) Fine-grained

Figure 6: In-partition execution order

The �rst principle of the selection of in-partition execution
order is that such order cannot violate the data dependence.
For the multiple loop nests program model, both orders are
feasible because of the acyclic lexically forward dependence.
This is not the case for the nested multiple loops program
model. Some data dependence cannot be satis�ed by the
coarse-grained execution order due to the cycle in LDG.
There are also some other considerations on the in-partition

execution order. For example, di�erent eÆciency can be
achieved for the di�erent data access patterns in the loops.
The coarse-grained order performs better when each loop
nest has its own input data set, while �ne-grained order is
preferred when the loop nests have a common input data
set. In such case, some compiler switches can be used to
designate a better in-partition execution order.

4. MULTIPLE LOOP PARTITION SCHEDUL-
ING

Multi-dimensional retiming technique [6] is used in mul-
tiple loop partition to transform the iteration space, such
that the iteration space can be partitioned legally. A multi-
dimensional retiming r is a function that redistributes the
nodes in the iteration space. A new LDG is created after
the retiming. The retiming vector r(u) of a node u 2 V
represents the o�set between the original iteration contain-
ing u, and the one after retiming. The weight of the edge
changes accordingly to preserve dependence, i.e., Dr

L(u; v) =
DL(u; v)+r(u)�r(v), where D

r
L and DL is the weight after

and before retiming, respectively. Also, Dr
L(c) = Dr

L(c) for
each cycle c 2 LDG.

In the nested multiple loops program model, it is stated in
Lemma 1 that DL[1] element of the weight in LDG should
be no less than zero for any edge in LDG. Provided the �ne-
grained execution order is used, there are two cases for the
data dependences. If DL[1] > 0 or DL[1] = 0; DL[2] � 0,
these data dependences can be preserved using the �ne-
grained execution order. If DL[1] = 0; DL[2] < 0, it is
reverse to the ow of execution along X axis and will be
violated after the partition. Therefore, we should eliminate
all the data dependence that belong to the second case. This
can be accomplished by the retiming technique [6]proved by
the following theorem.

Theorem 2. Given a legal LDG, there exists a set of re-
timing vector r such that a legal retimed LDG is obtained
with Dl � (0; 0) for any edge in this graph.

Proof. Assuming an edge e : u ! v, its weight af-
ter retiming is Dr

L = DL + r(u) � r(v), The inequality
r(v)� r(u) � DL must be true to make Dr

L � (0; 0) There-
fore, a feasible solution of the following integer programming
problem can serve as a retiming vector set, where rn denote
the retiming vector on nth node.
ILP: r1 � r2 � DL(1; 2)

r2 � r3 � DL(2; 3)
...
rn�1 � rn � DL(n; n� 1)

This specical IP problem can be solved using graph theory.
A directed graph can be constructed with each node denot-
ing a variable, and edges between the corresponding nodes
whose weight equal to DL. An additional source node is
also added. This node has a zero weight edge to any node
in the original graph. If there is no cycle with weight less
than (0; 0), The single source shortest path is a feasible so-
lution. Lemma 1 has shown that for all cycle in the graph,
W � (1;�1), which ensure the existence of a feasible solu-
tion.

A retiming vector set can be obtained using Bellman-Ford
single source shortest path algorithm. The only modi�cation
is to replace all the weights, real numbers in the original
algorithm, by weight vectors i.e., DL in the LDG.
In the multiple loop nests program model, there is no cer-

tainty that DL[1] � 0. The data dependence with DL[1] < 0
will also be voilated after the partition. This voilation can
still be overcome by retiming. Because the LDG for this
program model is acyclic, Algorithm 1 can be used to get
rid of all of the violiations.
After applying the retiming vectors obtained above, all

the data dependences sastify DL � (0; 0), thereby are auto-
matically preserved by the partition execution order. The
partition shape is only determined by the data dependence
de in the MDFG of each loop nest. Therefore, we can �nd a
legal subpartition shape for each loop based on Property 1.
Due to the lexically forward data dependence, vector (1; 0)
can always serve as Px for each subpartition, thereby the
Px of the partition. As about Py, it is one of Py of all the
subpartitions, which has the largest angle with vector (1; 0).
It is not diÆcult to verify that all the data dependences
conform to Property 1 under such partition shape.

16186

Algorithm 1 Find a feasible retiming vector set
Input: An LDG graph
Output: A retiming vector set of LDG

Sort the nodes in topological order
FOREACH Node i in LDG do

r(i) = (0; 0)
ENDFOR

FOREACH Node i in LDG do

Construct a vector NV = (NV [1]; NV [2]), which sastisfy
NV [1] � DL[1]; NV [2] � DL[2]; 8 incoming edges with weight
DL.
IF NV � 0 THEN r(i) = (0; 0) ELSE r(i) = NV ENDIF

Update all the outgoing edges' weigt to Dr
L = DL + r(i).

ENDFOR

As the same principle of partitioning an individual nested
loop, the determination of the partition size depends on the
relation between the memory and ALU schedules. A parti-
tion size which can balance the ALU and memory schedules
is a prefered size. To derive the memory scheudle, all the
memory operations need to be identi�ed.
The number of these memory operations depends on the

data dependence distance and the partition size. A certain
data dependence decide a perfetch region, in which all data
need to be prefetched in advance, and a keep region, in which
all data will be kept in the �rst level memory. All the data
in the keep region will be reused soon (in the next partition
along the execution sequence), while the data in the prefetch
region will be reused in a relatively long time. The Figure 7
shows two adjacent partitions along the partittion execution
direction and two di�erent data dependences. d1 is a data
dependence between two loop nests, and d2 is a dependence
inside a loop. Each of them deicde a prefetch region and a
keep region in the partition, as shown in the �gure. For the
keep region determined by a data dependence, we can see
that this dependence occurs between two adjacent partition.
while it is not true for the prefetch region.

Z

Y

SP1 SP2

d1

X

Keep region

Prefetch region

d2

Partition execution direction

Figure 7: Prefetch and keep regions

In the algorithm to decide the partition size, a partition
size is denoted by fx and fy. Then the actual partition size
is fx along X axis and kfy�Pyk along the Py direction. The
lengths of memory and ALU schedules are denoted by Lmem

and LALU respectively. Tkeep represents the time for a keep
operation. The �rst \for" loop in the algorithm calculates
the minimum partition size requirement. This requirement
means that no data dependence will span two or more parti-
tions. This constraint is used to reduce the computation and
simplify the analysis. The \while" loop in the algorithm cal-
culates the partition size which can achieve a balanced par-
tition schedule. The theory behind these steps is: increase
the partition size along Py direction can maintain the num-

ber of prefetch operation. If the memory schedule is longer
than ALU schedule at the start step, enlarge the partition
along Py direction only increases the number of keep oper-
ations and the number of iterations in the partition, which
imply the ALU schedule will increase faster than the mem-
ory schedule if the partition size along Px direction is large
enough. It is this theory that guarantee the existence of the
balanced partition schedule and the termination of the al-
gorithm. In the algorithm, we use the variable \icount" and
a prede�ned constant \MI" to ensure the fx is large enough
to �nd a balanced partition schedule.

Algorithm 2 Multiple loop partition scheduling

Input: The data dependences d (including both de in MDFG and
Dl in LDG) in multiple loop nests

Output: The partition size
/*�nd the partition shape*/
For each loop nest, �nd the subpartition shape Px s; Py s

Set Px = (1; 0). Choose Py as the most anti-clockwise vector
relative to Px in all Py s.
/*�nd the minimum fx and fy*/
fx = 0; fy = 0.
FOREACH d = (d[1]; d[2]) do
if fx < (d[1]� d[2] � py [1]=py [2]) then
fx = dd[1]� d[2] � py [1]=py [2]e

end if

if fy � Py [2] < d[2] then
fy = dd[2]=Py [2]e

end if

ENDFOR

/*determine the partition size*/
Calculate Lmem and LALU under the partition size fx; fy .
icount = 0
WHILE Lmem � LALU + Tkeep do
fy ++;
icount ++;
Calculate Lmem and LALU under the partition size fx; fy .
if icount � MI then
fx++;

end if

ENDWHILE

Schedule the ALU and memory operations in ALU and memory
units, respectively.

5. EXPERIMENTAL RESULTS
In this section, the e�ectiveness of multiple loop parti-

tion scheduling technique is evaluated by running a set of
simulations on four benchmarks. Example is the exam-
ple code shown in Figure 1(b). Jacobi is a PDE solver.
LL18 is the eighteenth kernel from the Livermore Loops
benchmark. Tomcatv is extracted from the 101.tomcatv in
SPEC95 benchmark. We compared theAET/Iter by applied
three di�erent schemes on these benchmarks. AET/Iter
(Average execution time per iteration) is the summation
of all the average execution times for one iteration in each
loop nest. Because of the comfortability of the loop nests,
AET/Iter reects the overall e�ectiveness of each scheme.
In the simulation, we assume 4 ALU units and 4 memory

units. The �rst level memory is 32KB in size and full asso-
ciative. Each data is oat type which consumes 8 bytes. The
computation time for each operation is simpli�ed as one unit
time. The data are prefetched in block with size 64 bytes.
This operation take 10 units time while keep operation take
one unit time. The assumption is reasonable considering the
big gap between the CPU and memory speeds.
We �rst compare multiple loop partition scheduling and

partitioning each loop nest separately, the former is superior
to the latter, due to the fact that the better data locality
is exploited and the repetitive array elements access are re-

17187

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Block Size

A
ve

ra
ge

 C
ac

he
 M

is
s

/ I
te

ra
tio

n

Partition seperately
Partition together

Figure 8: LL18 Kernel

duced. Figures 5 shows how average cache miss/ Iteration
change with the cache block size (denoted by the number
of oat data in a block) for LL18 kernel under the above
simulation environment. We can see that the number of av-
erage cache miss for partitioning separately is always two
times the number of our technique. This observation can
be explained by the number of array reference per iteration.
Partitioning separately has two times memory reference as
many as multiple loop partition. Since the overall execution
time is mainly decided by the memory access time, much
more number of memory references mean the longer exe-
cution time. Therefore, multiple loop partition scheduling
can get better performance than the traditional partitioning
technique.
The simulation results are listed in Table 1. Three meth-

ods compared are Original, which is the original loop with-
out any transformation, Fusion, which applied the loop fu-
sion on the benchmarks, and MLP, which is multiple loop
partition. Because it has been shown in [10] that software
pipelining and loop tiling cannot perform better than the
traditional separately partitioning, we didn't compare their
results. The column #loop nests denotes the number of loop
nests in each benchmarks. The size column is the partition
size. We also list the theoretic lower bound in the Lb column.
The ALU schedule is obtained without the consideration of
the memory load latency. Thus, the ALU schedule length
per iteration provides the lower bound for computation un-
der the resource constraints. Compare the AET/Iter, we
can �nd that partitioning technique can achieve the best
performance. Accredit to increasing the data locality ap-
peared between di�erent loop nests, the loop fusion perform
better than the original loop. The multiple loop partitioning
not only takes advantage of the bene�t of loop fusion, but
also explores more data reuses which exist in the di�erent
iterations. Moreover, it takes the balance of computation
and memory reference into consideration, thereby prevent
the wasted time caused by the dominated memory reference
time. Therefore, the multiple loop partition scheduling tech-
nique can eÆciently exploit the data locality and hide the
memory access.
The performance of multiple loop partition is very close

to the lower bound, which demonstrates that the memory
latency is hidden very eÆciently. Their di�erence is mainly
due to the iterations lie on the boundary of iteration space.
These iterations can be regarded as the preface, which is the
preparation stage of the normal partition execution. Also,

#loop nests Original Fusion MLP size Lb
Example 4 8.5 5.41 2.34 8� 8 2
Jacobi 2 5.25 4.0 2.16 4� 8 2
LL18 3 20.85 13.44 11.5 4� 4 11

Tomcatv 5 25.25 20.38 18.26 4� 4 18

Table 1: Experiment result of average execution

time

the extra keep operations by which the memory schedule
is longer than the ALU schedule play a minor role in this
di�erence.
In tomcatv benchmark, there are �ve loop nests with the

same iteration space size. However, the �rst three and the
last two loop nests should be thought of as in two indepen-
dent groups, since the step direction is contrary in di�erent
groups. The �rst group is in the form as do 10 i = 1; N; 1,
while the second group is in the form of do 10 i = N; 1;�1.
Because loop fusion can be regarded as a special case of mul-
tiple loop partition when the partition size is 1, The problem
to group loop nests is the same as the fusible loop problem
[5] in essence.

6. REFERENCES
[1] F. Chen and E.H.-M.Sha. Loop scheduling and

partitions for hiding memory latencies. In Proc. IEEE
12th International Symposium on System Synthesis,
pages 64{70, San Jose, November 1999.

[2] J. Chame and S. Moon. A tile selection algorithm for
data locality and cache interference. In Proc. of the
1999 ACM International Conference on
Supercomputing, Rhodes, Greece, June 1999.

[3] M. Kandemir, A. Choudhary, and N. Shenoy. A linear
algebra framework for automatic determination of
optimal data layouts. IEEE Transactions on Parallel
and Distributed Systems, 10(2), Feb 1999.

[4] Naraig Manjikian and Tarek S. Abdelrahman. Fusion of
loops for parallelism and locality. IEEE Transactions
on Parallel and Distributed Systems, 8(2), Feb 1997.

[5] N. Megiddo and V. Sarkar. Optimal weighted loop
fusion for parallel programs. In Proceedings of 9th ACM
symposium on Parallel algorithms and architectures,
pages 282{291, Newport, RI, June 1997.

[6] N. Passos and E.H.-M.Sha. Achieving full parallelism
using multi-dimensional retiming. IEEE Transactions
on Parallel and Distributed Systems, 7(11), November
1996.

[7] N. Passos and E.H.-M.Sha. Scheduling of uniform
multi-dimensioanl systems under resource constraints.
Journal of IEEE Transactions on VLSI Systems, 6(4),
December 1998.

[8] P. Bouilet, A.Darte, T.Risset, and Y.Robert.
(pen)-ultimate tiling. In Scalable High-Performance
Computing Conference, pages 568{576, May 1994.

[9] W. Shang, E. Hodzic, and Z. Chen. On uniformization
of aÆne dependence algorithms. IEEE Transactions on
Computers, 45(7), 1996.

[10] Z. Wang, M. Kirkpatrick, and E.H.-M.Sha. Optimal
two level partitioning and loop scheduling for hiding
memory latency for dsp applications. In Proc. ACM
37th Design Automation Conference, pages 540{545,
Los Angeles, California, June 2000.

18188

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

