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Model reduction is a process of approximating higher order original models by comparatively lower order models with reasonable
accuracy in order to provide ease in design, modeling and simulation for large complex systems. Generally, model reduction
techniques approximate the higher order systems for whole frequency range. However, certain applications (like controller
reduction) require frequency weighted approximation, which introduce the concept of using frequency weights inmodel reduction
techniques. Limitations of some existing frequency weighted model reduction techniques include lack of stability of reduced order
models (for two sided weighting case) and frequency response error bounds. A new frequency weighted technique for balanced
model reduction for discrete time systems is proposed. The proposed technique guarantees stable reduced order models even for
the case when two sided weightings are present. Efficient technique for frequency weighted Gramians is also proposed. Results are
compared with other existing frequency weighted model reduction techniques for discrete time systems. Moreover, the proposed
technique yields frequency response error bounds.

1. Introduction

Model reduction has played a significant role in modern
control system design and caught a lot of attention in the
last few decades [1–5]. It is desirable that reduced order
model preserves the fundamental properties of original
system like stability, passivity, and so forth. Moreover, the
approximation error between original and reduced order
system is required to be small. Balanced truncation [6] is
prominent model reduction scheme, which not only ensures
stability of reduced order systems but also provides frequency
response a priori error bounds. Other schemes like Hankel
norm approximation [7], Pade approximation [8], Krylov
technique [9, 10], linear matrix inequality (LMI) technique
[11, 12], and so forth, are also useful for model reduction.
Hankel norm approximation has complex implementation
and does not preserve steady state [13]. Pade and Krylov
approximation sometimes provide unstable reduced order
models and there exist no global error bounds [14, 15].
LMI technique is based on mathematical iterative methods
(i.e., convex optimization and bisection algorithm); therefore,

much computational power is consumed [16]. However, LMI
technique has been applied on various model reduction
problems for different types of systems (including time delay
[17], discrete state delay [18, 19], switched hybrid [20], and
nonlinear stochastic [21]). Applications of model reduction
are not only restricted to control engineering but also find
utility inmedical [22] and text summarization [23] areas, and
so forth. Most model reduction algorithms tend to minimize
the reduction error over the whole frequency range; however
there are certain situations (like controller reduction [24]),
wherein the approximation error is more critical over a
certain band of frequencies.

Enns [25] has enhanced the balanced truncation [6] to
incorporate frequency weights for model reduction of higher
order systems. This technique can work with input, output,
and two sided weightings. However, in two sided weighting
case, this technique may give unstable reduced order models
[26]. To circumvent instability issue in the presence of two
sided weightings, many techniques appear in the literature
(including Lin and Chiu [27], Wang et al. [28], Varga and
Anderson [29], Ghafoor and Sreeram [30], etc.).
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In Lin and Chiu [27] technique weightings are strictly
proper. It was improved to include more general proper
weightings in [26]. Varga andAnderson [29] technique yields
proper model for strictly proper systems also. Ghafoor and
Sreeram [30] technique is a parameterized technique. Wang
et al.’s technique is relatively useful, since other techniques
[27, 29] are not applicable for controller order reduction.
Moreover, Wang et al.’s technique yields easily computable
expression for a priori error bounds.

Various partial fraction based techniques appear in the
literature [31–35] that works for continuous as well as discrete
time systems. Unfortunately, most of these techniques yield
large frequency response error [30] as compared to Enns
technique. However, [35] incorporates free parameters to
reduce the approximation error.

Most frequently, frequency weighted model reduction
problem is treated in continuous time; however, there are few
papers (like [36–38]) which deal with this problem explicitly
in discrete time. Sahlan et al.’s [36] technique (discrete time
version of [31]) is a modified version of Lin and Chiu [27]
technique. Campbell et al.’s [37] technique is discrete time
counterpart of Wang et al.’s [28] technique, which not only
provides stability for two sided case but also gives easily
computable error bounds. Campbell et al.’s [37] technique
involves taking absolute values of eigenvalues. This may
introduce a large change to the system and hence a larger
error if it contains some negative eigenvalues. Varga and
Anderson’s [38] tend to minimize the distance between Enns
and Campbell et al.’s techniques Gramians by eliminating
negative eigenvalues.

In this work, a technique is developed for frequency
weighted balanced model order reduction for discrete time
systems. The large change in eigenvalues is avoided by
yielding similar effect on all eigenvalues. The stability is
guaranteed even for double sided weighting. The proposed
technique provides comparable frequency response error and
yields easily computable a priori error bounds. Numerical
examples are given to show the usefulness and comparison
of proposed technique with the existing frequency weighted
balanced reduction techniques.

2. Preliminaries

In this section we review some of the existing frequency
weighted model reduction techniques for discrete time sys-
tems which include Enns [25], Campbell et al.’s [37], and
Varga and Anderson’s [38].

Consider a stable full order original system with transfer
function 𝐻(𝑧) = 𝐶(𝑧𝐼 − 𝐴)

−1

𝐵 + 𝐷, a stable input weighting
system with input transfer function𝑉

𝑖

(𝑧) = 𝐶
𝑖

(𝑧𝐼−𝐴
𝑖

)
−1

𝐵
𝑖

+

𝐷
𝑖

, and a stable output weighting system with output transfer
function 𝑊

𝑜

(𝑧) = 𝐶
𝑜

(𝑧𝐼 − 𝐴
𝑜

)
−1

𝐵
𝑜

+ 𝐷
𝑜

; the augmented
systems are given by

𝐻(𝑧)𝑉
𝑖

(𝑧) = 𝐶
𝑑𝑖

(𝑧𝐼 − 𝐴
𝑑𝑖

)
−1

𝐵
𝑑𝑖

+ 𝐷
𝑑𝑖

,

𝑊
𝑜

(𝑧)𝐻 (𝑧) = 𝐶
𝑑𝑜

(𝑧𝐼 − 𝐴
𝑑𝑜

)
−1

𝐵
𝑑𝑜

+ 𝐷
𝑑𝑜

,

(1)

where

[

𝐴
𝑑𝑖

𝐵
𝑑𝑖

𝐶
𝑑𝑖

𝐷
𝑑𝑖

] =

[
[
[

[

𝐴 𝐵𝐶
𝑖

𝐵𝐷
𝑖

0 𝐴
𝑖

𝐵
𝑖

𝐶 𝐷𝐶
𝑖

𝐷𝐷
𝑖

]
]
]

]

,

[
𝐴
𝑑𝑜

𝐵
𝑑𝑜

𝐶
𝑑𝑜

𝐷
𝑑𝑜

] =
[
[

[

𝐴
𝑜

𝐵
𝑜

𝐶 𝐵
𝑜

𝐷

0 𝐴 𝐵

𝐶
𝑜

𝐷
𝑜

𝐶 𝐷
𝑜

𝐷

]
]

]

.

(2)

Let the Gramians

𝑃
𝑑𝑖

= [

[

𝑃
𝑒𝑛

𝑃
12

𝑃
𝑇

12

𝑃
𝑉

]

]

, 𝑄
𝑑𝑜

= [
𝑄
𝑊

𝑄
𝑇

12

𝑄
12

𝑄
𝑒𝑛

] (3)

satisfy the following Lyapunov equations:

𝐴
𝑑𝑖

𝑃
𝑑𝑖

𝐴
𝑇

𝑑𝑖

− 𝑃
𝑑𝑖

+ 𝐵
𝑑𝑖

𝐵
𝑇

𝑑𝑖

= 0, (4)

𝐴
𝑇

𝑑𝑜

𝑄
𝑑𝑜

𝐴
𝑑𝑜

− 𝑄
𝑑𝑜

+ 𝐶
𝑇

𝑑𝑜

𝐶
𝑑𝑜

= 0. (5)

Expanding the (1,1) and (2,2) blocks of above equations,
we get

𝐴𝑃
𝑒𝑛

𝐴
𝑇

− 𝑃
𝑒𝑛

+ 𝑋
𝑒𝑛

= 0,

𝐴
𝑇

𝑄
𝑒𝑛

𝐴 − 𝑄
𝑒𝑛

+ 𝑌
𝑒𝑛

= 0,

(6)

where

𝑋
𝑒𝑛

= 𝐴𝑃
12

𝐶
𝑇

𝑖

𝐵
𝑇

+ 𝐵𝐶
𝑖

𝑃
𝑇

12

𝐴
𝑇

+ 𝐵𝐶
𝑖

𝑃
𝑉

𝐶
𝑇

𝑖

𝐵
𝑇

+ 𝐵𝐷
𝑖

𝐷
𝑇

𝑖

𝐵
𝑇

,

𝑌
𝑒𝑛

= 𝐶
𝑇

𝐵
𝑇

𝑜

𝑄
𝑇

12

𝐴 + 𝐴
𝑇

𝑄
12

𝐵
𝑜

𝐶

+ 𝐶
𝑇

𝐵
𝑇

𝑜

𝑄
𝑊

𝐵
𝑜

𝐶 + 𝐶
𝑇

𝐷
𝑇

𝑜

𝐷
𝑜

𝐶.

(7)

2.1. Enns Technique [25]. Let 𝑇 be contragredient matrix
obtained as

𝑇
𝑇

𝑄
𝑒𝑛

𝑇 = 𝑇
−1

𝑃
𝑒𝑛

𝑇
−𝑇

= diag {𝜎
1

, 𝜎
2

, 𝜎
3

, . . . , 𝜎
𝑛

} , (8)

where 𝜎
𝑗

≥ 𝜎
𝑗+1

, 𝑗 = 1, 2, 3, . . . , 𝑛 − 1 and 𝜎
𝑙

> 𝜎
𝑙+1

. By
transforming and then partitioning the original system, we
have

𝐴 = 𝑇
−1

𝐴𝑇 = [

𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , 𝐵 = 𝑇
−1

𝐵 = [

𝐵
1

𝐵
2

] ,

𝐶 = 𝐶𝑇 = [𝐶
1

𝐶
2

] , 𝐷 = 𝐷,

(9)

where 𝐴
11

∈ 𝑅
𝑙×𝑙. The reduced order system is obtained as

follows: 𝐻
𝑙

(𝑧) = 𝐶
1

(𝑧𝐼 − 𝐴
11

)
−1

𝐵
1

+ 𝐷.

Remark 1. It is not guaranteed to ensure that 𝑋
𝑒𝑛

≥ 0 and
𝑌
𝑒𝑛

≥ 0; the reduced order models obtained using Enns
technique may not remain stable for both sided weightings.
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2.2. Campbell et al.’s Technique [37]. Campbell et al.’s [37]
(a discrete time version of [28]) guarantees the positive
semidefiniteness of symmetricmatrices𝑋

𝑒𝑛

and𝑌
𝑒𝑛

to ensure
stability. Let the new controllability𝑃

𝐶𝑆

and observability𝑄
𝐶𝑆

Gramians, respectively, be calculated by solving the following
Lyapunov equations:

𝐴𝑃
𝐶𝑆

𝐴
𝑇

− 𝑃
𝐶𝑆

+ 𝐵
𝐶𝑆

𝐵
𝑇

𝐶𝑆

= 0,

𝐴
𝑇

𝑄
𝐶𝑆

𝐴 + 𝑄
𝐶𝑆

+ 𝐶
𝑇

𝐶𝑆

𝐶
𝐶𝑆

= 0.

(10)

which are used to obtain contragredient matrix 𝑇 as

𝑇
𝑇

𝑄
𝐶𝑆

𝑇 = 𝑇
−1

𝑃
𝐶𝑆

𝑇
−𝑇

= Σ, (11)

where Σ = diag{𝜎
1

, 𝜎
2

, 𝜎
3

, . . . , 𝜎
𝑛

} and 𝜎
𝑗

≥ 𝜎
𝑗+1

, 𝑗 =

1, 2, 3, . . . , 𝑛 − 1 and 𝜎
𝑙

> 𝜎
𝑙+1

. The fictitious input 𝐵
𝐶𝑆

and output 𝐶
𝐶𝑆

matrices shown in the above Lyapunov
equations are defined as 𝐵

𝐶𝑆

= 𝑈
𝐶𝑆

|𝑆
𝐶𝑆

|
1/2 and 𝐶

𝐶𝑆

=

|𝑅
𝐶𝑆

|
1/2

𝑉
𝑇

𝐶𝑆

, respectively. Since the expressions𝑈
𝐶𝑆

, 𝑆
𝐶𝑆

, 𝑉
𝐶𝑆

,
and 𝑅

𝐶𝑆

are calculated by orthogonal eigen decomposition
𝑋
𝑒𝑛

= 𝑈
𝐶𝑆

𝑆
𝐶𝑆

𝑈
𝑇

𝐶𝑆

and 𝑌
𝑒𝑛

= 𝑉
𝐶𝑆

𝑅
𝐶𝑆

𝑉
𝑇

𝐶𝑆

, where 𝑆
𝐶𝑆

=

diag(𝑠
1

, 𝑠
2

, . . . , 𝑠
𝑛

), 𝑅
𝐶𝑆

= diag(𝑟
1

, 𝑟
2

, . . . , 𝑟
𝑛

), |𝑠
1

| ≥ |𝑠
2

| ≥

⋅ ⋅ ⋅ ≥ |𝑠
𝑛

| ≥ 0 and |𝑟
1

| ≥ |𝑟
2

| ≥ ⋅ ⋅ ⋅ ≥ |𝑟
𝑛

| ≥ 0. The
reduced order systems are calculated by transforming and
then partitioning the original system.

Remark 2. The stability of reduced order models in the
presence of both input and output weightings is guaranteed
and the following error bound holds [37]

󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻
𝑙

(𝑧)) 𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩∞

≤ 2
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) 𝐿𝐶𝑆

󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝐾𝐶𝑆𝑉𝑖 (𝑧)
󵄩󵄩󵄩󵄩∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

,

(12)

where

𝐿
𝐶𝑆

= 𝐶𝑉
𝐶𝑆

diag (
󵄨󵄨󵄨󵄨𝑟1

󵄨󵄨󵄨󵄨

−1/2

,
󵄨󵄨󵄨󵄨𝑟2

󵄨󵄨󵄨󵄨

−1/2

, . . . ,
󵄨󵄨󵄨󵄨𝑟𝑙𝑖

󵄨󵄨󵄨󵄨

−1/2

, 0, . . . , 0) ,

𝐾
𝐶𝑆

= diag (
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨

−1/2

,
󵄨󵄨󵄨󵄨𝑠2

󵄨󵄨󵄨󵄨

−1/2

, . . . ,
󵄨󵄨󵄨󵄨𝑠𝑘𝑜

󵄨󵄨󵄨󵄨

−1/2

, 0, . . . , 0)𝑈
𝑇

𝐶𝑆

𝐵.

(13)

𝑙𝑖 = rank[𝑋
𝑒𝑛

] and 𝑘𝑜 = rank[𝑌
𝑒𝑛

].

2.3. Varga and Anderson’s Technique [38]. Note that the
Gramians satisfy 𝑃

𝑒𝑛

≤ 𝑃
𝐶𝑆

and 𝑄
𝑒𝑛

≤ 𝑄
𝐶𝑆

. For minimizing
the distances between the Gramians, 𝑃

𝑒𝑛

−𝑃
𝐶𝑆

and𝑄
𝑒𝑛

−𝑄
𝐶𝑆

,
Varga and Anderson proposed the following technique.

Let new controllability and observability Gramians 𝑃
𝑉𝑑

and 𝑄
𝑉𝑑

, respectively, be calculated as the solutions to
Lyapunov equations

𝐴𝑃
𝑉𝑑

𝐴
𝑇

− 𝑃
𝑉𝑑

+ 𝐵
𝑉𝑑

𝐵
𝑇

𝑉𝑑

= 0,

𝐴
𝑇

𝑄
𝑉𝑑

𝐴 − 𝑄
𝑉𝑑

+ 𝐶
𝑇

𝑉𝑑

𝐶
𝑉𝑑

= 0

(14)

which are used obtain contragredient matrix 𝑇 as

𝑇
𝑇

𝑄
𝑉𝑑

𝑇 = 𝑇
−1

𝑃
𝑉𝑑

𝑇
−𝑇

= Σ, (15)

where Σ = diag{𝜎
1

, 𝜎
2

, 𝜎
3

, . . . , 𝜎
𝑛

}, and 𝜎
𝑗

≥ 𝜎
𝑗+1

, 𝑗 =

1, 2, . . . , 𝑛 − 1, 𝜎
𝑙

> 𝜎
𝑙+1

. The new fictitious input 𝐵
𝑉𝑑

and
output 𝐶

𝑉𝑑

matrices in the above Lyapunov equations are
defined as 𝐵

𝑉𝑑

= 𝑈
𝑉𝑑

1

𝑆
1/2

𝑉𝑑

1

and 𝐶
𝑉𝑑

= 𝑅
1/2

𝑉𝑑

1

𝑉
𝑇

𝑉𝑑

1

, respectively.
The terms𝑈

𝑉𝑑

1

, 𝑆
𝑉𝑑

1

, 𝑉
𝑉𝑑

1

, and 𝑅
𝑉𝑑

1

are calculated from the
orthogonal eigen decomposition of symmetric matrices

𝑋
𝑒𝑛

= [𝑈
𝑉𝑑

1

𝑈
𝑉𝑑

2
] [

𝑆
𝑉𝑑

1

0

0 𝑆
𝑉𝑑

2

][

𝑈
𝑇

𝑉𝑑

1

𝑈
𝑇

𝑉𝑑

2

] ,

𝑌
𝑒𝑛

= [𝑉
𝑉𝑑

1

𝑉
𝑉𝑑

2
] [

𝑅
𝑉𝑑

1

0

0 𝑅
𝑉𝑑

2

][

𝑉
𝑇

𝑉𝑑

1

𝑉
𝑇

𝑉𝑑

2

] ,

(16)

where [
𝑆

𝑉𝑑1
0

0 𝑆

𝑉𝑑2

] = diag{𝑠
1

, 𝑠
2

, . . . , 𝑠
𝑛

}, [ 𝑅𝑉𝑑1 0
0 𝑅

𝑉𝑑2

] =

diag{𝑟
1

, 𝑟
2

, 𝑟
3

, . . . , 𝑟
𝑛

}, 𝑠
1

≥ 𝑠
2

≥ 𝑠
3

≥ ⋅ ⋅ ⋅ ≥ 𝑠
𝑛

, 𝑟
1

≥

𝑟
2

≥ 𝑟
3

≥ ⋅ ⋅ ⋅ ≥ 𝑟
𝑛

, 𝑆
𝑉𝑑

1

= diag{𝑠
1

, 𝑠
2

, 𝑠
3

, . . . , 𝑠
𝑘

}, 𝑅
𝑉𝑑

1

=

diag{𝑟
1

, 𝑟
2

, 𝑟
3

, . . . , 𝑟
𝑘

}, 𝑠
1

≥ 𝑠
2

≥ 𝑠
3

≥ ⋅ ⋅ ⋅ ≥ 𝑠
𝑘

≥ 0, 𝑟
1

≥

𝑟
2

≥ 𝑟
3

≥ ⋅ ⋅ ⋅ ≥ 𝑟
𝑘

≥ 0.
The reduced order systems are calculated by transforming

and then partitioning the original system.

Remark 3. The stability of the reduced system is guaranteed
and the following error bound holds [38]

󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻
𝑙

(𝑧)) 𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩
∞

≤ 2
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) 𝐿𝑉𝑑

󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝐾𝑉𝑑𝑉𝑖 (𝑧)
󵄩󵄩󵄩󵄩∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

,

(17)

where 𝐿
𝑉𝑑

= 𝐶𝑉
𝑉𝑑

1

𝑅
−1/2

𝑉𝑑

1

and 𝐾
𝑉𝑑

= 𝑆
−1/2

𝑉𝑑

1

𝑈
𝑇

𝑉𝑑

1

𝐵.

3. Main Results

In Campbell et al.’s [37] technique, the symmetric matrices
𝑋
𝑒𝑛

and 𝑌
𝑒𝑛

are guaranteed positive/semipositive definite by
taking the square root of absolute values of the eigenvalues
obtained by eigen decomposition of symmetric matrices
𝑋
𝑒𝑛

and 𝑌
𝑒𝑛

. This may lead to a large change in some
eigenvalues and may not affect other eigenvalues. Although
in Varga and Anderson’s [38] technique, this large change
was slightly improved by eliminating negative eigenvalues,
but the problem persists with the other eigenvalues. In the
following, a new technique is proposed in which a similar
effect on all eigenvalues of indefinite matrices 𝑋

𝑒𝑛

and 𝑌
𝑒𝑛

guarantees stability, error bound, and improved frequency
response error.

3.1. Proposed Technique. Let a new controllability 𝑃
𝐼𝐺

and
observability 𝑄

𝐼𝐺

Gramians, respectively, be calculated by
solving the following Lyapunov equations:

𝐴𝑃
𝐼𝐺

𝐴
𝑇

− 𝑃
𝐼𝐺

+ 𝐵
𝐼𝐺

𝐵
𝑇

𝐼𝐺

= 0, (18)

𝐴
𝑇

𝑄
𝐼𝐺

𝐴 − 𝑄
𝐼𝐺

+ 𝐶
𝑇

𝐼𝐺

𝐶
𝐼𝐺

= 0. (19)
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Thematrices 𝐵
𝐼𝐺

and𝐶
𝐼𝐺

are the new fictitious input and
output matrices, respectively, and are defined as

𝐵
𝐼𝐺

= {
𝑈
𝐼𝐺

(𝑆
𝐼𝐺

− 𝑠
𝑛

𝐼)
1/2 for 𝑠

𝑛

< 0

𝑈
𝐼𝐺

𝑆
1/2

𝐼𝐺

for 𝑠
𝑛

≥ 0,

𝐶
𝐼𝐺

= {
(𝑅
𝐼𝐺

− 𝑟
𝑛

𝐼)
1/2

𝑉
𝑇

𝐼𝐺

for 𝑟
𝑛

< 0

𝑅
1/2

𝐼𝐺

𝑉
𝑇

𝐼𝐺

for 𝑟
𝑛

≥ 0.

(20)

The terms 𝑈
𝐼𝐺

, 𝑆
𝐼𝐺

, 𝑉
𝐼𝐺

, and 𝑅
𝐼𝐺

are calculated by
the orthogonal eigen decomposition of symmetric matrices
𝑋
𝑒𝑛

= 𝑈
𝐼𝐺

𝑆
𝐼𝐺

𝑈
𝑇

𝐼𝐺

and 𝑌
𝑒𝑛

= 𝑉
𝐼𝐺

𝑅
𝐼𝐺

𝑉
𝑇

𝐼𝐺

, where 𝑆
𝐼𝐺

=

diag(𝑠
1

, 𝑠
2

, 𝑠
3

, . . . , 𝑠
𝑛

), 𝑅
𝐼𝐺

= diag(𝑟
1

, 𝑟
2

, 𝑟
3

, . . . , 𝑟
𝑛

), 𝑠
1

≥ 𝑠
2

≥

⋅ ⋅ ⋅ ≥ 𝑠
𝑛

, and 𝑟
1

≥ 𝑟
2

≥ ⋅ ⋅ ⋅ ≥ 𝑟
𝑛

.
Let a contragradient transformationmatrix𝑇 be obtained

as

𝑇
𝑇

𝑄
𝐼𝐺

𝑇 = 𝑇
−1

𝑃
𝐼𝐺

𝑇
−𝑇

= Σ, (21)

where Σ = diag{𝜎
1

, 𝜎
2

, 𝜎
3

, . . . , 𝜎
𝑛

}, and 𝜎
𝑗

≥ 𝜎
𝑗+1

, 𝑗 =

1, 2, . . . , 𝑛 − 1, 𝜎
𝑙

> 𝜎
𝑙+1

. The reduced order system is
calculated by transforming and partitioning the original
system.

Remark 4. Since 𝑋
𝑒𝑛

≤ 𝐵
𝐼𝐺

𝐵
𝑇

𝐼𝐺

≥ 0, 𝑌
𝑒𝑛

≤ 𝐶
𝑇

𝐼𝐺

𝐶
𝐼𝐺

≥ 0,
𝑃
𝐼𝐺

> 0 and𝑄
𝐼𝐺

> 0, therefore, the realization (𝐴, 𝐵
𝐼𝐺𝑆

, 𝐶
𝐼𝐺𝑆

)

is minimal. Moreover, the reduced order models are stable.

Theorem 5. The following error bound for the proposed tech-
nique holds if the rank conditions rank [𝐵

𝐼𝐺

𝐵] = rank[𝐵
𝐼𝐺

]

and rank [
𝐶

𝐼𝐺

𝐶

] = rank[𝐶
𝐼𝐺

] (which follows from [2, 28, 29,
38]) are satisfied

(𝑖)
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻

𝑙

(𝑧)) 𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩∞

≤ 2
󵄩󵄩󵄩󵄩𝑊𝑜(𝑧)𝐿𝐼𝐺

󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝐾𝐼𝐺𝑉𝑖(𝑧)
󵄩󵄩󵄩󵄩∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

(𝑖𝑖)
󵄩󵄩󵄩󵄩(𝐻 (𝑧) − 𝐻

𝑙

(𝑧)) 𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩∞

≤ 2
󵄩󵄩󵄩󵄩𝐾𝐼𝐺𝑉𝑖 (𝑧)

󵄩󵄩󵄩󵄩∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

(𝑖𝑖𝑖)
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻

𝑙

(𝑧))
󵄩󵄩󵄩󵄩∞

≤ 2
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) 𝐿𝐼𝐺

󵄩󵄩󵄩󵄩∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

,

(22)

where

𝐿
𝐼𝐺

= {
𝐶𝑉(𝑅

𝐼𝐺

− 𝑟
𝑛

𝐼)
−1/2 for 𝑟

𝑛

< 0

𝐶𝑉𝑅
−1/2

𝐼𝐺

for 𝑟
𝑛

≥ 0,

𝐾
𝐼𝐺

= {
(𝑆
𝐼𝐺

− 𝑠
𝑛

𝐼)
−1/2

𝑈
𝑇

𝐵 for 𝑠
𝑛

< 0

𝑆
−1/2

𝐼𝐺

𝑈
𝑇

𝐵 for 𝑠
𝑛

≥ 0.

(23)

Proof. We show proof of (i) (whereas (ii) and (iii) are special
cases of (i)). Since the rank conditions rank [𝐵

𝐼𝐺

𝐵] =

rank[𝐵
𝐼𝐺

] and rank [
𝐶

𝐼𝐺

𝐶

] = rank[𝐶
𝐼𝐺

] are satisfied,

the relationships 𝐵 = 𝐵
𝐼𝐺

𝐾
𝐼𝐺

and 𝐶 = 𝐿
𝐼𝐺

𝐶
𝐼𝐺

hold. By
partitioning 𝐵

𝐼𝐺

= [
𝐵

𝐼𝐺1

𝐵

𝐼𝐺2

], 𝐶
𝐼𝐺

= [𝐶
𝐼𝐺

1

𝐶
𝐼𝐺

2
] and then

substituting 𝐵
1

= 𝐵
𝐼𝐺

1

𝐾
𝐼𝐺

, 𝐶
1

= 𝐿
𝐼𝐺

𝐶
𝐼𝐺

1

, respectively, yields
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻

𝑙

(𝑧)) 𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩∞

=
󵄩󵄩󵄩󵄩󵄩
𝑊
𝑜

(𝑧) (𝐶(𝑧𝐼 − 𝐴)
−1

𝐵 − 𝐶
1

(𝑧𝐼 − 𝐴
11

)
−1

𝐵
1

)𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩󵄩
∞

=
󵄩󵄩󵄩󵄩󵄩
𝑊
𝑜

(𝑧) (𝐿
𝐼𝐺

𝐶
𝐼𝐺

(𝑧𝐼 − 𝐴)
−1

𝐵
𝐼𝐺

𝐾
𝐼𝐺

−𝐿
𝐼𝐺

𝐶
𝐼𝐺

1

(𝑧𝐼 − 𝐴
11

)
−1

𝐵
𝐼𝐺

1

𝐾
𝐼𝐺

)𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩󵄩
∞

=
󵄩󵄩󵄩󵄩󵄩
𝑊
𝑜

(𝑧) 𝐿
𝐼𝐺

(𝐶
𝐼𝐺

(𝑧𝐼 − 𝐴)
−1

𝐵
𝐼𝐺

−𝐶
𝐼𝐺

1

(𝑧𝐼 − 𝐴
11

)
−1

𝐵
𝐼𝐺

1

)𝐾
𝐼𝐺

𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩󵄩
∞

=
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) 𝐿𝐼𝐺

󵄩󵄩󵄩󵄩∞

×
󵄩󵄩󵄩󵄩󵄩
(𝐶
𝐼𝐺

(𝑧𝐼 − 𝐴)
−1

𝐵
𝐼𝐺

− 𝐶
𝐼𝐺

1

(𝑧𝐼 − 𝐴
11

)
−1

𝐵
𝐼𝐺

1

)
󵄩󵄩󵄩󵄩󵄩
∞

×
󵄩󵄩󵄩󵄩𝐾𝐼𝐺𝑉𝑖 (𝑧)

󵄩󵄩󵄩󵄩∞
.

(24)

If {𝐴
11

, 𝐵
𝐼𝐺

1

, 𝐶
𝐼𝐺

1

} is reduced order model obtained by
partitioning a balanced realization {𝐴, 𝐵

𝐼𝐺

, 𝐶
𝐼𝐺

}, we have
[7, 39]

󵄩󵄩󵄩󵄩󵄩
(𝐶
𝐼𝐺

(𝑧𝐼 − 𝐴)
−1

𝐵
𝐼𝐺

− 𝐶
𝐼𝐺

1

(𝑧𝐼 − 𝐴
11

)
−1

𝐵
𝐼𝐺

1

)
󵄩󵄩󵄩󵄩󵄩∞

≤ 2

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

.

(25)

Therefore,
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻

𝑙

(𝑧)) 𝑉
𝑖

(𝑧)
󵄩󵄩󵄩󵄩∞

≤ 2
󵄩󵄩󵄩󵄩𝑊𝑜 (𝑧) 𝐿𝐼𝐺

󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝐾𝐼𝐺𝑉𝑖 (𝑧)
󵄩󵄩󵄩󵄩∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

.

(26)

Remark 6. For the case when symmetric matrices 𝑋
𝑒𝑛

≥

0 and 𝑌
𝑒𝑛

≥ 0, then 𝑃
𝑒𝑛

= 𝑃
𝐶𝑆

= 𝑃
𝑉𝑑

= 𝑃
𝐼𝐺

and
𝑄
𝑒𝑛

= 𝑄
𝐶𝑆

= 𝑄
𝑉𝑑

= 𝑄
𝐼𝐺

. However, when matrices 𝑋
𝑒𝑛

and 𝑌
𝑒𝑛

are indefinite, then 𝑃
𝑒𝑛

< 𝑃
𝐼𝐺

and 𝑄
𝑒𝑛

< 𝑄
𝐼𝐺

.
Moreover, frequency weighted Hankel singular values satisfy
(𝜆
𝑗

[𝑃
𝑒𝑛

𝑄
𝑒𝑛

])
1/2

≤ (𝜆
𝑗

[𝑃
𝐼𝐺

𝑄
𝐼𝐺

])
1/2.

Remark 7. For the case when input𝑉
𝑖

(𝑧)weights are co-inner
and output 𝑊

𝑜

(𝑧) weights are inner [40], then 𝑃 = 𝑃
𝑒𝑛

=

𝑃
𝐶𝑆

= 𝑃
𝑉𝑑

= 𝑃
𝐼𝐺

and 𝑄 = 𝑄
𝑒𝑛

= 𝑄
𝐶𝑆

= 𝑄
𝑉𝑑

= 𝑄
𝐼𝐺

, where 𝑃

and 𝑄 are unweighted Gramians defined as

𝐴𝑃𝐴
𝑇

− 𝑃 + 𝐵𝐵
𝑇

= 0,

𝐴
𝑇

𝑄𝐴 − 𝑄 + 𝐶
𝑇

𝐶 = 0.

(27)

Remark 8. For the case when the symmetricmatrices𝑋
𝑒𝑛

≥ 0

and 𝑌
𝑒𝑛

≥ 0, the reduced order models obtained using Enns
[25], Campbell et al.’s [37], Varga and Anderson’s [38], and
proposed technique are same.
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3.2. Computational Aspects. The frequency weighted bal-
anced truncation model reduction techniques balance the
original system and then truncate the balanced realization
to get the desired reduced order system. The balancing pro-
cedure involves computation of transformation matrix from
controllability and observability Gramians. Sometimes these
matrices become numerically low rank especially in large
scale systems (possibly) due to rapid decay of their eigen-
values [3]. Due to this reason, balancing procedure becomes
inefficient. Accuracy enhancing techniques for different fre-
quency weighted model reduction techniques appear in
[4, 29].

For unweighted case, Hammarling’s technique [41] is
used to obtained Cholesky factors of Gramian matrices from
original system realization without actually computing con-
trollability and observability Gramian matrices, respectively.

In frequencyweighted techniques, Cholesky factors of the
Gramian matrices are obtained from the augmented system
realizations. Let 𝑆 and 𝑅 be the Cholesky factors of the aug-
mented system Gramians matrices 𝑃

𝑏𝑖

and𝑄
𝑏𝑜

of (4) and (5),
respectively,

𝑃
𝑏𝑖

= 𝑆 𝑆
𝑇

= [
𝑆
11

𝑆
12

0 𝑆
22

][

[

𝑆
𝑇

11

0

𝑆
𝑇

12

𝑆
𝑇

22

]

]

= [

[

𝑆
11

𝑆
𝑇

11

+ 𝑆
12

𝑆
𝑇

12

𝑆
12

𝑆
𝑇

22

𝑆
22

𝑆
𝑇

12

𝑆
22

𝑆
𝑇

22

]

]

= [

[

𝑃
𝑒𝑛

𝑃
12

𝑃
𝑇

12

𝑃
𝑉

]

]

,

𝑄
𝑏𝑜

= 𝑅
𝑇

𝑅 = [

[

𝑅
𝑇

11

0

𝑅
𝑇

12

𝑅
𝑇

22

]

]

[

[

𝑅
11

𝑅
12

0 𝑅
22

]

]

= [

[

𝑅
𝑇

11

𝑅
11

𝑅
𝑇

11

𝑅
12

𝑅
𝑇

12

𝑅
11

𝑅
𝑇

22

𝑅
22

+ 𝑅
𝑇

12

𝑅
12

]

]

= [
𝑄
𝑊

𝑄
𝑇

12

𝑄
12

𝑄
𝑒𝑛

] .

(28)

By making use of Cholesky factors 𝑆 and 𝑅 calculated
above, the Cholesky factors corresponding to Gramians in
frequency weighted model reduction techniques like Enns
[25], Campbell et al.’s [37], Varga and Anderson’s [38], and
proposed technique can be obtained as follows:

(1) Enns Technique.The Cholesky factors 𝑆
𝑒𝑛

= [𝑆
11

𝑆
12

] and
𝑅
𝑒𝑛

= [
𝑅

12

𝑅

22

] satisfy [29]

𝑃
𝑒𝑛

= 𝑆
𝑒𝑛

𝑆
𝑇

𝑒𝑛

= 𝑆
11

𝑆
𝑇

11

+ 𝑆
12

𝑆
𝑇

12

= [𝑆
11

𝑆
12

] [

[

𝑆
𝑇

11

𝑆
𝑇

22

]

]

,

𝑄
𝑒𝑛

= 𝑅
𝑇

𝑒𝑛

𝑅
𝑒𝑛

= 𝑅
𝑇

22

𝑅
22

+ 𝑅
𝑇

12

𝑅
12

= [𝑅
𝑇

22

𝑅
𝑇

12

] [
𝑅
22

𝑅
12

] .

(29)

(2) Campbell et al.’s Technique. The Cholesky factors 𝑆
𝐶𝑆

and
𝑅
𝐶𝑆

satisfy 𝑃
𝐶𝑆

= 𝑆
𝐶𝑆

𝑆
𝑇

𝐶𝑆

and 𝑄
𝐶𝑆

= 𝑅
𝑇

𝐶𝑆

𝑅
𝐶𝑆

[4].

(3) Varga and Anderson’s Technique.TheCholesky factors 𝑆
𝑉𝑑

and 𝑅
𝑉𝑑

satisfy 𝑃
𝑉𝑑

= 𝑆
𝑉𝑑

𝑆
𝑇

𝑉𝑑

and 𝑄
𝑉𝑑

= 𝑅
𝑇

𝑉𝑑

𝑅
𝑉𝑑

[4].

(4) Proposed Technique. The Cholesky factors 𝑆
𝐼𝐺

and 𝑅
𝐼𝐺

satisfy 𝑃
𝐼𝐺

= 𝑆
𝐼𝐺

𝑆
𝑇

𝐼𝐺

and 𝑄
𝐼𝐺

= 𝑅
𝑇

𝐼𝐺

𝑅
𝐼𝐺

.
In the following we establish a relationship between

Cholesky factors of Gramian matrices used in Enns and pro-
posed techniques. Equations (18) and (19) can be expressed
as

𝐴 (𝑃
𝑒𝑛

+ 𝑃
𝑎𝑑

) 𝐴
𝑇

− (𝑃
𝑒𝑛

+ 𝑃
𝑎𝑑

)

+ (𝑋
𝑒𝑛

− 𝑠
𝑛

𝐼) = 0, for 𝑠
𝑛

< 0,

𝐴𝑃
𝑒𝑛

𝐴
𝑇

− 𝑃
𝑒𝑛

+ 𝑋
𝑒𝑛

= 0, for 𝑠
𝑛

≥ 0,

𝐴
𝑇

(𝑄
𝑒𝑛

+ 𝑄
𝑎𝑑

) 𝐴 − (𝑄
𝑒𝑛

+ 𝑄
𝑎𝑑

)

+ (𝑌
𝑒𝑛

− 𝑟
𝑛

𝐼) = 0, for 𝑟
𝑛

< 0,

𝐴
𝑇

𝑄
𝑒𝑛

𝐴 − 𝑄
𝑒𝑛

+ 𝑌
𝑒𝑛

= 0, for 𝑟
𝑛

≥ 0,

𝐴𝑃
𝑎𝑑

𝐴
𝑇

− 𝑃
𝑎𝑑

− 𝑠
𝑛

𝐼 = 0, for 𝑠
𝑛

< 0,

𝐴
𝑇

𝑄
𝑎𝑑

𝐴 − 𝑄
𝑎𝑑

− 𝑟
𝑛

𝐼 = 0, for 𝑟
𝑛

< 0.

(30)

Since

𝑋
𝐼𝐺

= 𝑈(𝑆 − 𝑠
𝑛

𝐼)
1/2

(𝑆 − 𝑠
𝑛

𝐼)
1/2

𝑈
𝑇

= 𝑋
𝑒𝑛

− 𝑠
𝑛

𝐼, for 𝑠
𝑛

< 0,

𝑋
𝐼𝐺

= 𝑈(𝑆)
1/2

(𝑆)
1/2

𝑈
𝑇

= 𝑋
𝑒𝑛

, for 𝑠
𝑛

≥ 0,

𝑌
𝐼𝐺

= 𝑉
𝑇

(𝑅 − 𝑟
𝑛

𝐼)
1/2

(𝑅 − 𝑟
𝑛

𝐼)
1/2

𝑉 = 𝑌
𝑒𝑛

− 𝑟
𝑛

𝐼, for 𝑟
𝑛

< 0

𝑌
𝐼𝐺

= 𝑉
𝑇

(𝑅)
1/2

(𝑅)
1/2

𝑉 = 𝑌
𝑒𝑛

, for 𝑟
𝑛

≥ 0.

(31)

By using Hammarling technique to calculate Cholesky
factors of Gramians 𝑃

𝑎𝑑

and 𝑄
𝑎𝑑

from realization
{𝐴,√−𝑠

𝑛

𝐼, √−𝑟
𝑛

𝐼, 𝐷}, we can write 𝑃
𝑎𝑑

= 𝑆
𝑎𝑑

𝑆
𝑇

𝑎𝑑

and
𝑄
𝑎𝑑

= 𝑅
𝑇

𝑎𝑑

𝑅
𝑎𝑑

. Therefore, frequency weighted controllability
𝑃
𝐼𝐺

(18) and observability 𝑄
𝐼𝐺

(19) Gramians can be
expressed as

𝑃
𝐼𝐺

= 𝑆
𝐼𝐺

𝑆
𝑇

𝐼𝐺

= 𝑃
𝑒𝑛

+ 𝑃
𝑎𝑑

= 𝑆
11

𝑆
𝑇

11

+ 𝑆
12

𝑆
𝑇

12

+ 𝑆
𝑎𝑑

𝑆
𝑇

𝑎𝑑

= [𝑆
11

𝑆
12

𝑆
𝑎𝑑

]

[
[
[
[
[

[

𝑆
𝑇

11

𝑆
𝑇

12

𝑆
𝑇

𝑎𝑑

]
]
]
]
]

]

,

(32)
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Table 1: Frequency weighted errors and error bounds comparison for reduced order models.

Weighting Order Enns technique [25]
Campbell et al.’s technique [37] Varga and Anderson’s technique [38] Proposed technique
Error Error bound Error Error bound Error Error bound

Two sided

1 21.1254 20.5953 1634.2 21.6491 725.7718 15.6065 2549.0
2 31.9647 32.8319 978.34 32.8863 433.8123 18.4571 1623.9
3 35.0441 32.3860 590.48 33.9063 255.7017 26.1274 998.92
4 28.7611 31.4710 236.41 30.4331 102.7518 30.7929 427.13
5 12.7538 29.5760 117.81 12.7660 50.4647 25.6547 203.36

Input

1 7.0257 7.1275 145.811 7.2356 92.6748 7.0140 242.5983
2 10.4643 10.7354 87.9789 10.7694 55.8603 10.6714 149.7017
3 11.2055 10.3852 53.0816 10.8477 32.9346 9.9857 90.8656
4 8.9654 10.0342 21.8067 9.6079 13.5877 8.4277 41.1182
5 2.4435 3.1720 10.4718 2.8446 6.3761 3.2061 16.5445

𝑄
𝐼𝐺

= 𝑅
𝑇

𝐼𝐺

𝑅
𝐼𝐺

= 𝑄
𝑒𝑛

+ 𝑄
𝑎𝑑

= 𝑅
𝑇

22

𝑅
22

+ 𝑅
𝑇

12

𝑅
12

+ 𝑅
𝑇

𝑎𝑑

𝑅
𝑎𝑑

= [𝑅
𝑇

22

𝑅
𝑇

12

𝑅
𝑇

𝑎𝑑

]
[
[

[

𝑅
22

𝑅
12

𝑅
𝑎𝑑

]
]

]

.

(33)

Remark 9. Note that, Cholesky factors for Enns and proposed
technique are computed directly from augmented system
realization using Hammarling technique without calculating
augmented system realization Gramian matrices 𝑃

𝑏𝑖

and𝑄
𝑏𝑜

.

4. Illustrative Examples

In this section, using numerical illustrative examples we show
the usefulness of the proposed technique in comparison
with existing frequency weighted balanced model reduction
techniques for discrete time systems. Note that, proposed
work deals with frequency weighted model reduction prob-
lem for discrete time systems, therefore, comparison is done
with existing frequency weighted balanced model reduction
techniques only.

Example 1. Consider (example C appeared in [26]) a 4th
order stable discrete time system

𝐻(𝑧) =
𝑧
3

𝑧4 + 1.1𝑧3 − 0.01𝑧2 − 0.275𝑧 − 0.06

(34)

with the following weightings

𝑉
𝑖

(𝑧) = 𝑊
𝑜

(𝑧) =
𝑧 + 0.9

𝑧 + 0.1
. (35)

The first order reduced model obtained by Enns [25]
technique is unstable while reduced order model obtained by
Campbell et al.’s, Varga and Anderson’s,and proposed tech-
niques is stable yielding frequency response errors 112.9338,
100.8739, and 94.116, respectively. Note that, proposed tech-
nique provides stability with relatively lower error when
compared to other techniques.

Example 2. Consider a 6th order stable low pass digital ellip-
tic filter with 0.2 dB of peak-to-peak ripple and a minimum
stopband attenuation of 20 dB represented by

𝐻(𝑧) = (0.1054𝑧
6

− 0.1944𝑧
5

+ 0.1187𝑧
4

−0.1187𝑧
2

+ 0.1944𝑧 − 0.1054)

× (𝑧
6

− 2.9621𝑧
5

+ 4.8325𝑧
4

− 4.9819𝑧
3

+ 3.5245𝑧
2

− 1.5262𝑧 + 0.3657)
−1

(36)

with the following input and output weightings, respectively,

𝑉
𝑖

(𝑧) =
𝑧
3

+ 3.0081𝑧
2

+ 1.9944𝑧 + 1.0325

𝑧3 + 0.2𝑧2 + 0.75𝑧 + 0.2

𝑊
𝑜

(𝑧) =
𝑧
3

+ 2.97𝑧
2

+ 2.9403𝑧 + 0.9703

𝑧3 + 1.1619𝑧2 + 0.6959𝑧 + 0.1378
.

(37)

Table 1 gives the comparison of error and error bounds
for reduced order systems obtained by Enns, Campbell et
al.’s, Varga and Anderson’s, and proposed techniques for the
input and two sided weighting cases. Note that, the proposed
technique mostly yields lower error as compared to other
techniques.

Example 3. Consider a 4th order stable discrete time system
[42]

𝐻(𝑧) =

10
−3

(3.315𝑧
3

− 4.9695𝑧
2

+ 2.1668𝑧 − 0.24002)

𝑧4 − 3.7035𝑧3 + 5.1957𝑧2 − 3.2718𝑧 + 0.77986

(38)

with the following input weighting:

𝑉
𝑖

(𝑧) =
𝑧
2

− 0.1𝑧 − 0.05

𝑧2 − 0.9𝑧 + 0.75
. (39)

Table 2 gives the comparison of error and error bounds
for reduced order systems obtained by Enns, Campbell et al.’s
Varga and Anderson’s and proposed techniques for the input
weighting case. Note that, the proposed technique compares
well and yields relatively lower error as compared to other
techniques.
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Table 2: Frequency weighted errors and error bounds comparison for reduced order models.

Weighting Order Enns technique [25]
Campbell et al.’s technique [37] Varga and Anderson’s technique [38] Proposed technique
Error Error bound Error Error bound Error Error bound

Input
1 0.0216 0.0245 0.6024 0.0241 0.3321 0.0240 0.6783
2 0.0021 0.0027 0.2582 0.0026 0.1403 0.0025 0.2853
3 0.0015 0.0025 0.0453 0.0023 0.0247 0.0021 0.0508

Table 3: Frequency weighted errors and error bounds comparison for reduced order models.

Weighting Order Enns technique [25]
Campbell et al.’s technique [37] Varga and Anderson’s technique [38] Proposed technique
Error Error bound Error Error bound Error Error bound

Output
1 1.7905 1.7898 8.2727 1.7900 5.6369 1.7867 6.2509
2 0.8967 0.8126 2.9832 0.8520 1.9243 0.7296 2.5083
3 0.5098 0.4868 1.4488 0.4979 0.9219 0.4740 0.9543

Example 4. Consider a 4th order stable low pass digital
Chebychev type 1 filter with 0.1 dB of peak-to-peak ripples in
the passband represented by

𝐻(𝑧) =
0.49𝑧
4

− 0.9799𝑧
2

+ 0.49

𝑧4 − 0.2893𝑧3 − 0.6629𝑧2 + 0.0246𝑧 + 0.2904

(40)

with the following output weighting:

𝑊
𝑜

(𝑧) =
𝑧 − 0.2

𝑧2 − 0.4𝑧 + 0.5
. (41)

Table 3 gives the comparison of error and error bounds
for reduced order systems obtained by Enns, Campbell et al.’s
Varga and Anderson’s and proposed techniques for output
weighting. Note that, the proposed technique compares
well and yields relatively lower error as compared to other
techniques.

5. Conclusion

A new frequency weighted technique for model reduction of
discrete time systems is explored. The reduced order models
obtained in the presence of input, output, and two sided
weightings are stable. A comparison with existing schemes
shows that proposed technique provides comparable results
(mostly produces lower error) for reduced order models.
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