Hindawi

Mobile Information Systems

Volume 2017, Article ID 3824765, 12 pages
https://doi.org/10.1155/2017/3824765

Research Article

Hindawi

A Parallel Strategy for Convolutional Neural Network Based on
Heterogeneous Cluster for Mobile Information System

Jilin Zhang,l’z"" b Junfeng Xiao,"? Jian Wan,">** Jianhua Yang,6
Yongjian Ren,"” Huayou Si,"? Li Zhou,"? and Hangdi Tu"?

!School of Computer and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

*Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education, Hangzhou, China

3College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China

*School of Information and Electronic Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
>Zhejiang Provincial Engineering Center on Media Data Cloud Processing and Analysis, Hangzhou, Zhejiang, China
SCollege of Computer Science and Technology, Zhejiang University, Hangzhou 310018, China

Correspondence should be addressed to Jian Wan; wanjian@hdu.edu.cn

Received 25 January 2017; Accepted 23 February 2017; Published 21 March 2017

Academic Editor: Jaegeol Yim

Copyright © 2017 Jilin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same
time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more
intelligent services for customers. More and more machine learning methods have been used in the field of mobile information
systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model
training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity
in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed
up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our
paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system.
The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce
the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural
network framework is more adaptive to different heterogeneous system environments. The experimental results show that the
proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

1. Introduction

Mobile devices are involved in our daily life, from online
shopping to social connection to working assistant. From
the business perspective, the information gathered from the
devices is so valuable that it can be used to learn customers’
expense characteristics and improve user experience. For
example, location is one of the key factors that are related
to users’ consumption behavior. We can recommend nearby
restaurants, shopping malls, and parks based on location, and
the function is implemented in many map applications like
Google Maps. For merchants, understanding user behavior
is very helpful to proactively provide potential services and

increase customer engagements [1, 2]. To take advantage of
the data analysis benefits, the first step is to figure out cus-
tomers’ consumption patterns. In this paper, we proposed a
novel delay synchronization based machine learning strategy
to improve pattern recognition and it laid a foundation for
intelligent business marketing.

Due to the increasing data volume, the data processing
is a huge challenge in mobile information systems. With
the development of machine learning, convolution neural
network has become a suitable method to deal with such large
data. Convolutional neural network is a special multistage
global training deep neural network model produced for
two-dimensional image recognition [3], which combines

https://doi.org/10.1155/2017/3824765

the traditional artificial neural network with deep learning
model. It not only has the general characteristics of the tradi-
tional artificial neural network, such as nonlinear, unlimited,
nonstationary, and nonconvexity characteristics [4], but also
contains more advantages, including fault-tolerant ability,
self-learning ability and localized receptive fields, weight
sharing, and pooling (secondary sampling). Convolutional
neural network can discover the characteristics directly from
a large number of image data and make a more profound
description of the vast amount of information contained in
the image. Convolutional neural network can achieve more
than two orders of magnitude improvement compared to
the human identification accuracy [5, 6]. With its power-
ful learning ability, convolutional neural network has been
widely used in target tracking [7, 8], face detection [9-11],
license plate detection [12], and handwriting recognition [13,
14]. It is an important research topic in machine learning,
computer vision, mobile information system, and other
scientific research fields.

The previous research has shown that the low model
quality can be improved by the large-scale iterative training
process, through modifying, testing, and evaluating the
parameters of the model (network structure, the initial value
of the range, learning methods, learning rate, etc.). However,
with the increasing of the model scale and the training data,
the time complexity of the training process is so large [15, 16]
which restricts the development of the convolutional neural
network. Several researchers [15, 17-20] proposed leveraging
a distributed and parallel’s data processing technology to
support the rapid expansion of the model scale and data size.

Existing convolutional neural network training frame-
work often takes the algorithm characteristics and the specific
machine attributes as the main basis for the system design and
optimization; however, this approach does not consider the
relationship of the parallel computing model and the com-
mon characteristics in machine learning applications. For
example, in the system architecture, (1) multicore and many-
core technology has been widely used in parallel computers
to increase the processing speed; besides, in order to reduce
the cost, heterogeneous cluster has gradually replaced the
traditional custom machine and becomes the mainstream
architecture structure. So the traditional parallel computing
is not suitable for the new era of big data parallel computing
system; (2) the traditional parallel computing mode is of
vertical expansion by leveraging more computing resources
to enhance the performance, but terabyte or petabyte data
processing and analysis require the horizontal expansion to
improve the performance. Due to the different expansion
requirements, the traditional methods of parallel computing
are difficult to solve modern big data application issues.

In the general characteristics of convolution neural net-
work application, the characteristics of parallel applications
changed. Machine learning or deep learning application is a
typical intensive computing iterative convergence application
which shows the characteristics of fault-tolerance, structural
dependence, nonuniform convergence, and sparse optimiza-
tion. Traditional parallel computing application guarantees
the accuracy of data parallelism or model parallelism by large
amount of data synchronization; it cannot make full use of

Mobile Information Systems

the characteristics of dense computing iterative convergence
algorithm to improve the performance of application.

The basic idea of existing large-scale convolutional neural
network parallelization is through reconstruction of con-
volutional neural network algorithm to give full play to
the system performance advantages, in order to improve
training efficiency and effect. However, such a program
usually has two key issues. First, optimization methods issue
means how to choose the optimization method to improve
the efficiency of intensive computing iterative convergence
algorithm. Second, the allocation of machine resources and
data communication between nodes all require developers to
manually perform single static tuning. Not only is it for too
long, but it also relies on the experience of developers heavily.
It is difficult to adapt to the structural changes in computing
resources.

In this paper, we proposed a new delay synchronization
parallel strategy for heterogeneous distributed cluster system.
It is based on the traditional data parallel and model par-
allel method and combined with stale synchronous parallel
parameter server system [21]. This strategy can shield the
factors in model training process such as the communication
bandwidth, memory bandwidth, memory hierarchy, memory
latency, thread management, and processing mode. The
training process will not be affected by the dynamic changes
of the computing resources if the resources are adequate.
As a result of decoupling the training algorithm and system
hardware resources, the proposed strategy successfully frees
developers from process calculation, resource allocation, and
data communication optimization, and it effectively improves
the program, especially in the heterogeneous environments.

Section 2 introduces an overview of the convolutional
neural network parallel strategy. Section 3 gives the problem
description, including training methods and existing prob-
lems of data parallel and model parallel. Section 4 describes
the process of delay synchronous parallel strategy. Section 5
presents the experimental results and corresponding analysis.
Section 6 summarizes the paper.

2. Related Work

This section mainly describes the strategies related to con-
volution neural network parallelization, including several
early methods of parallelization and the current mainstream
distributed data parallelization and model parallelization
method.

2.1. Early Parallelization Methods. FPGA (field programable
gate array), as a kind of computing intensive accelerator, can
accelerate algorithm by mapping it to the hardware module.
We usually use the method that combined the “host” with
“FPGA” [22], and the host used in the control of training
process of beginning and ending provides image data as
input in the forward propagation. The application of FPGA
based artificial neural network includes image segmentation
[23], image and video processing [24], intelligent image
analysis [25, 26], autonomous robot technology [27], and
sensorless control [28, 29]. But because this kind of parallel
method requires the programer to have the solid digital

Mobile Information Systems

FIGURE 2: The schema of model parallel.

circuit knowledge and the programing complexity is high, it
is barely used in practice.

With the rapid development of the GPU, the floating
point operation speed is 10 times faster than the same
period CPU; the researchers began to use GPU to accelerate
the convolution neural network algorithm [30-32]. GPU
contains a large (up to 10 G) shared memory and thousands
of streaming processors, suitable for the inherent parallel
structure of the convolutional neural network. GPU indeed
can accelerate the performance [33, 34], but, taking into
account the heterogeneous system, mapping algorithm to the
hardware system cannot give full play to the resources of
computing hardware.

When faced with the massive data of terabyte or petabyte,
MapReduce is used to solve the problem. Convolutional
neural network based on MapReduce parallel [35, 36] can
also achieve a better result, but with the increasing of
the number of parameters in the network model, and the
difficulty of model training are increased as well. MapRe-
duce is not suitable for high computing density iterative
algorithm.

2.2. Data Parallel and Model Parallel. Data parallel and model
parallel were proposed by Google distributed researcher Jeft
Dean and deep learning researcher Andrew Ng in 2012 on
the project called “Google Brain” [37, 38]. It referred to use
of CPU cluster architecture combined with model parallel
and data parallel implementation of the deep learning system
DistBelief.

Data parallel means that, in the process of the model
training, the training samples are divided and distributed
to different computing nodes, and each computing node
has a training model. After the end of each iteration, each
node is doing a weight update communication to update the
training model. Data parallel schema is shown in Figure 1
(37, 38].

In the model parallel, the model is divided into multiple
slices, each of which is stored into a single server, all of which
can be trained for a complete model. In the process of the
training, each node contains a complete model network but
only trained a specific part of the model. The model parallel is
more suitable for the large model; it can solve the problem of
limited training memory on a single machine. Adopting the
model parallel distributed method can reduce the size of the
occupied memory in each node. The model parallel scheme
is shown in Figure 2 [37, 38].

By using the two methods in heterogeneous system, it is
difficult for the convolutional neural network algorithm to
select the appropriate optimization method and the optimal
time, which means it cannot give full play to the advantages
of the computing resources of the heterogeneous system.
Moreover, when the hardware condition changes, the train-
ing algorithm cannot dynamically adapt to the computing
resources, so the efficiency of the training process is not
high.

In short, the existing parallel methods cannot fully
adapt to the heterogeneous architecture, so as not to take
advantages of heterogeneous architecture resource.

One iteration

Computing
node 1

Computing
node 3

Computing
node 4

/—/H

==] =
Computns 1))

))

= W=

Mobile Information Systems

Synchronization
barrier

=)
)
—
==

FIGURE 3: Training process of synchronous parallel.

Computing |
node 1

| 4

=)

Computing |
node 2

=) [3)
2>| ;

Computing |
node 3

=1

) |
)) B)
)

=) =) 8

Computing |
node 4

FIGURE 4: Training process of asynchronous parallel.

3. Problem Description

In this paper, we mainly introduce how to train the neural
network in the heterogeneous and distributed environment.
In this section, we first describe the training methods and
existing problems of data parallel and model parallel and then
further explain the factors that should be considered in the
parallelization process.

3.1. Data Parallel and Model Parallel Training Methods.
Both data parallel and model parallel can be categorized as
synchronous parallel and asynchronous parallel, parameter
server parallel and nonparametric server parallel.

Synchronous and asynchronous parallel processes are
shown in Figures 3 and 4. Synchronous parallel method
means that, in the process of model training, each update of
the training model is carried out after the completion of an
iteration of all computing nodes. And each node begins to
continue the next iteration of the training after they obtain
a new training model. But, in the method of asynchronous
parallel, when the iteration is completed, faster computing
node notices other computing nodes to update the weights
after the completion of one iteration but does not wait for
other nodes to be updated.

From Figures 3 and 4, we can see that the synchronous
parallel calculation requires the use of synchronization
barrier to force all the computing nodes to carry out a
parameter update after one iteration is completed. This
parallel method will lead to faster nodes waiting for the

other slower nodes, which greatly affected the model training
speed. So in the synchronous parallel training method, in
order to obtain a better training speed, the load balance
between each computing node is a stringent requirement.
In practical training, the current performance of the node
is affected by the external environment and other tasks in
the computing nodes. Hence, the current performance of
the node is random, eventually leading to the performance
of the synchronous parallel method being dragged down by
the slowest computing nodes. Because the model update is
completed at the same time, it will take up a lot of memory
and generate a data communication storm, making a higher
requirement for computing nodes.

In asynchronous parallel computing method, each node
directly updated model parameters immediately after the
calculation completion without waiting for other nodes to
complete their iteration. Asynchronous parallel method does
not need to consider the performance of computing nodes;
it only needs to focus on the calculation of the node itself.
Asynchronous parallel method in N nodes can get almost N
times the speedup. But, in the asynchronous parallel mode,
the training of the model parameters is not the newest,
making the training process easy to fall into local optimal
solution, resulting in poor network training convergence. So
the asynchronous parallel method cannot be used to model
training in practice.

As Figure 5 shows, in the process of model training, the
parameter server is used to complete the update process after
each iteration. Parameter servers can also be responsible for

Mobile Information Systems

Parameter
server form

Parameter server

Model

Update

Computing nodes

Nonparametric
server form

Computing nodes

Update

Update

Computing nodes

FIGURE 5: Comparison between parameter server parallel and nonparametric server parallel.

Centralized
storage

Parameter server

Decentralized
storage

Computing node 0 Computing node 1

Computing node 0 Computing node 1

Computing node 2 Computing node 3

FIGURE 6: Communication topology comparison between centralized storage and decentralized storage.

sending training data and test data. When the parameter
server is used, each computing node does not communicate
with the other; they communicate with the parameter server.

3.2. Considerations for Parallel. From the previous discussion
of data parallel and the model parallel training methods, we
summarize some factors which should be considered in the
implementation of the heterogeneous system.

3.2.1. Parallel Method. In the heterogeneous system, data
parallel was chosen to train the model in general. The
reasons are as follows: (1) in data parallel, each node has
the same training method for the network model. But,
in the model parallel, each node does not have the same
training method for the network model (because each node
is training different part of the model). So it is more
difficult to implement the model parallel compared to the
data parallel. (2) Convolutional neural network has the
structure dependence; the model parameter matrix update
order will affect the time of model training. Moreover,
because the network has fault-tolerant ability, it will recover
from error which was caused by the unreasonable task
division. When the error accumulated to a certain degree,
the network model may get a local optimal solution. In
addition, the division of the model is lack of theoretical
guidance.

3.2.2. Maximizing Effective Training Time: Delay Synchronous
Parallel. In the distributed and synchronous parallel envi-
ronment, the calculation nodes have to wait to synchronize
the parameters after each iteration in the training process.
In order to reduce the waiting time of computing nodes, the
load balancing between each node is required. However, in
the actual situation, the performance of the machine is often
affected by a lot of external factors, such as temperature,
and they is random factors. In the case of asynchronous
parallel environment, the computing of each node does not
interfere with that of the other. The faster nodes do not
have to wait for the slower nodes, and they can directly
update network model. This training mode is equivalent
to shielding the impact of different hardware computing
capabilities. Based on the characteristics of synchronous
parallel and asynchronous parallel, the delay synchronous
parallel is proposed. See Section 4 for details.

3.2.3. Parameter Storage and Communication Topology. The
choice of parameter storage will affect the communication
topology, and the topology of the communication will influ-
ence the weight parameters communication between each
node. Depending on whether or not the parameter server
is used, the storage of the parameters can be divided into
centralized storage and decentralized storage. The commu-
nication topology is shown in Figure 6. Centralized storage
can use the “master and slave” mode for implementation, the

Maximum interval 3

Mobile Information Systems

Synchronization

barrier

Computing |
node 1

=

Computing |

1
node 2

|>|>W|>
) B

)
)T

Computing |
node 3

)) |

))

Computing | 1

node 4

1
|1>|
| 1

))

FIGURE 7: Training method of delay synchronization parallel.

master node acts as a parameter server and a data transmitter,
and the slave node is used for training the model. Parameter
server contains a complete model and sends the model to
each slave node before training. The weight update will be
sent to the parameter server after the slave completes one
iteration. Parameter server will update the network model
as soon as it gets all the weight updates from slave nodes.
Then the master node will send the latest network model to
slave node for training. Because the centralized storage only
needed to send the weight update data to the master node
from the slave node, there is no exchange of data between
slave nodes, which greatly reduces the cost of communica-
tion. Decentralized storage can usually be implemented by
the end-to-end topology, and each endpoint is a calculation
node. Each node will send the weight update data to others
after one iteration is complete; this will cause too much
communication during the whole process of distributed
training. In order to reduce the communication overhead
in the training process, the centralized storage is used to
implement the distributed training.

In the specific implementation, centralized storage is
more challenging than decentralized storage. Firstly, the
master node in the centralized storage has high performance
requirements to coordinate the whole training process. Sec-
ondly, concurrency control between nodes should be consid-
ered in centralized storage. Finally, we need to consider the
storage mode of the training data to reduce communication
loss.

4. Delay Synchronization Parallel

From the section entitled “Maximizing Effective Training
Time: Delay Synchronous Parallel,” we know the purpose
of the delay synchronization parallel method is to ensure
that the model is not trapped in local optimal solution,
and the effective training time of the nodes is maximized.
The synchronous parallelism can ensure that the training
process does not fall into local optimal solution, and the
asynchronous approach can make the effective training time
maximized. So the delay synchronization parallel approach
combines the advantages of synchronous and asynchronous
parallelism. In this section, we first describe the training

method of the delay synchronization, then introduce the
training characteristics of this method, and finally show the
conditions the node should have to achieve for this method.

4.1. Training Method. For a network model training, assum-
ing that there are P calculation nodes, after the end of each
iteration, training faster computing nodes need to wait for
the slower training nodes to finish in synchronous update
method. While using delay synchronization in the parallel
way, faster computing node does not need to stop to wait
for the slower computing nodes, and faster computing node
can directly update the network model parameters and then
continue to the next iterative training. As Figure 7 shows,
when the slowest computing node is slower by s (s value
can be set by the user) times of iterations than the fastest
node, the fastest node is forced to wait until all the computing
nodes complete their one iteration, and then a training model
parameter update between all computing nodes is completed.

4.2. Training Characteristics. In order to reduce the influence
of communication process, we apply the server parameter
to implement delay synchronous parallel method; it means
parameters are stored and updated by the centralized node
and all the computing nodes only need communication with
the server parameter. Moreover, the update of the model also
depends on the parameters server for completion.

Synchronous parallel computing requires the use of the
synchronization barrier to force all the computing nodes to
do a parameter update after completing an iteration. In the
training method of synchronous parallel, in order to get a
better training speed, the load balance between the nodes
is strict. But, in the asynchronous parallel, each computing
node does not wait for the others after they complete one
iteration, and the completed nodes will directly update their
training model through parameter server. Asynchronous
parallel method does not need to consider the performance
of computing node; it only needs to focus on the calculation
of the computing nodes. It can be said that the asynchronous
parallel way can shield a series of problems caused by the
uneven performance between calculation nodes.

Delay synchronization parallel contains the character-
istics of synchronous parallel and asynchronous parallel;

Mobile Information Systems

Master MPI

Slaves

Data sending Send data D?t’fl
receiving
Pthread M.o d.el Pthread

training

Weight , Weight

integration < Send weight update — update

Model update Send model ——| Mo_d_el
: receiving

!

FIGURE 8: Training process of “master and slave” model.

Master

l

Thread|Thread | Thread
0 1 2

Thread

Thread|Thread|Thread
4 5 6

Receivé weight
date, send ne
model, and

ometimes updafe

the mrodel

Update

e model

Send tfaining
ddta

FIGURE 9: Design of the main process.

we adopt the asynchronous training approach in the early
training phase, when the difference between the fastest and
the slowest nodes is s iterations, using the synchronous
barrier to mandate all nodes to do a model update. All
nodes will continue to do asynchronous training until next
s iteration emerged. In the process of asynchronous training,
the training method can shield the effect caused by different
node performance, and the synchronous barrier can avoid the
local optimal solution. Therefore, the parallel method of delay
synchronization can get the same speedup as the computation
node as well as a better training result.

4.3. Implementation Conditions. In order to implement the
delay synchronization, the algorithm must meet the following
conditions: (1) the fastest node and the slowest node work
even if the interval is less than the number of s. (2) Each
computing node has a training model, with noninterference
between others. (3) Third one is using a parameter server to
update the model parameters and undertake date distribution
function.

5. Experimental Results and Discussions

In this section, we verify the effectiveness, performance, and
scalability of the delay synchronization parallel strategy and
present the influence of different maximum interval s on the

training results. The data set we used is the MNIST hand-
written digital font data set which includes 60000 pictures’
training data and 10000 pictures’ test data. We use the classic
LeNet-5 model for training, and the model includes one
input layer, one output layer, three convolutional layers, two
pooling layers and a fully connected layer. The batch size
of the training model is 64, and the maximum number of
iterations is 10000.

5.1. Experimental Framework. The training environment is
based on the MPI master-slave model of distributed data
parallel, the specific training process and the detailed design
of the master and slave nodes are shown in Figures 8, 9, and
10, respectively.

The main process consists of three thread groups: the data
distribution thread group, the parameter communication
thread group, and the model update thread. Data distribution
thread group and parameters communication thread group
have the same thread number which is the number of
computing processes. The data distribution thread group is
mainly used for distributing the training task and data to each
computing process. The parameters communication thread
group is mainly used for receiving the weight update data
sent by the computing processes and sending the new model
for computing processes after the model is updated. When
the interval between the fastest node and the slowest node

Mobile Information Systems

Slaves

Receive training data

Model

aining

Send wejght update

Receive new model

FIGURE 10: Design of the computing process.

100.00
95.00
90.00
85.00

80.00

Accuracy (%)

75.00

70.00

Y"\.DOQO(\I<t‘\DOOO<\l<f‘\.DwO(\IYt‘\.!D!)(JO(\l<t‘\KD<>O
S A A A AN A AN NN F

Number of processes

—+— Delay synchronization

—=— Data parallel

FIGURE 11: Delay synchronization parallel performance test: accuracy.

is less than the maximum interval number s, parameters
communication thread group also used to update the model.
Model is trained by the computing processes in a serialization
manner.

5.2. Effectiveness and Performance. In this section, we will
verify the effectiveness of the delay synchronization strategy
and evaluate its performance through experiments. Hard-
ware environment used in the experiments consists of two
heterogeneous server nodes connected by Gigabit Ethernet.
One node is configured with the 24 Intel Xeon E5-2620
V2 @2.10 GHz CPU and 128 G memory, and the operating
system is Red Hat Enterprise Linux Server release 6.3.
The other node is configured with the 32 Intel Xeon E5-
2670 @2.6 GHz CPU and 32 G memory, and the operating
system is Red Hat Enterprise Linux Server release 6.2. We
compare the performance of traditional data parallel and
delay synchronous parallel from aspects of time and accuracy.
The specific experimental results are shown in Figures 11 and
12, where the maximum interval s is set to 3, and the recording
time includes all the time from the distribution of the model
to the time of testing test data.

From Figures 11 and 12, we can see that, in the tradi-
tional data parallel and delay synchronous parallel training

methods, the accuracy rate is decreased with the increase of
computing nodes, and delay synchronization parallel accu-
racy rate declines faster than traditional data parallel. Because
of the communication cost, the training time is nonlinearly
reduced with the increasing of the computing processes.
When passing a certain computing process number, the time
even increased. In the best case, the delay synchronization
parallel strategy can get almost three times faster than the
traditional data parallel. When the process number is 10
and we add other unrelated process tasks in the training
environment, the training time of data parallel method
increased, but the delay synchronization scheme was not
affected. It can be seen that the delay synchronization parallel
strategy reduces the impact of the hardware environment;
that is, the training time is not easy to be dragged by a short
board of computing process.

5.3. Scalability. In order to verify the scalability of the delay
synchronization parallel strategy, the experiment environ-
ment consists of four heterogeneous servers connected with
the Gigabit Ethernet. One node is configured with the 24
Intel Xeon E5-2620 V2 @2.10 GHz CPU and 128 G memory,
and the operating system is Red Hat Enterprise Linux Server
release 6.3. Another three nodes are configured with the 32

Mobile Information Systems

3600

3100

2600

2100

1600

Training time (s)

1100

600

Number of processes

—+— Delay synchronization

—m— Data parallel

FIGURE 12: Delay synchronization parallel performance test: training time.

1800

1600

1400

1200

1000

Training time (s)

800 |

600

100.00

95.00

90.00

85.00

Accuracy (%)

80.00

75.00

70.00

Number of processes

—— Time
—=— Accuracy

FIGURE 13: Verification of scalability.

Intel Xeon E5-2670 @2.6 GHz CPU and 32 G memory, and
the operating system is Red Hat Enterprise Linux Server
release 6.2. The evaluation metrics of the experiment are the
same as the section entitled “Effectiveness and Performance,”
which are time and accuracy. In order to balance the iterative
tasks on each node, the training processes are distributed on
the four nodes, the maximum number of intervals in delay
synchronization parallel training is still three, and the specific
experimental results are in Figure 13.

From Figure 13, for accuracy, the training of four nodes
has almost the same effect as described in the section entitled
“Effectiveness and Performance,” and it presents a downward
trend with the increment of computing processes. From the
perspective of training time, compared to experiments in
section entitled “Effectiveness and Performance,” the overall
training time is increased as a result of more communica-
tion overhead. Same as section entitled “Effectiveness and
Performance,” the training time is nonlinearly decreased
with the increasing of the computing processes. Time may
increase after the number of computing processes passes a
certain value. The experimental results show that the delay
synchronization strategy has good scalability, but this kind of
good scalability is inevitable to involve a certain amount of
communication cost.

5.4. The Maximum Interval Influence on Model Training Pro-
cess. Delay synchronous parallel strategy is a combination of
the synchronous parallel strategy and asynchronous parallel
strategy. When the fastest node is s (the maximum interval)
iteration(s) faster than the slowest node, the strategy uses
the mandatory synchronization barrier to prevent the model
divergence from falling into local optimal solution. This
section verifies the effects of different maximum interval
s on the model training. The experimental environment
is the same as described in section entitled “Effectiveness
and Performance,” which is the two heterogeneous servers
connected by Gigabit Ethernet. The time and the effect of
the training process were tested with the maximum interval
of 1, 2, and 3, and the results are presented in Figures 14
and 15.

From Figures 14 and 15, we can see that, with the increas-
ing of the maximum interval, model training time decreases,
but the accuracy of the model was effected dramatically
with the computing process increase. Hence, considering
the influence of both time and accuracy, we prefer to select
smaller interval.

Based on the experimental results, we can see that the
proposed delay synchronization parallel strategy indeed has
a better performance.

10

1800 ~

1600

1400

1200

Training time (s)

1000

800

600

Mobile Information Systems

Number of processes

—m— Maximum interval 1
—4— Maximum interval 2
Maximum interval 3

FIGURE 14: The maximum interval influence on model training process: training time.

100.00 —
98.00 ¥
96.00
94.00
92.00
90.00
88.00 |-
86.00 -
84.00 |-
82.00 |-
80.00

Accuracy (%)

Number of processes

—m- Maximum interval 1
—— Maximum interval 2
Maximum interval 3

FIGURE 15: The maximum interval influence on model training process: accuracy.

6. Conclusion

Mobile device is an integral part of our daily life; business
market can be more intelligent to automatically provide
services based on users’ location and context environment. To
learn users” habits and patterns, machine learning strategies,
such as CNN, are applied. However, the existing parallel
implementation cannot fully use the parallel computing
architecture resources, making heterogeneous computing
resources wasted, especially in the mobile information system
field. To this end, this paper proposes a convolutional neural
network parallel strategy based on the heterogeneous clusters
named delay synchronization parallel strategy. The strategy
leverages the benefits of both synchronous parallel and
asynchronous parallel approaches. It can achieve almost 3
times the speedup compared to the data parallel. The scala-
bility of the strategy can make convolution neural network

framework more adaptive to different heterogeneous system
environments.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Jilin Zhang and Junfeng Xiao contributed equally to this work
and should be considered co-first authors.

Acknowledgments

This work is partly supported by the National Natural
Science Foundation of China under Grants no. 61672200

Mobile Information Systems

and no. 61572163; the National High Technology Research
and Development Program of China under Grant no.
2015AA01A303; the Zhejiang Natural Science Funds under
Grants no. LY16F020018 and no. LY17F020029; the Key
Laboratory of Complex Systems Modeling and Simulation
program of the Ministry of Education and the Chinese
Postdoctoral Science Foundation no. 2013M541780 and no.
2013M540492; Hangzhou Dianzi University construction
project of graduate enterprise innovation practice base
no. SJJD2014005; Research project of Zhejiang Provincial
Department of Education under Grant no. Y201016492.

References

(1] P. Racherla, C. Furner, and J. Babb, “Conceptualizing the
implications of mobile app usage and stickiness: a research
agenda,” 2012.

[2] M. Genger, G. Bilgin, O. Zan, and T. Voyvodaoglu, “A new
framework for increasing user engagement in mobile appli-
cations using machine learning techniques,” in Proceedings of
the International Conference on Design, User Experience, and
Usability, pp. 651-659, Springer, Las Vegas, Nev, USA, 2013.

[3] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Handwritten digit recognition
with a back-propagation network,” in Advances in Neural
Information Processing Systems, pp. 396-404, 1990.

[4] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face
recognition: a convolutional neural-network approach,” IEEE
Transactions on Neural Networks, vol. 8, no. 1, pp. 98-113, 1997.

[5] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep
neural networks for image classification,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’12), pp. 3642-3649, Providence, RI, USA, June 2012.

[6] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-
column deep neural network for traffic sign classification,”
Neural Networks, vol. 32, pp. 333-338, 2012.

[7] J. Fan, W. Xu, Y. Wu, and Y. Gong, “Human tracking using

convolutional neural networks,” IEEE Transactions on Neural

Networks, vol. 21, no. 10, pp. 1610-1623, 2010.

B. Babenko, M.-H. Yang, and S. Belongie, “Robust object track-

ing with online multiple instance learning,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp.

1619-1632, 2011.

[9] S.Naji, R. Zainuddin, S. A. Kareem, and H. A. Jalab, “Detecting
faces in colored images using multi-skin color models and
neural network with texture analysis,” Malaysian Journal of
Computer Science, vol. 26, no. 2, pp. 101-123, 2013.

[10] N. Rajput, P. Jain, and S. Shrivastava, “Face detection using
HMM-SVM method,” in Advances in Computer Science, Engi-
neering & Applications, pp. 835-842, Springer, Berlin, Germany,
2012.

[11] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network
cascade for facial point detection,” in Proceedings of the 26th
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’I3), pp. 3476-3483, IEEE, Portland, Ore, USA, June
2013.

[12] Y. Wen, Y. Lu, J. Yan, Z. Zhou, K. M. Von Deneen, and
P. Shi, “An algorithm for license plate recognition applied
to intelligent transportation system,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 3, pp. 830-845,
2011.

[8

1

[13] D. V. Pham, “Online handwriting recognition using multi
convolution neural networks,” in Proceedings of the Asia-Pacific
Conference on Simulated Evolution and Learning, pp. 310-319,
Springer, Hanoi, Vietnam, 2012.

[14] S. S. Ahranjany, E Razzazi, and M. H. Ghassemian, “A very
high accuracy handwritten character recognition system for
Farsi/Arabic digits using convolutional neural networks,” in
Proceedings of the IEEE 5th International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA ’10), pp.
1585-1592, IEEE, Changsha, China, September 2010.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in Pro-
ceedings of the 26th Annual Conference on Neural Information
Processing Systems (NIPS ’12), pp. 1097-1105, December 2012.

C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with convolu-
tions,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’15), pp. 1-9, Boston, Mass, USA,
June 2015.

A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” https://arxiv.org/abs/1404.5997.

[18] Y. Jia, E. Shelhamer, J. Donahue et al., “Caffe: Convolutional
architecture for fast feature embedding,” in Proceedings of
the ACM Conference on Multimedia (MM ’14), pp. 675-678,
November 2014.

[19] J. Yin, X. Lu, C. Pu, Z. Wu, and H. Chen, “JTangCSB: a cloud
service bus for cloud and enterprise application integration,”
IEEE Internet Computing, vol. 19, no. 1, pp. 35-43, 2015.

[20] D. Povey, A. Ghoshal, G. Boulianne et al., “The Kaldi speech
recognition toolkit,” in Proceedings of the IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding (No. EPFL-
CONF-192584), 1IEEE Signal Processing Society, Waikoloa,
Hawaii, USA, 2011.

[21] Q. Ho,J. Cipar, H. Cui et al., “More effective distributed ML via
a stale synchronous parallel parameter server;,” in Advances in
Neural Information Processing Systems, pp. 12231231, 2013.

[22] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and
E. Culurciello, “Hardware accelerated convolutional neural
networks for synthetic vision systems,” in Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS
’10), pp. 257-260, IEEE, Paris, France, May-June 2010.

[23] R. Hemalatha, N. Santhiyakumari, and S. Suresh, “Implemen-
tation of medical image segmentation using Virtex FPGA kit,”
in Proceedings of the 4th International Conference on Signal
Processing and Communication Engineering Systems (SPACES
’15), pp- 358-362, January 2015.

J. G. Pandey, A. Karmakar, and S. Gurunarayanan, “Architec-
tures and algorithms for image and video processing using
FPGA-based platform,” in Proceedings of the 18th International
Symposium on VLSI Design and Test (VDAT ’I4), July 2014.

[25] E. C. Pedrino, O. Morandin Jr., E. R. R. Kato, and V. O.
Roda, “Intelligent FPGA based system for shape recognition,”
in Proceedings of the 7th Southern Conference on Programmable
Logic (SPL ’11), pp. 197-202, IEEE, Cérdoba, Spain, April 2011.

[26] A. Zawadzki and M. Gorgon, “Automatically controlled pan-
tilt smart camera with FPGA based image analysis system
dedicated to real-time tracking of a moving object,” Journal of
Systems Architecture, vol. 61, no. 10, pp. 681-692, 2015.

[27] T. Nakamura, Y. Touma, H. Hagiwara, K. Asami, and M.
Komori, “Scene recognition based on gradient feature for
autonomous mobile robot and its FPGA implementation,” in
Proceedings of the 4th International Conference on Informatics,

[16

(17

(24

https://arxiv.org/abs/1404.5997

12

(34]

(35]

(36]

(37]

(38]

Electronics and Vision (ICIEV ’I5), pp. 1-4, IEEE Computer
Society, Kitakyushu, Japan, June 2015.

L. Idkhajine, E. Monmasson, and A. Maalouf, “Fully FPGA-
based sensorless control for synchronous AC drive using an
extended Kalman filter,” IEEE Transactions on Industrial Elec-
tronics, vol. 59, no. 10, pp. 3908-3918, 2012.

S. Narjess, T. Ramzi, and M. M. Faouzi, “Implementation of
sensorless control of an induction motor on FPGA using Xilinx
system generator,” Journal of Theoretical & Applied Information
Technology, vol. 92, no. 2, pp. 322-334, 2016.

K. Yu, “Large-scale deep learning at Baidu,” in Proceedings of the
the 22nd ACM International Conference, pp. 2211-2212, ACM,
San Francisco, Calif, USA, October 2013.

A. Coates, “Deep learning with COTS HPC systems,” in Pro-
ceedings of the International Conference on Machine Learning
(ICML ’13), pp. 1337-1345, Atlanta, Ga, USA, 2013.

O. Yadan, K. Adams, Y. Taigman, and M. A. Ranzato, “Multi-
GPU training of convnets,” https://arxiv.org/abs/1312.5853.

R. Uetz and S. Behnke, “Large-scale object recognition with
CUDA-accelerated hierarchical neural networks,” in Proceed-
ings of the IEEE International Conference on Intelligent Comput-
ing and Intelligent Systems (ICIS °09), vol. 1, pp. 536-541, IEEE,
Shanghai, China, November 2009.

D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and
J. Schmidhuber, “Flexible, high performance convolutional
neural networks for image classification,” in Proceedings of the
22nd International Joint Conference on Artificial Intelligence
(IICAI '11), pp. 1237-1242, July 2011.

Z.Liu, H. Li, and G. Miao, “MapReduce-based backpropagation
neural network over large scale mobile data,” in Proceedings of
the 6th International Conference on Natural Computation (ICNC
’10), vol. 4, pp. 1726-1730, IEEE, Yantai, China, August 2010.

Q. Wang, J. Zhao, D. Gong, Y. Shen, M. Li, and Y. Lei,
“Parallelizing convolutional neural networks for action event
recognition in surveillance videos,” International Journal of
Parallel Programming, 2016.

Q. V. Le, “Building high-level features using large scale unsu-
pervised learning,” in Proceedings of the 38th IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP
13), pp- 8595-8598, Vancouver, Canada, May 2013.

J. Dean, G. Corrado, R. Monga et al., “Large scale distributed
deep networks,” in Advances in Neural Information Processing
Systems, pp. 1223-1231, 2012.

Mobile Information Systems

https://arxiv.org/abs/1312.5853

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
iomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

