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Data association is one of the key problems in the SLAM community. Several data association failures may cause the SLAM results
to be divergent. Data association performance in SLAM is affected by both data association methods and sensor information. Two
measures of handling sensor information are introduced herein to enhance data association performance in SLAM. For the first
measure, truncating strategy of limited features, instead of all matched features, is used for observation update. These features are
selected according to an information variable. This truncating strategy is used to lower the effect of false matched features. For
the other measure, a special rejecting mechanism is designed to reject suspected observations. When the predicted robot pose
is obviously different from the updated robot pose, all observed sensor information at this moment is discarded. The rejecting
mechanism aims at eliminating accidental sensor information. Experimental results indicate that the introducedmeasures perform
well in improving the stability of data association in SLAM.These measures are of extraordinary value for real SLAM applications.

1. Introduction

The simultaneous localization and map building (SLAM)
problem asks if it is possible for an autonomous vehicle to
start in an unknown location in an unknown environment
and then to incrementally build a map of this environment
while simultaneously using this map to compute absolute
vehicle location [1]. The SLAM solution has been seen as
the core of the mobile robotics community in the past two
decades as it could provide methods to make a robot to be
truly autonomous.

SLAM data association is often mentioned as “registra-
tion.” Itmeans that when an observation from a sensor is used
to estimate the movement of a robot or to update existing
data in a map, it must be clear whether the observation
corresponds to the existing data in the map or not. SLAM
data association attracts the attention of many researchers
all over the world. Some data association solutions have
been proposed in the past decade. As for different sensors,
the data association method differs to some extent. A laser
range finder and a camera are the two common sensors in
SLAM. In the laser range finder, SLAM data association can

be divided into two categories: feature-based and scan-based
approaches. As for the camera sensor, SLAM data association
can be divided into three categories: feature-based methods,
appearance-based methods, and hybrid methods.

When the feature-based approach is concerned, some
well-known data association algorithms in SLAM include
NN (Nearest Neighbor) [1, 2], JCBB (Joint Compatibility
Branch and Bound) [3], MHT (Multihypothesis Tracker) [4],
MDA (Multidimensional Assignment) [5], DJNN (Dynamic
Joint Nearest Neighbor) [6], and HOHCT (highest order
hypothesis compatibility test) [7]. In addition, Bacca et al.
[8, 9] propose a system for long-term SLAM based on the
feature stability histogram (FSH) model which is inspired by
the human memory model. With a camera or other vision
sensors, Scaramuzza [10] used single feature correspondence
for motion estimation. He provided 1-point RANSAC and
histogram voting to remove outliers. These data association
methods aim to improve the performance of the data associ-
ation process.

The scan-based approach is another important data asso-
ciationmethod in SLAM. It associates the adjacent scans with
ICP [11] or ICP’s variants [12, 13].The feature-based approach
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could be used as a remedy for the scan-based approach when
one intends to obtain a map with abundant and accurate
information.

Besides a laser range finder and optical camera, some
other sensors could also be used in SLAM. For example,
Magnabosco and Breckon [14] use a thermal sensor to solve
the SLAM problem.

With the study results listed above, it seems that data
association in SLAM is solved successfully. However, experi-
ences of solving the SLAM problem have shown that a small
quantity of data association failures may cause the SLAM
algorithm to diverge. And no data association algorithm can
ensure full accuracy and stability. The reason is that SLAM is
for unknown environments, which is of severe uncertainty.

The above data associationmethods are useful in the data
association process. But the data association performance in
SLAM is affected by both data association methods and sen-
sor information. Two measures of handling sensor informa-
tion are put forward to enhance data association performance
in SLAM. One is the truncating strategy of limited features,
which is applied before the observation update step.Theother
is the rejecting mechanism, which is applied after the data
association step. In short, two measures presented herein
are not for the data association process but, respectively, for
the prior step of observation update and the posteriori step
of the data association process. The truncating strategy is
suitable for feature-based data association approach, while
the rejecting mechanism is compatible with general SLAM
data association algorithms, such as feature-based approach
and scan-based approach. With the two presented measures,
observation uncertainty from the sensors and environment is
reduced dramatically.

2. Process of SLAM

SLAM includes localization and mapping. The localization
involves time update (prediction) and observation update.
The mapping differs according to the type of map. Feature-
based SLAM approach is emphasized herein. As for feature-
based SLAM, themap is made up ofmany features.When the
quantity of features is large, the computational burden is very
difficult. In order to improve the computational efficiency, the
“FastSLAM” [15] framework is adopted. The detailed process
of SLAM is as follows.

2.1. Prediction. The robot pose is predicted incrementally at
each time instance. Estimate of the robot pose includes its
mean and covariance. The predicted mean of the robot pose
at time 𝑘 is formulated as

x̂𝑖
𝑘,𝑘−1

= 𝑓 (x̂𝑖
𝑘−1

, u
𝑘
) , (1)

where x̂𝑖
𝑘−1

and u
𝑘
represent the estimated mean at time 𝑘− 1

and controlling inputs at time 𝑘.
The covariance of prediction at time 𝑘 is formulated as

P𝑖
𝑘,𝑘−1

= ∇𝑓P𝑖
𝑘−1
∇𝑓
𝑇
+Q
𝑘
, (2)

where∇𝑓 is the Jacobianmatrix of𝑓 evaluated at the estimate
x̂𝑖
𝑘,𝑘−1

.Q
𝑘
is the prediction noise.

2.2. Feature Extraction. Feature-based SLAM approach
needs a feature extraction step before data association. It
is very important to extract and choose reliable features
contained in the sensor information. Then, data association
methods like NN can be used to associate the extracted
features with the existing features of the map.The laser range
finder is a normal sensor used for collecting data in SLAM.
It is very important to extract and choose correct features
contained in the laser scan. The coordinate value is a basic
characteristic for each feature. Except for this, the shape and
size of a feature could be defined.

2.3. Data Association. DJNN [6] is adopted herein to match
the extracted features with the existing features in the map.
DJNN is a variant of NN (Nearest Neighbor). NN [1, 2] has
two key ideas. One is the confirmation rule formulated as (3).
It is used as the criteria of testing compatibility between the
observed features and the existing features. The other is the
criteria of selecting the nearest neighbor. It means that the
observed feature with the shortest Mahalanobis distance is
selected as the matching feature of an existing feature in the
map.

The Mahalanobis distance between the 𝑖th observed
feature and the jth existing feature is described as follows:

𝑀
𝑖𝑗
= k𝑇
𝑖𝑗
S−1k
𝑖𝑗
, (3)

where k
𝑖𝑗
and S, respectively, represent the deviation and

covariance between the 𝑖th observed feature and the 𝑗th
existing feature.

Assuming that the deviation k
𝑖𝑗
is a Gaussian distribution,

𝑀
𝑖𝑗
meets the 𝜒2 distribution.𝑀

𝑖𝑗
should meet the following

formula:

𝑀
𝑖𝑗
≤ 𝜒
2

𝑑,1−𝜕
, (4)

where𝑑 = dim(z
𝑖
). 𝑑 equals 2 normally. 1−𝜕 is the confidence

value, which is usually set as 0.95.
If there are several existing features compatible with

formula (4), the feature with the smallest regular distance is
selected as the matching feature of the observed feature. The
regular distance is formulated as the following equation:

𝑁
𝑘
= min
𝑗

(k𝑇
𝑖𝑗
S−1k
𝑖𝑗
+ ln |S|) . (5)

“Nearest Neighbor” (NN) is an easy and applicable
data association algorithm in SLAM. However, the accuracy
of NN is susceptible to environments. In DJNN [6], two
improvements are introduced to enhance its robustness.
One is eliminating the interference among multiple matched
features with the correlation of all observations. The other
is dynamically filtrating spurious features with the help of
continuous association results.

DJNN is practical for real applications. However, it
cannot ensure full reliability. In this paper, we set some
constraint conditions to improve the robustness of DJNN in
practical applications. The truncating strategy is introduced
into the data association step, aiming at lowering the effect
of false matched features. When more than three features are
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Figure 1: Intelligent vehicle for data collection.

matched in the data association process, only three features
are used to update the robot pose andmap.The three features
are selected according to an information variable, which is
formulated as the following equation:

𝑇
𝑖
= ∑

𝑘

(𝑟
𝑖

𝑘
| n
𝑘
, 𝜃
𝑘
) , (6)

where 𝑇𝑖 is the information variable for the 𝑖th feature. 𝑟𝑖
𝑘

represents the measuring state of the 𝑖th feature at time 𝑘. n
𝑘

are the data association results at time 𝑘. And 𝜃
𝑘
represent

map features within the measuring range of a sensor. When
the 𝑖th feature is out of the measuring range of the sensor at
time 𝑘, 𝑟𝑖

𝑘
is assigned the value “0.” If the 𝑖th feature is in the

measuring range of the sensor at time 𝑘, 𝑟𝑖
𝑘
is assigned the

value “1” in the case that the 𝑖th feature is observed by the
sensor, and 𝑟𝑖

𝑘
is assigned the value “−1” in the case that the

𝑖th feature is not observed by the sensor.
Information variable integrates the data association

results of all data frames. It plays the role of a dynamic record
table. It records the data association results continuously.
With the help of the information variable, the data association
process becomes a dynamic and continuous process, rather
than a static and intermittent process. With the information
variable, pseudofeatures are filtrated dramatically. The com-
putational efficiency and the association accuracy are also
improved.

Up to three observed features are adopted to update the
estimation of the robot pose. This truncating strategy filters
unreliable features further. It helps improve the robustness
and stability of the whole SLAM process. Experiments in
Section 4 show that three features, instead of more than three
features, are enough for the estimation accuracy of the robot
pose.

2.4. Pose Update. Mean and covariance of robot pose at time
𝑘 are estimated with a particle filter. The robot pose estimate
of every particle is updated using an extended Kalman filter
(EKF) [16].

2.5. Map Update. Assuming that features in the map are
mutually independent, the map could be formulated as

𝑝 (m | x̂
1:𝑘
, z
1:𝑘
, u
1:𝑘
) =

𝑀
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) , (7)

wherem
𝑖
represents the 𝑖th feature.𝑀 represents the quantity

of features in the map. And the map m is factored into 𝑀
features as follows:

m = {𝜇
1
,P1, . . . ,𝜇𝑀,P𝑀} , (8)

where 𝜇𝑖 and P𝑖 are the mean and covariance of m
𝑖
, respec-

tively.They are updated recursively with an extended Kalman
filter (EKF) [16].

2.6. Evaluation. Data association results should be evaluated
with some constraints. If the data association results are not
compatible with the constraints, the results are considered to
be untrustworthy.The data association results should then be
corrected or discarded.

We evaluate the data association results with a rejecting
mechanism, which is described in the next chapter. The
rejection coefficient 𝜆 is computed with (10). If 𝜆 is bigger
than the threshold value, data association results are rejected.
Then, both 𝑢

𝑘
and 𝑧

𝑘
are discarded. The SLAM process is

temporarily interrupted at time 𝑘. 𝑢
𝑘
is estimated with 𝑢

𝑘−1

and 𝑢
𝑘+1

as follows:

𝑢
𝑘
=
(𝑢
𝑘−1

+ 𝑢
𝑘+1

)

2
. (9)

And the predicted robot pose x̂𝑖
𝑘,𝑘−1

is regarded as the
estimated robot pose x̂𝑖

𝑘
at time 𝑘. This means that when

any failure is found in the sensor data, obtained information
should be discarded and the robot pose is estimated tem-
porarily with the next frame of sensor observation.

After 𝑢
𝑘
is computed with (9), the prediction step is

processed again. Then, the prediction time is prolonged. If
prediction step 𝑘+1 can be fulfilled before observation 𝑧

𝑘+1
is

processed, the pose update and map update at time 𝑘 + 1 will
not be affected. This requires the computational efficiency of
the SLAM solution to be adequate.

3. Two Enhancing Measures for Data
Association in SLAM

For one thing, only a limited number of matched features
are used for pose update. If many features are matched in
the data association step, up to three features are accepted
for pose update. The selected features should have high
confidentiality. We select observed features according to the
information variable, which is formulated as (6). The value
of the information variable for every feature is an integer.
The value of a feature’s information variable is bigger, and the
feature’s confidentiality is better. This means that the selected
three features should be the top three features in the value of
the information variable.

On the other hand, the special rejecting mechanism is
designed to get rid of suspected observations. Some obtained
observation may be wrong without clear cause. When the
observed information and data association results do not
meet the rejectingmechanism, they are thrown away to avoid
potential mistakes. However, when the rejecting mechanism
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is triggered continuously, we handled the measured data
with different methods. When the rejecting mechanism is
triggered for the first time, the observation is regarded as a
random error. And the observed data is discarded. However,
when the rejecting mechanism is triggered for the second
consecutive time, the observed data should not be discarded
directly. The observation is regarded as a systematic error.
There are two reasons for the consecutive trigger. One reason
is that the SLAMsystem is wrong. If this is the case, the SLAM
system should be checked and adjusted. The other reason is
that somemeasured data is flawed. In general, measured data
of the inertial sensor is of low confidentiality, the reason being
that the inertial sensor used for prediction is normally of low
precision. Thus, the laser range finder or some other high
precision sensor is used to correct the prediction error in the
update step.

Parameters of the robot pose include the position coordi-
nates and the bearing.The bearing error ismuchmore serious
than the coordinate error in a long period of SLAM. Thus,
we define the robot bearing error as the rejecting coefficient,
which is formulated as the following equation:

𝜆 = 𝜙
𝑘
− 𝜙
𝑘,𝑘−1

, (10)

where 𝜆 is the rejecting coefficient, 𝜙
𝑘
is the updated bearing

of the robot at time 𝑘, and 𝜙
𝑘,𝑘−1

is the predicted bearing
of the robot at time 𝑘. 𝜆 should be less than the threshold
value, which is set to be 3∘ herein. The threshold value of
the rejecting coefficient is determined with the precision of
sensors and the applied environment. Detailed reasons are
explained at the end of Section 4.

The position error sourced from bearing error can be
formulated as follows:

𝑒
𝑝
= 𝑆 ∗ 𝜆, (11)

where 𝜆 and 𝑒
𝑝
represent the bearing error and the position

error, respectively. 𝑆 is the linear displacement. In the SLAM
process, the robot is athletic. When the robot moves, 𝑆 in (11)
increases accordingly. Thus, 𝑒

𝑝
increases gradually if 𝜆 is not

corrected.

4. Experiments

4.1. Experimental Models. The intelligent vehicle, shown in
Figure 1, of the ACFR (Australian Centre for Field Robotics)
[17] is used as the experimental mobile robot.

Experimental datasets are collected with a laser range
finder, a GPS, and an inertial sensor. The laser range finder is
used to detect the distance and bearing of obstacles.The iner-
tial sensor is used to measure the intelligent vehicle’s speed
and steering direction. The GPS is used to provide position
information of the robot. In the experiments, circular objects
like tree trunks are treated as the standard features of a map.

The range precision and bearing precision of the laser
range finder are 0.1 meter and 1∗𝜋/180 rad, respectively. The
precision of an inertial sensor is easy to change in different
environments. When the inertial sensor is static, its precision
is high. However, when the inertial sensor is mounted on a
dynamic robot or vehicle, its precision is low.This is especially
serious for the fluctuant topography. In general, the bearing
precision of an inertial sensor should be worse than 3∗𝜋/180
rad. Measuring precision of an inertial sensor is remarkably
lower than that of a laser range finder.

4.1.1. Pose Prediction. The structure of the intelligent vehicle
is shown in Figure 2. The vehicle’s pose is described as

XV (𝑘) = [𝑥V (𝑘) 𝑦V (𝑘) 𝜙V (𝑘)]
𝑇
, (12)

where 𝑥V(𝑘), 𝑦V(𝑘), and 𝜙V(𝑘), respectively, represent the
𝑥-coordinate, 𝑦-coordinate, and direction of the intelligent
vehicle at time 𝑘.

The robot pose is predicted with

[

[

𝑥
𝑘+1

𝑦
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𝜙
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]

]

=

[
[
[
[
[
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]
]
]
]
]
]

]

+ 𝜂
𝑋
, (13)

where Vc is the velocity of the intelligent vehicle’s back axle.
𝛼 is the steering angle of the intelligent vehicle. 𝜂

𝑋
is the

prediction noise.

4.1.2. Observation Model. The observation model is formu-
lated as follows:

z
𝑘,𝑖
= [

𝑟
𝑘,𝑖

𝜃
𝑘,𝑖

]

=
[
[

[
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2
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+ 𝜂
𝑍
,

(14)

where (𝑥
𝑘,𝑖
, 𝑦
𝑘,𝑖
) and (𝑥

𝑘,V, 𝑦𝑘,V) are position coordinates of
the 𝑖th feature and the intelligent vehicle at time 𝑘. 𝑟

𝑘,𝑖
is

the distance between the vehicle and the 𝑖th feature at time
𝑘, while 𝜃

𝑘,𝑖
is the 𝑖th feature’s bearing at time 𝑘. 𝑟

𝑘
and 𝜃

𝑘
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Figure 2: Structure of the intelligent vehicle.

(a) Robot path estimated with the inertial sensor (b) SLAM results of data association approach in
[15]

Estimated path
GPS record

Estimated feature

(c) SLAM results with the enhancing measures in this
paper

Figure 3: Experimental results with the “Victoria Park Dataset.”
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Estimated path
GPS record

Estimated feature

(a) SLAM results without the two presented measures

Estimated path
GPS record

Estimated feature
Rejecting position

(b) SLAM results with the rejecting mechanism

Estimated path
GPS record

Estimated feature
Rejecting position

(c) SLAM results with the rejecting mechanism and
the truncating strategy

Figure 4: Detailed comparison of SLAM results with the two enhancing measures.

are measured with a laser range finder. 𝜂
𝑍
represents the

observation noise.

4.2. Experiments with “Victoria Park Dataset”. “Victoria Park
Dataset” [17] is used to evaluate the performance of enhanc-
ing methods for data association in SLAM. Experimental
results are shown as Figures 3 and 4.

In Figure 3, the solid line shows the estimated path of
the intelligent vehicle and the dotted line represents the
intelligent vehicle’s routemeasured withGPS. And the dots in
Figures 3(b) and 3(c) represent the estimated position of fea-
tures in themap. In Figure 3(a), the solid line is the intelligent
vehicle’s path estimated with the inertial sensor’s measure-
ments. It can be seen in Figure 3(a) that the estimated path
diverges significantly. Figure 3(b) shows the SLAM results

of the data association approach in [15]. And Figure 3(c)
indicates the SLAM results with the enhancing methods of
data association. In Figure 3(c), the estimated path nearly
coincides with the GPS records. It is clear that the estimation
accuracy in Figure 3(c) is better than that in Figure 3(b). All
in all, it can be concluded from Figure 3 that the methods
introduced are effective to enhance the estimation accuracy
and stability of data association in SLAM.

As for the SLAM results in Figure 3(c), the threshold
value of the rejecting coefficient is set to be 3∘ (3∗𝜋/180
rad). The threshold value of the rejecting coefficient is
determined according to the precision of sensors and the
applied environment. Measured data of the “Victoria Park
Dataset” are from two sensors: an inertial sensor and a laser
range finder. Data measured with the inertial sensor is used
in the prediction step, while data measured with the laser
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range finder is used for pose update and map update. Taking
into account the fact that measuring precision of an inertial
sensor is markedly lower than that of a laser range finder,
when the rejecting mechanism is triggered successively, data
measured with the laser range finder is used to correct the
prediction error caused by data measured with the inertial
sensor. However, the inertial sensor is necessary for the
prediction step. It provides some important parameters, such
as velocity and the steering angle of the intelligent robot.

In order to clearly show the performance of the enhancing
methods introduced for SLAM data association, we have
done some experiments as shown in Figure 4. They are the
SLAM results of three cases. Neither enhancing measure is
adopted in Figure 4(a).The rejectingmechanism is applied in
Figure 4(b). Both the rejectingmechanismand the truncating
strategy of limited features are adopted in Figure 4(c). It
can be seen from Figure 4(a) that the SLAM process is not
stable. In the left sector of the park, the estimated robot
path conflicts seriously with the GPS records. When the
rejecting mechanism is adopted, the pose error is alleviated
greatly. When angle deviation exceeds the rejecting coeffi-
cient, the rejecting mechanism is triggered. Then, measured
data triggering the rejecting mechanism are discarded. In
experiments shown as Figure 4(b), the rejecting mechanism
was triggered eight times. Positions of triggering the rejecting
mechanism are marked with large dots in Figure 4(b). When
the two enhancing measures are adopted, the estimated pose
coincides well with the GPS records in Figure 4(c).

In short, it can be concluded that the two measures
introduced are effective to improve the stability of the feature-
based data association approach in SLAM.

5. Conclusions

Data association is of key importance in the SLAM process.
However, no data association algorithm is fully trustworthy in
all SLAM cases, the reason being that SLAM is for unknown
environments, which are of severe uncertainty. Some improv-
ing methods for sensor information are introduced herein to
enhance the data association performance in SLAM. On one
hand, only a limited number of matched features are used
for observation update. On the other hand, a special reject-
ing mechanism is designed to reject doubtful observations.
Experimental results indicate that the introduced measures
performwell in improving the stability of the data association
process. Thus, these enhancing methods for data association
are of excellent value for SLAM applications.
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