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Patients suffering from life-changing disability due to Spinal Cord Injury (SCI) increasingly benefit from assistive robotics
technology. The field of brain-computer interfaces (BClIs) has started to develop mature assistive applications for those
patients. Nonetheless, noninvasive BCIs still lack accurate control of external devices along several degrees of freedom (DoFs).
Unobtrusiveness, portability, and simplicity should not be sacrificed in favor of complex performance and user acceptance should
be a key aim among future technological directions. In our study 10 subjects with SCI (one complete) and 10 healthy controls
were recruited. In a single session they operated two anthropomorphic 8-DoF robotic arms via wireless commercial BCI, using
kinesthetic motor imagery to perform 32 different upper extremity movements. Training skill and BCI control performance were
analyzed with regard to demographics, neurological condition, independence, imagery capacity, psychometric evaluation, and user
perception. Healthy controls, SCI subgroup with positive neurological outcome, and SCI subgroup with cervical injuries performed
better in BCI control. User perception of the robot did not differ between SCI and healthy groups. SCI subgroup with negative
outcome rated Anthropomorphism higher. Multi-DoF robotics control is possible by patients through commercial wireless BCI.

Multiple sessions and tailored BCI algorithms are needed to improve performance.

1. Introduction

Spinal Cord Injury (SCI) is a potentially life-changing condi-
tion, causing permanent disability, compromising the victim’s
physical and psychological well-being and impacting their
close environment as well. Brain-computer interfaces (BCls)
are rapidly developing into a field-changing technology for
those patients, not only replacing motor functions [1, 2] but
even promising to alter the long-term outcome of the condi-
tion [3, 4]. Wireless invasive (implantable) neural recording is
also an important development [5, 6], especially considering
that SCI has become the research target of several assistive
technologies [7] including functional electrical stimulation
[8] and robotics for neurorehabilitation [9].

On the other hand, noninvasive BCI technology is domi-
nated by the EEG modality, which has great temporal but low
spatial resolution. EEG can detect rapid dynamics of the brain
but lacks source estimation. Consequently, a major limitation
of noninvasive BCI is the low signal to noise ratio (SNR)
which can be partially attributed to volume conduction
effect [10, 11]. Since the EEG signal measured at the scalp
is the superposition of all electrical signals, including those
generated by the cortex, discriminating brain activity from
artifacts and noise can be technically difficult.

In addition to these neurophysiological limitations, a
major drawback of traditional noninvasive BCIs is incon-
venience. The subject’s movement is typically constrained
by wires connecting the EEG electrode cap to the data
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acquisition unit, while the entire setup of wet electrodes
entails a time-consuming procedure. From the hardware per-
spective, the main challenges of noninvasive BCI technology
are portability and ease-of-use, rendering the wireless dry-
electrode cap a promising solution. Lessons could be derived
from the—otherwise immobile—MEG modality that boasts
contactless sensors and reduced preparation time [13]. In
terms of performance, the main challenge for noninvasive
BCI technology is to accurately control external devices
(multijoint robotic arms, drones, wheelchairs, etc.) that
can move along several degrees of freedom (DoFs), a task
which is necessary for performing complex operations in the
physical world. Such a feat requires highly accurate decoding
algorithms, able to discriminate multiple classes of Motor
Imagery (MI) under the limitations of low SNR and spatial
resolution. It has been demonstrated that the basic operation
of a robotic arm which fits the aforementioned description is
possible using noninvasive BCI [14].

Continuous advancements in electronics, from solid-
state transistors in the 1940s, integration of sensors and
powerful digital microprocessors in the 1970s, and other
developments in the following decades, such as switching
frequency, increased computing power, and programming
flexibility, decreased fabrication cost and power consump-
tion and steadily led to lighter and more agile, responsive,
and computationally complex robots. The demand in the
fields of Medical Rehabilitation and Assistive Technologies
(AT) leads to the first combined medical applications for
paralysis and stroke patients: robotic sleeves for assisted
living, powered orthotics, and even some initial attempts
at robotic manipulation arms [15, 16]. This nascent field of
Rehabilitation Robotics started taking shape in the 1970s
and 1980s, gradually emphasizing novel robotic manipulator
designs [17, 18] and attempts to adapt existing industrial
robotic manipulators [19].

Unobtrusiveness, portability, and mobility are clear
advantages for AT and Medical Robotics. Even though
affordable, power-autonomous, full-body robotic exoskele-
tons are yet to materialize, disabled patients now have a
variety of product options, some commercially available:
manipulator arms mounted on robotic wheelchairs [20, 21],
dexterous robotic prosthetics which can acquire their control
signals directly from the patient’s nervous system [1, 22], and
adaptations of aforementioned BCI technology specifically
for robotic rehabilitation [23-25]. Unfortunately, research in
optimal interfaces for Human-Robot Interaction (HRI) is
often overlooked in medical robotics development [12], with
a potentially significant impact on user acceptance and the
validation success rate for new technologies [26]. User per-
ception and overall satisfaction with a robot’s technological
interface has equal importance to hardware/software design
and quality standards, something that holds particularly
true in robotic-assisted rehabilitation. The need for patient’s
immersive experience and willingness to collaborate with
the robot, physiotherapist, and supervising physician should
meaningfully alter the criteria of success of a robot [27]. For
instance, acceptance of an external machine as part of one’s
own body schema can significantly impact the rehabilitation
process and should also be taken into account [15, 28].
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In our previous work we have presented our progress
towards developing 8-DoF anthropomorphic robotic arms,
controlled by wireless off-the-shelf BCI, for AT and rehabili-
tation applications [12]. We have accounted for development
of the robotic arms and electronics, for implementation
of the BCI control module, and we have presented pilot
experimental applications of the Brain-Robot Interface (BRI)
on healthy and disabled individuals [29, 30].

In the remainder of this paper we present an elaborate
user-assessment study of our wireless BRI by subjects with
SCI and healthy individuals [31]. We focus not only on
performance assessment during multiple movements BCI
control, but on user perception of the assistive technology
as well, analyzed with regard to their neurological condition,
independence, imagery capacity, and psychometric evalua-
tion. In Materials and Methods, we briefly present the BRI
and we explain the experimental setup and statistical analysis
of our collected data, which we then present in Results. In
Discussion we attempt to interpret our results, comment on
the strengths, and underline the limitations of our approach.
We also discuss planned technological development in the
direction of robotics, BCI module, signal analysis, and further
experiments, as well as the challenges we are yet to meet.

2. Materials and Methods

2.1. The Brain-Robotic Arms Interface. As both the interface’s
and robotics’ development have been thoroughly described
before [12, 32], we will briefly explain the system’s technical
characteristics here, emphasizing wireless capabilities. The
Emotiv EPOC is an easily applied wireless 14-saline felt-
electrode EEG system (Emotiv, USA), capable of detecting
brain activity at a bandwidth of 0.2-43 Hz, employing digital
notch filters at 50 Hz and 60 Hz and built-in digital 5th
order Sinc filter. Meanwhile, due to being commercial class,
it costs significantly less and also is less obtrusive, simple
to use, and portable compared to traditional medical EEG
devices. Its technical characteristics are also on par with
the designated use case, so our team used this device for
the development of the BCI modality. The wireless chipset
transmits at a proprietary ultra-low energy (ULE) 2.4 Ghz
Bluetooth Smart to a USB dongle connected to a dedicated
computing laptop. Internal sampling rate of the electrodes
is at 2kHz (sequential sampling and single analog to digital
conversion) with 16-bit resolution and signal sampling rate
of 128 Hz transmitted. Using the Cognitiv suite a resting state
and up to four different mental commands are classified
(using proprietary BCI algorithm) and then are appended
to key button input through the Emokey software. The
input then accesses a control MATLAB script corresponding
to movement commands for the robotic arms (Figure 1).
Movement coordinates are subsequently transmitted to the
robotic arms system through a serial port with a Baud Rate of
9600 bps.

The “Mercury 2.0” robotic arm is a stand-alone elec-
tromechanical manipulator system developed by our team,
capable of replicating most movements of a physical human
arm. The current version of the robot is capable of movement
along 8 DoFs [32]. Eight motors are attached in total on
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FIGURE 1: Brain-robot interface loop: using a wireless commercial EEG device for unobtrusiveness and simplicity of the system [12].

each arm, six of them being DC electric motors: two on the
robotic shoulder joint, responsible for horizontal (1) and for
vertical movement (2); one on the elbow joint, for horizontal
movement (3); one on the wrist joint, for horizontal move-
ment (4), one for rotation between the shoulder and elbow
(5); and one for rotation between the elbow and wrist (6);
finally, two servo motors add the ability of curling movement
of the thumb and palm fingers (7) and (8). These 8 DoFs
allow for responsive, fluid movement of the robotic arm
and provide it with the ability to grab and manipulate small
and light objects. Each arm functions with a single attached
microcontroller, responsible for motors, connected to the
dedicated computer system through a serial port at a Baud
Rate of 9600. The microcontroller translates the commands
the computer system transmits into positional coordinates for
each motor. System responsiveness has been measured to be
approximately 0.2 seconds.

2.2. Experimental Setup

2.2.1. Ethical Approval and Recruitment. The institutional
bioethics committee approved the experimental protocol [12,
31] and all subjects filled and signed an informed consent
form prior to their participation. Criteria for participation
included clinical diagnosis and radiological documentation
of SCI (evaluated by ASIA Impairment Scale (AIS) [33]
and/or neurological examination reporting the condition)
or healthy participants [31]. Exclusion criteria were other
neurological injury or disease (traumatic brain injury, central
nervous system tumors, epilepsy, etc.), recent participation in
an interventional study, other grave medical condition that
could affect participation or the safety, hearing and visual
impairments, illegal drug use, and chronic alcoholism.

TaBLE 1: Descriptive statistics of age (mean and standard deviation)
for both groups (SCI group and healthy controls).

Age
Group Mean (std)
SCI 46.0 (17.64)
Healthy 46.2 (18.27)

Ten subjects with SCI (8 male, 2 female) and ten healthy
controls (with an effort for being gender and age matched to
the SCI group) were recruited in total. The SCI group had a
mean age of 46.0 years (range 28-74, standard deviation (std)
17.64), while the healthy group had a mean age of 46.20 years
(range 27-74, std 18.27), as shown in Table 1. The subjects had
no prior experience in BCI or robotics.

2.2.2. Subject Assessment. For both groups demographics and
medical history were collected including smoking habits, age,
height, weight, Body Mass Index (BMI), and education level.
BMI was calculated and the following classification was used:
underweight < 18.5, normal weight = 18.5-24.9, overweight
= 25-29.9, and obesity > 30. For the SCI group, history data
was also collected including age at injury, weight at injury,
and cause of injury. Neurological examination was performed
by a specialist physician using the International Standards
for Neurological Classification of Spinal Cord Injury: severity
of injury (classification in AIS), Neurological Level of Injury
(NLI), motor scores for upper extremities (UEMS), lower
extremities (LEMS), and total (Moto-Total), and sensory
scores for light touch (LT), pin prick (PP), and total (Sensory-
Total) were recorded [33]. Spasticity, if present, was also
recorded using Ashworth [34] and Penn Spasm Frequency
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TABLE 2: Subjects by group (SCI and healthy controls): basic demographic data for both groups and cause of injury, ASIA Impairment Scale

(AIS), and Neurological Level of Injury.

SCI group Age Gender Cause AIS NLI Healthy group Age Gender
CSI-02-001 28 f MVA ASIA C C4 CSI-04-001 27 f
CSI-02-002 52 m MVA ASIAD C4 CSI-04-007 51 m
CSI-02-003 42 m MVA ASIAD C8 CSI-04-003 43 m
CSI-02-004 70 m Fall ASIAD C5 CSI-04-006 71 m
CSI-02-005 60 m Fall ASIA E C6 CSI-04-009 63 m
CSI-02-006 28 m MVA ASIAD Cs CSI-04-004 28 m
CSI-02-007 30 m MVA ASIAE C5 CSI-04-005 31 m
CSI-03-001 47 m Fall ASIA A T7 CSI-04-008 47 m
CSI-03-002 29 f MVA ASIA B T4 CSI-04-002 27 f
CSI-03-003 74 m Other ASIA B T4 CSI-04-010 74 m
Mean 46.00 - - - - Mean 46.20 -
Std 17.64 - - - - Std 18.27 -
TaBLE 3: Neurological evaluation scores of the SCI group.

SCI group Motor-Total UEMS LEMS Sensory-Total LT PP
CSI-02-001 48 24 24 224 112 112
CSI-02-002 84 39 45 183 94 89
CSI-02-003 98 48 50 224 112 112
CSI-02-004 98 48 50 223 111 112
CSI-02-005 100 50 50 224 112 112
CSI-02-006 100 50 50 222 111 111
CSI-02-007 100 50 50 224 112 112
CSI-03-001 56 50 6 121 58 63
CSI-03-002 50 50 0 156 78 78
CSI-03-003 54 50 4 156 78 78
Median 91.00 50.00 4750 222.50 111.0 111.50
Interquartile range 47.00 4.30 44.50 68.00 34.00 34.00

Scales [35]. Both groups were assessed for everyday life
independence using the Spinal Cord Independence Measure
(SCIM-III) [36], translated in Greek (g-SCIM-III) [37]. Total
SCIM score and subscores for Self-Care (g-SCIM-III-SC),
Respiration and Sphincter Control (g-SCIM-III-RS), and
Mobility (g-SCIM-III-M) were recorded.

In the SCI group, 9 out of 10 patients had incomplete
injury. Four patients were classified as AIS D (40%), 2 were
AIS B (20%), 2 were AIS E (20%), one had complete injury
and was classified as AIS A (10%), and one patient was
classified as AIS C (10%). Regarding level, 70% were cervical
injuries whereas the remaining 30% were thoracic injuries.
Moreover, the predominant cause of injury, in 60% (6/10) of
patients injury, was motor-vehicle accidents (MVA), while
in 30% of participants the injury was induced by fall from
heights (Fall) and one patient reported other causes. Table 2
depicts age and gender distributions for both groups and also
cause of injury, AIS, and NLI by subject.

Based on neurological assessment, the 60% of patients
that were classified as either AIS D or E showed approximately
intact general motor function and excellent UEMS and LEMS
(3/10 of patients scored 50 in both categories whereas 2/10
scored 48 in UEMS and 50 in LEMS). The remaining 40%

patients were classified as AIS A, B, or C and showed
motor deficits, as presented in Table 3. The SCI group was
therefore further grouped into positive outcome (60%) and
negative outcome (40%) for further analysis as described in
the statistical analysis section below. With regard to sensory
skills, the patients with good outcome scored as high as
the healthy controls in LT and PP sensory examination
(Table 3).

Subject assessment also included subjective reporting of
imagery capacity, using Vividness of Visual Imagery Ques-
tionnaire (VVIQ-II) [38] with eyes open that was assessed
for total score and for each of the four scenarios (VVIQI-
VVIQ4). Psychometric evaluation also entailed answering
Beck Depression Inventory (BDI) [39] and Rosenberg Self-
Esteem Questionnaire (RSEQ) [40], both translated in Greek
[41, 42]. After the participation in the experiment, both
subject groups reported on HRI experience using the God-
speed robotics questionnaire [27], also translated in Greek
[43]. Godspeed total score (GDSPD-Total) and subscores for
Anthropomorphism (GDSPD-Anthr), Animacy (GDSPD-
Anim), Likeability (GDSPD-Like), Perceived Intelligence
(GDSPD-Int), and Perceived Safety (GDSPD-Safe) were
recorded.
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FIGURE 2: The experimental setup in Thess-AHAL. (a) SCI subject seated across the TV/computer monitor and between two robotic arms,
wearing a wireless commercial EEG device; (b) close-up to a “Mercury 2.0” house-built robotic arm; (c) the right robotic arm, showing
8 possible DoFs, grouped into proximal and distal movements; (d) the left robotic arm, showing DoFs that result in rotational or linear
movement. Each DoF allows movement towards two possible directions [12].

2.2.3. Experimental Procedure. As the experimental proce-
dures have been also described in detail [12, 29], we will pro-
vide an overview hereby. The subjects were asked to perform
Visual Motor Imagery (VMI), meaning they had to mentally
rehearse 32 different movements of the upper extremities,
while watching a set of arms performing randomly those
movements on a computer screen. Each movement was
shown 9 times in total. Randomly, walking and an oddball
video were also shown. This VMI experience was aimed at
preparing participants for the BCI classes they would have to
later perform. This VMI procedure was also performed under
high-resolution EEG recording, which will not be further
elaborated hereby. The subjects had their arms, torso, and legs
covered with a black curtain during VMI experience as well as
during subsequent BCI training and BCI control to facilitate
registration of the projected arms (in the case of VMI) or the
robotic arms (in the case of BCI) into the body schema [28].
Also, in the case of VMI the projected arms were gender-
matched to the subject.

Following VMI experience, the subjects sat across a
computer monitor, between two Mercury 2.0 robotic arms,
located in the Thessaloniki Active and Healthy Ageing Living
Lab technology showcase room (Thess-AHALL, member of
ENoLL) [44-46]. Subjects wore an Emotiv EPOC headset and
they began training of the BCI modality using kinesthetic

motor imagery (KMI) of movements of the left and the
right arms. Action power threshold was set at 50% and all
subjects were above threshold during training [29]. Three
imagery classes were trained (resting state, left, and right).
Five training cycles were allowed for left and right, using
continuous mental rehearsal of all movements of left and right
arm, respectively (as in the videos that subjects watched) [47].
Training skills (Train-L) (Train-R) classes were recorded.
Following BCI training, the subjects were given written
commands in the monitor to move a specific DoF towards
a specific direction. 32 different commands were given in
total and the subjects were asked to use the trained KMI
skill in order to control the robotic arms to perform those
actions. Each command was projected for 30 sec with a 5 sec
rest between them (Figure 2). During the 30 sec period the
subject attempted to perform the movement as many times as
possible by giving the desired direction of imagery class (left
or right). The BCI detected as correct (desired) any activation
of the class corresponding to the arm currently targeted and
gave the output to move the arm as per the instruction
(positive feedback). Incorrect (undesired) activation that was
detected resulted in an opposite motion of the target robotic
arm (negative feedback). Desired and undesired commands
that were detected by the BCI program were recorded
through the MATLAB script.
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TABLE 4: House-developed performance rating scale for brain-robot interface control, tailored to the needs of the use case of the current

experiment.

Performance rating of brain-robot interface control based on ratio of desired to undesired detected & classified mental commands

Score Rating Description of rating

5 Excellent Arms were moving towards desired direction for most of the time

4 Very Good 5+ commands were detected, minimal undesired commands

3 Good 4+ commands were detected, only 2-3 undesired commands

2 Average 3+ commands were detected, but also up to +3 undesired commands

] Minimal 1-2 commands were detected or 3-4 including undesired corpmands
or many commands were detected but most were undesired

0 No control No command or only undesired commands were detected

Performance was rated in each different movement with
a score from 0 to 5, based on the ratio of desired men-
tal commands to undesired mental commands that were
detected and classified (Table 4) [12]. A total score for
BCI performance (BCI-total) was then calculated for each
subject, adding the scores for each movement (max 160)
and the performance of each subject was also converted
to a percentage (BCI%). Subscores were calculated for the
16 movements of the left arm (BCI-L), the 16 movements
of the right arm (BCI-R), the 16 movements of wrists,
fingers, and thumbs (BCI-Distal), and the 16 movements of
shoulder and elbow (BCI-Proximal), with max scores of 80.
Subscores were also calculated for 24 linear movements and
8 rotational movements but, to allow comparison, an average
per movement score was calculated for both categories (BCI-
Li/24 and BCI-Ro/8).

2.3. Statistical Analysis

2.3.1. Statistical Tests. Statistical analysis was performed in
IBM SPSS Statistics (version 23) and we set a significance level
of 0.05 for all statistical tests. The variables were explored for
normality assumption using two grouping schemes: (1) SCI
and healthy groups as grouping factor for all subjects and
(2) positive and negative outcome as grouping factor for SCI
subjects.

Normality was explored using visual inspection of his-
tograms, normal Q-Q plots and boxplots, skewness, and
kurtosis [48-50] as well as using the normality tests (Shapiro-
Wilk test and Kolmogorov-Smirnov Test) [51, 52]. The variable
age, in particular, was normally distributed for both groups
(skewness: 0.407 (SE = 0.687), kurtosis: —1.418 (SE =1.334) for
healthy group; skewness: 0.651 (SE = 0.687), kurtosis: —0.752
(SE =1.334) for patient group).

Normality assumption was not met (1) for motor and
sensory scores of neurological examination as well as SCIM
scores, (2) for VVIQI and VVIQ3 scenarios and BDI in SCI
and healthy groups, (3) for GDSPD-Safe in either grouping
scheme, and (4) for training scores in outcome grouping. All
other distributions met normality assumption. Depending
on normality assumption group differences were explored
using either Independent Samples t-test or Mann-Whitney
(U) test. Possible associations between quantitative variables
were explored via Pearson correlation coefficient or Spearman’s

coefficient depending on normality. Other specific statistical
tests or other specific groupings were used as described below.
Please also refer to Supplementary Materials for a more
detailed report of statistical analysis (available here).

2.3.2. Demographics, Somatometric Data, and Clinical Eval-
uation. Initially, we planned comparisons of demographic
and somatometric data between SCI and healthy groups.
Comparisons regarding the education level (basic studies,
pregraduate level, graduate level, postgraduate level, and
Ph.D. holders) were performed by Mann-Whitney (U) test,
since our data are ordinal (Likert-type) [53]. Medical history
and neurological data were analyzed via descriptive statistical
methods. Moreover, we explored whether the smoking status
is independent of the group or not using chi-square test.

2.3.3. Assessment Questionnaires and User Perception. Imagery
capacity (VVIQ) and psychometric questionnaires (BDI and
RSEQ) were analyzed between SCI and healthy groups,
as well as between SCI subgroups of positive and neg-
ative outcomes. The scores of Godspeed and its sub-
categories (GDSPD-Total, GDSPD-Anthr, GDSPD-Anim,
GDSPD-Like, GDSPD-Int, and GDSPD-Safe) were analyzed
between patient and healthy groups, as well as between
patient outcome groups. Finally, possible correlations were
explored between Godspeed scores and BCI performance as
well as Godspeed scores and VVIQ scores.

2.3.4. BCI Performance. BCI-total, BCI-L, BCI-R, and train-
ing skills (Train-L and Train-R) were analyzed between SCI
and healthy groups as well as in SCI outcome subgroups. BCI-
Distal, BCI-Proximal, BCI-Li, and BCI-Ro were analyzed
using descriptive statistics. We further explored differences
in BCI performance and training scores between different
groups of neurological levels of injury (cervical, thoracic)
after testing for normality. Additionally, linear regression
analysis was used to model the possible relationship between
the independent variable BCI scores and the explanatory
variable NLI using linear regression analysis. Possible cor-
relations were further explored across groups (SCl/healthy)
between BCI performance and (1) age, (2) imagery capacity
(VVIQ), and (3) psychometric questionnaires (BDI, RSEQ)
for both groups.
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FIGURE 3: Scores of SCI and healthy groups at VVIQ test and its
scenarios show no significant difference between groups.

3. Results

3.1. Demographics, Somatometric Data, and Clinical Eval-
uation. Planned comparisons of age between groups did
not reveal any significant difference (Table 1). Regarding
education level, no statistically significant difference between
groups was shown. Group differences were not revealed
in somatometric data either. Most of the injuries (4/10)
happened when the participants were between 26.0 and 33.0
years of age. The second more vulnerable age range to injuries
(MVAs) seems to be the age range of 50.0-57.0 years. Explor-
ing whether the smoking status is independent of the group
or not, we observed a significant association (y* = 5.051, df =
L, p = 0.025), since 70% of the healthy group and only 20% of
the SCI group were smokers. Subjects with positive outcome
scored as high as the healthy subjects in g-SCIM-III test and
its subcategories. In the remaining group, deviation in the
performance at the g-SCIM-III test was found. Table 5 shows
aggregated the most important statistical tests we performed
and their results on demographics, clinical evaluation, and
assessment questionnaires.

3.2. Assessment Questionnaires. VVIQ did not show any
significant difference between SCI and healthy groups in
total score or any of the scenarios. SCI group scored lower
than healthy (Figure 3) but differences did not reach sta-
tistical significance. Regarding SCI outcome subgroups, no
considerable group differences were revealed in VVIQ scores.
Also, even though the SCI group showed increased depressive
scores and decreased self-esteem compared to healthy group,
group differences were not statistically significant (Figure 4).

3.3. BCI Performance. Planned between-group (SCI/healthy)
comparisons of BCI performance revealed a statistically
significant difference only in the control of right robotic arm
(BCI-R: t = 2.592, df =18, p = 0.018). Although BCI scores

of SCI group were generally lower than those of control,
group differences did not reach statistical significance. Also,
regarding performance in different types of robotic arm
movements (Table 6), based on the planned analysis, no
significant outcomes were shown. Comparisons of BCI scores
between SCI outcome subgroups (positive, negative) did
not reveal any statistically significant difference (Figure 5).
However, subgroup with positive outcome seems to score
higher in total BCI control (Figure 6).

The ability of SCI subjects to control robotic arms did
not differentiate depending on the injury location (cervical,
thoracic). However, subjects with cervical injuries scored
higher than those with thoracic injuries in BCI control. BCI-
Total was marginally negatively correlated to NLI in the
SCI group (p = 0.064) (Figure 7). Negative correlations,
but not statistically significant, were found between the BCI
performance and the age (Table 6).

The training skill was not statistically different between
SCI and healthy groups neither for the right hand, nor for the
left hand, even if SCI subjects showed slightly lower training
scores in the right hand and higher in the left hand than
healthy participants. Comparing training scores between
SCI subjects grouped by outcome (Figure 8), a marginally
considerable difference was found only in training scores of
left hand (U = 3.5, p = 0.068). SCI subjects with negative
outcomes trained more efficiently in left hand compared to
the subjects with positive outcome (Table 6). SCI subjects did
not considerably differentiate their training scores depending
on the level of injury. However, it was noted that Train-L
was greater in thoracic SCI subgroup than those with cervical
injuries whereas the opposite was the case for Train-R.

Total BCI scores were significantly negatively associated
with VVIQ total scores (r = —0.727, p = 0.017) and VVIQ3
(ry, = —0.948, p < 0.001) as well as the BCI-L scores and
VVIQ3 (r, = —0.665, p = 0.036) only in SCI group. However,
other subcategories of VVIQ such as VVIQI, VVIQ2, and
VVIQ4 were not correlated to all BCI scores in SCI group
(BCI-Total-VVIQL: r, = —0.489, p = 0.151; BCI-L-VVIQI:
r, = —0.509, p = 0.133; BCI-R-VVIQI: r, = -0.194, p =
0.590; BCI-Total-VVIQ2: r = -0.077, p = 0.832; BCI-L-
VVIQ2: r = -0.073, p = 0.840; BCI-R-VVIQ2: r = 0.005.
p = 0.989; BCI-Total-VVIQ4: r = —0.312, p = 0.380; BCI-L-
VVIQ4:r = 0.026, p = 0.943; BCI-R-VVIQ4: v = —-0.332, p =
0.348). With regard to BCI performance depending on the
depressive symptomatology as assessed by BDI, significant
negative correlation was found only between total BCI scores
and BDI scores in healthy participants (r, = -0.719, p =
0.019). Correlations explored between all BCI scores and
scores at Rosenberg Self-Esteem Scale did not reach statistical
significance for both groups (Healthy-BCI-Total-Rosenberg:
r = 0.150, p = 0.679; BCI-L-Rosenberg: r = 0.054. p = 0.882;
BCI-R-Rosenberg: r = 0.115, p = 0.751; SCI: BCI-Total-
Rosenberg: v = —0.067, p = 0.854; BCI-L-Rosenberg: r =
-0.397, p = 0.255; BCI-R-Rosenberg: r = 0.369, p = 0.294).

3.4. User Perception. Based on planned analysis of HRI
characteristics of the robotic arms, SCI and healthy groups
did not present significant differences in their answers in any
subcategory (GDSPD-Anthr: t = 1.504, df =18, p = 0.150;
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FIGURE 4: SCI scores at Beck Depression Inventory are increased while at Rosenberg Self-Esteem Scale they are decreased, compared to
healthy controls, but findings are not statistically significant. *Extreme value.
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FIGURE 5: BCI performance (BCI-Total) in the control of robotic arms and in the control of the right robotic arm (BCI-R) was lower for SCI

group, but not statistically significant. o: outlier.

GDSPD-Anim: t = 0.611, df = 18, p = 0.549; GDSPD-Like:
t =-0.217,df =18, p = 0.831; GDSPD-Int: t = —0.047, df =18,
p = 0.963; GDSPD-Safe: U = 42.0, p = 0.536) of Godspeed
questionnaire. Additionally, there was no difference between
groups in GDSPD-Total (t = 0.427, df = 18, p = 0.675).

The scores are illustrated in Figure 9 (GDSPD (/120)
(mean (SD)), healthy: 80.80 (14.78); SCI: 78.00 (14.57);
GDSPD-Anthr, healthy: 13.60 (4.25); SCL: 10.80 (4.08);
GDSPD-Anim, healthy: 18.90 (5.11); SCIL: 1770 (3.53);
GDSPD-Like, healthy: 18.50 (3.87); SCI: 18.90 (4.36);
GDSPD-Int, healthy: 17.70 (4.60); SCI: 17.80 (4.92); GDSPD-
Safe, healthy (median = 12.0, IQR = 5.3); SCI (median = 13.50,
IQR = 4.5)).

Godspeed’s scores were further explored after grouping
by outcome (positive, negative). Marginally significant differ-
ence was found only in Anthropomorphism (t = 2.251, df =
8, p = 0.054) (GDSPD (/120): t = 1.918, df = 8, 0.091; GDSPS-
Anim:t = 1.382, df = 8, p = 0.204; GDSPD-Like: t = 1.289, df
=8, p = 0.233; GDSPD-Int: t = 1.343, df = 8, p = 0.216;
GDSPD-Safe: U = 10.50, p = 0.741). More precisely, SCI
subjects with negative outcome scored higher than those with
positive outcome in this Godspeed’s subcategory (negative
outcome: 13.75 (3.30); positive outcome: 8.83 (3.43)).

Significant correlation between Godspeeds and BCI
scores was not revealed for any group. GDSPD-Anthr and
GDSPD-Int were positively correlated to VVIQ4 and VVIQ1
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FIGURE 6: BCI scores of SCI subjects grouped by neurological out-
come. Subjects with positive outcome performed nonsignificantly
better in BCI control than those with negative.

scenario’s scores, respectively, only in healthy (GDSPD-Int,
VVIQ4: r = 0.654, p = 0.040; GDSPD-Anthr, VVIQIL: r =
0.629, p = 0.052). In SCI group, GDSPD-Safe was positively
associated with scores in VVIQ total (r = 0.696, p = 0.025)
and VVIQI (r = 0.780, p = 0.008).

4. Discussion

4.1. User Perception and Performance Assessment. Our results
show that healthy controls performed better (49.65%) than
the SCI group (41.65%) in BCI control and so did sub-
jects with positive neurological outcome (43.44%) when
compared to subjects with negative neurological outcome
(39.6%). Both those observations did not reach statistical
significance but their interpretation is not as straightforward.
Since no patients with complete tetraplegia were included,
these findings probably cannot be attributed to some type
of “thought extinction process” [54]. Indeed, self-reported
imagery capacity (as measured by VVIQ) was found to be
nonsignificantly lower in SCI group than in healthy subjects
but, on the other hand, subjects with cervical injuries fared
better than those subjects with thoracic injuries. Thus the
group with injury that could affect upper extremity neural
circuits outperformed those subjects that did not have direct
injury to those circuits. Moreover this finding was further
reinforced by a marginally significant (negative) correlation
of BCI performance to neurological level of injury, meaning
that the higher the level of injury, the better the subjects
performed.

Possible explanations for performance differences could
be explored along the lines of depression [55] and motivation
[56, 57]. Indeed the SCI group showed increased depressive
scores (measured by BDI) and lower self-esteem scores (mea-
sured by RSEQ), despite both findings not being statistically
significant. Our research protocol did not include any official
questionnaire to assess SCI and healthy subject with regard
to motivation. Only by anecdotal evidence, during informal
debriefing discussions that we held with participants, subjects
with thoracic injuries tended to consider somewhat irrelevant
this experimental setup to their condition. While reciprocal

1

sensorimotor pathways and sensorimotor cortex representa-
tions are affected regardless of the level of SCI, those subjects
felt that their clinical condition and independence demands
were not addressed by robotic arms technology.

The HRI characteristics of the robot were measured
(after the participation) by Godspeed robotics questionnaire.
It seems that user perception did not differ significantly
between SCI and healthy subjects. While in Figure 9 we
show absolute values for the total questionnaire score and its
subscores, since no standard for direct comparison of those
can be identified, we feel that intergroup comparisons are
more useful. As such, we believe that this is a positive finding,
interpreting it as users with SCI appreciating the robot more
or less the same as their healthy counterparts. Among SCI
subgroups, those with negative outcome gave higher scores
to Anthropomorphism of the robot (mean 13.75 out of max
25) than those with positive outcome (mean 8.83 out of max
25), a finding that can be considered marginally significant
(see Figure 9(b)). Indirectly, since user perception did not
correlate with BCI performance and did not vary between
SCI and healthy subjects in all other comparisons, perhaps
this could be attributed to psychometric attributes of the
participants and it should be further investigated in an SCI
group with wider participation.

As we mentioned, no statistically significant negative
correlations were found between BCI performance and the
age of the subjects, a finding that also needs further study
in order to be validated. As much of the BCI research field
endeavors have been shaped around the issue of providing
affordable, acceptable, and useful assistive systems for the
benefit of the disabled, the particular characteristics of elderly
patients should be the focus of investigation [58, 59].

Finally, BCI performance was significantly negatively
associated (p = 0.017) with imagery capacity (as self-
reported by VVIQ), a seemingly nonsensical finding. That
could probably be attributed to one of the scenarios (VVIQ3
p < 0.001) skewing the total. We have insufficient data to
interpret this, but until further evidence our hesitant (since
this is an established tool [60]) suggestion would be to either
to use a different research tool to measure imagery capacity
or to omit the 3rd scenario of the VVIQ in the context of BCI
controlled robotic arm experiments.

Some correlation was also revealed between reported
imagery capacity and Godspeed questionnaire. SCI subjects
that had higher scores in VVIQ rated Perceived Safety
higher (p = 0.025). This finding was strongly influence by
VVIQ Ist scenario (p = 0.008) since it was not present
for the other scenarios. Said scenario asks of the subjects
to think of some relative or friend whom they frequently
see and consider their picture, a mental task that could
induce a sense of familiarity or attachment and perhaps
affect their answer on the Perceived Safety questions [61].
On the other hand, healthy subjects that had higher scores
in VVIQ 1st and 4th scenarios rated Perceived Intelligence
and Anthropomorphism higher too, findings that are not
explained by the content of those scenarios. Perhaps their
significance is marginal (p = 0.052 and p = 0.040, resp.)
but whether these trends persist or not with a wider user base
is something that should be investigated before drawing an
accurate conclusion.
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FIGURE 8: Train-L and Train-R, mean values—grouped by SCI or healthy group (a) and median values—grouped by outcome (b). SCI subjects
with negative outcome performed marginally better than those with positive.

Our work adds onto an envisaged puzzle of BCI technol-
ogy and uses case scenarios with an emphasis on affordability
(oft-the-shelf component system) and realism at a reasonable
accuracy. Multi DoF robotics control by users with SCI has
been proven to be feasible even by commercial-class wireless
BCI. Nonetheless, repeated training in several BCI sessions is
probably needed to improve performance by the end-users.
Although users with complete lesions by definition would
benefit more from ongoing research in robotics and BClIs,
the use of brain controlled assistive technologies holds special
importance for users with incomplete injuries too [62]. As

a result of preserved reciprocal neural pathway communica-
tion, robotic-assisted training and brain controlled functional
stimulation have been shown to improve arm motor function
of those patients [63, 64] but expectations from assistive
technologies and motivation to use them should be among
key targets for further user experience investigations.

4.2. Further Technological Development. Our main devel-
opment directions include (1) improving accuracy, speed,
responsiveness, fluidity, and efficiency; (2) enhancing the
integration of the system into the operator’s perceived body



Wireless Communications and Mobile Computing

1204
100 4
804
60 4
40
TERENANE
5 e
0-
a > = . <@
3 < 5 a g a
s & &£ & & 2
a
2 &8 &8 Y
] QO
Groups
B Healthy
B SCI

()

13

25.0 1

20.0

15.0 1

GDSPD-Anthr

10.0 A

5.0

Negative Positive

SCI outcome

()

FIGURE 9: Answers provided to all Godspeed scores from SCI and healthy groups (a) showing no significant difference between groups.
Anthropomorphism (b) was rated marginally higher by SCI subjects with negative outcome than those with positive.

mental image [17]. The pipeline that we overview below
is tested offline, since several aspects, such as the solution
of the inverse problem, entail high computational cost and
are planned to be realized with dedicated processing units
and use of artificial intelligence (AI) [12]. We are currently
developing and testing a novel BCI decoding algorithm.
Our goal is to increase discriminative ability to multiple
MI classes projecting sensor data to cortical source domain
[65, 66]. The COLIN27 anatomy is used [67], but tests
are also made on individual head models. Our approach
is based on studies indicating that the features extracted
from the source domain enhance the discrimination [68-70],
since the higher dimensional space of sources incorporates
anatomical and physiological information. Spatial features
are extracted in predefined Regions of Interest (ROIs) [12]
and Common Spatial Pattern (CSP) filters [71] are calculated
on each ROI. Tuning and feature selection using a linear
classifier (LDA) are a crucial part in order to determine the
most valuable ROIs and improve BCI performance. The use
of time-frequency and connectivity features in conjunction
will also be explored.

4.3. Limitations. Aswe have already mentioned [12], multiple
MI class discrimination is a challenge that state-of-the-art
noninvasive BCI technology has yet to meet with success.
Depending on a proprietary BCI algorithm, such as in our
case, further underlines this problem, as it was not tailored to
our specific needs. While the commercial-class device meets
the use case needs and will be retained in future implementa-
tions, the proprietary BCI algorithm will be substituted with
the one currently under development, in order to explore

and reach practically usable performance of the entire system.
This setup will be used in future experiments, including tests
on the EEG data that have been already recorded. In general,
off-the-shelf BCI technology seems to be able to meet the
demands set by the field for unobtrusiveness, portability, and
simplicity but it is possible that multi-DoF control may be not
feasible or impractical without extensive use of supportive Al
and advances in electronics charged with decision-making.
Finally, from the investigation’s perspective, although our
study is one among those featuring adequate sized sample of
disabled end-users for BCI technology [72, 73], our approach
would benefit from wider subject participation for validation
and extraction of statistically significant—and relevant to the
advancement of the research field—results.

5. Conclusions

Much of the BCI research endeavor has been shaped around
the issue of providing affordable, accurate, and real-time
assistive systems for the benefit of the disabled. This piece
of research adds onto that envisaged puzzle, but tackling
affordability (off-the-shelf component system) of realistic
scenarios at a reasonable accuracy. Healthy controls, SCI
subjects with positive neurological outcome, and subjects
with cervical injuries performed better in BCI control.
Depression and motivation could play significant roles in
BCI and robotics control. Reported imagery capacity was
nonsignificantly lower for SCI subjects. User perception of
the robot did not differ between SCI and healthy subjects,
but, among SCI participants, those with negative outcome
rated anthropomorphic characteristics higher. More BCI
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sessions are expected to improve performance of SCI and
healthy subjects. The herein results demonstrate that by
developing BCI decoding algorithms capable of true control
of multiple DoFs and addressing the computational cost
of online implementation of such an approach, it could be
within short-term reach. While maintaining requirements for
wireless, unobtrusive solutions constitutes challenges yet to
be met, the exploitability of such a system by real patients
at a reasonable accuracy cannot be understated. Improving
electronics, fluidity, and accuracy of the robotic system,
enhancing HRI experience, and implementing a source-
based BCI algorithm for multiple class control, as well as
further investigations with disabled users, are among our next
steps.
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Report of statistical analysis. Table 1: descriptive statistics of
age for both groups (healthy, SCI). Figure 1: the education
level of the healthy and SCI participants. Figure 2: BMI
categories across groups (the percentage of participants
in each category is displayed on the bars). Figure 3: SCI
subjects’ age at injury. Table 2: SCI subjects’ weight at injury.
Figure 4: reported causes of injury. Figure 5: grouping the
reported cause of injury by SCI subjects’ age. Figure 6: SCI
subjects’ injury severity as assessed by ASIA Impairment
Scale. Figure 7: neurological level of SCI subjects’ injuries.
Table 3: neurological evaluation scores of the SCI group.
Figure 8: median scores of both groups at g-SCIM-III test and
its subcategories. Figure 9: smoking status of both healthy
and SCI group. Figure 10: performance of both groups at
VVIQ test and its subcategories. Figure 11: scores at VVIQ
questionnaire and its subcategories of both SCI outcome

Wireless Communications and Mobile Computing

subgroups. Figure 12: scores of both groups at Beck Depres-
sion Inventory (on left hand) and Rosenberg Self-Esteem
Scale. Figure 13: BCI performance of both groups in the
control of right hand (on the left) and both hands (on
the right). Figure 14: BCI scores in SCI group depending
on their ASIA classification. Figure 15: BCI performance
of SCI group depending on the level of injury. Figure 16:
marginally negative correlation between total BCI scores
and NLI. Figure 17: mean training scores of both groups
at left and right hand. Figure 18: training scores of SCI
groups depending on their ASIA classification. Figure 19:
mean BCI and training performance depending on the
level of injury. Figure 20: answers provided to Godspeed
questionnaire from both groups. Figure 21: scores of SCI
subjects at GDSPD-Anthr depending on outcome. Figure 22:
BCI performance of both groups in different categories of
movements. (Supplementary Materials)
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