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This note proves that the annihilation operator of a quantum harmonic oscillator admits an invariant distributionally 𝜀-scrambled
linear manifold for any 0 < 𝜀 < 2. This is a positive answer to Question 1 by Wu and Chen (2013).

A dynamical system is a pair (𝑋, 𝑓), where 𝑋 is a complete
metric space without isolated points and themap𝑓 : 𝑋 → 𝑋
is continuous.Throughout this paper, letN = {1, 2, 3, . . .} and
Z+ = {0, 1, 2, . . .}.

Sharkovskii’s amazing discovery [1], as well as Li and
Yorke’s famous work which introduced the concept of “chaos”
known as the Li-Yorke chaos today in a mathematically rig-
orous way [2], has activated sustained interest and provoked
the rapid advancement of discrete chaos theory in the last
decades. Since then, several other rigorous definitions of
chaos have been proposed. Each of their definitions tries
to describe one kind of unpredictability in the evolution
of the system dynamics. This was also the original idea of
Li and Yorke. In Li and Yorke’s study [2], they suggested
considering “divergent pairs” (𝑥, 𝑦), which are proximal but
not asymptotic, in the sense that

lim inf
𝑛→∞

𝑑 (𝑓
𝑛

(𝑥) , 𝑓
𝑛

(𝑦)) = 0,

lim sup
𝑛→∞

𝑑 (𝑓
𝑛

(𝑥) , 𝑓
𝑛

(𝑦)) > 0,

(1)

where 𝑓𝑛 denotes the 𝑛th iteration of 𝑓.
A generalization of the concept of Li-Yorke chaos is

distributional chaos, introduced by Schweizer and Smı́tal [3]
in 1994.

Let (𝑋, 𝑓) be a dynamical system. For any pair of points
𝑥, 𝑦 ∈ 𝑋 and any 𝑛 ∈ N, let

𝐹 (𝑥, 𝑦, 𝑡, 𝑛) =






{𝑗 ∈ N : 𝑑 (𝑓

𝑗

(𝑥) , 𝑓
𝑗

(𝑦)) < 𝑡, 1 ≤ 𝑗 ≤ 𝑛}






,

(2)

where |𝐴| denotes the cardinality of set 𝐴. Define lower and
upper distributional functions R → [0, 1] generated by 𝑓, 𝑥,
and 𝑦, as

𝐹
𝑥,𝑦
(𝑡, 𝑓) = lim inf

𝑛→∞

1

𝑛

𝐹 (𝑥, 𝑦, 𝑡, 𝑛) , (3)

𝐹
∗

𝑥,𝑦
(𝑡, 𝑓) = lim sup

𝑛→∞

1

𝑛

𝐹 (𝑥, 𝑦, 𝑡, 𝑛) , (4)

respectively. A dynamical system (𝑋, 𝑓) is said to be dis-
tributionally 𝜀-chaotic for a given 𝜀 > 0 if there exists an
uncountable subset 𝐷 ⊂ 𝑋 such that for any pair of distinct
points 𝑥, 𝑦 ∈ 𝐷, one has 𝐹∗

𝑥,𝑦
(𝑡, 𝑓) = 1 for all 𝑡 > 0 and

𝐹
𝑥,𝑦
(𝜀, 𝑓) = 0. The set 𝐷 is a distributionally 𝜀-scrambled set

and the pair (𝑥, 𝑦) a distributionally 𝜀-chaotic pair. If (𝑋, 𝑓) is
distributionally 𝜀-chaotic for any given 0 < 𝜀 < diam𝑋, then
(𝑋, 𝑓) is said to exhibitmaximal distributional chaos.

The quantum harmonic oscillator is the quantum-
mechanical analog of the classical harmonic oscillator. It is
one of the most important models in quantum mechanics
[4, 5], because an arbitrary potential can be approximated by
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a harmonic potential at the vicinity of a stable equilibrium
point. Transmutation of the quantum harmonic oscillator
may be described by the (time-dependent) Schrödinger equa-
tion as

−

ℎ
2

2𝑚

𝜕
2
𝜓

𝜕𝑥
2
+

𝑚𝜔
2

2

𝑥
2

𝜓 = 𝑖ℎ

𝜕𝜓

𝜕𝑡

, (5)

with a wave function 𝜓(𝑥, 𝑡), displacement 𝑥, mass 𝑚,
frequency𝜔, and Planck constant ℎ.The nondimensionalized
steady states in terms of eigenfunctions in the separable
Hilbert spaceH = 𝐿2(−∞, +∞) form an orthonormal basis:

𝜓
𝑛
(𝑥) =

𝑒
−𝑥
2
/2
𝐻
𝑛
(𝑥)

√√𝜋2
𝑛
𝑛!

, 𝑛 = 0, 1, . . . , (6)

where𝐻
𝑛
(𝑥) = (−1)

𝑛

𝑒
𝑥
2

(d𝑛/d𝑥𝑛)𝑒−𝑥
2

is the 𝑛thHermite poly-
nomial. The natural phase space for the quantum harmonic
oscillator is the Schwartz class, also called Schwartz space Φ
of rapidly decreasing functions inH, defined as

Φ = {𝜙 ∈H : 𝜙 =
∞

∑

𝑛=0

𝑐
𝑛
𝜓
𝑛
,

∞

∑

𝑛=0





𝑐
𝑛






2

(𝑛 + 1)
𝑟

< +∞, ∀𝑟 > 0} .

(7)

Here, Φ is an infinite-dimensional Fréchet space with topol-
ogy defined by the system of seminorms 𝑝

𝑟
(⋅) of the form

𝑝
𝑟
(𝜙) = 𝑝

𝑟
(

∞

∑

𝑛=0

𝑐
𝑛
𝜓
𝑛
) = (

∞

∑

𝑛=0





𝑐
𝑛






2

(𝑛 + 1)
𝑟

)

1/2

. (8)

This topology on Φ can be equivalently introduced by the
metric

𝜌 (𝜙, 𝜓) =

∞

∑

𝑚=0

1

2
𝑚

𝑝
𝑚
(𝜙 − 𝜓)

1 + 𝑝
𝑚
(𝜙 − 𝜓)

. (9)

It follows directly from (9) that diamΦ = 2. For any 𝜙 =
∑
∞

𝑛=0
𝑐
𝑛
𝜓
𝑛
∈ Φ and any 𝑖 ∈ Z+, denote 𝜙

𝑖
= 𝑐
𝑖
. The quantum

harmonic oscillator may be equivalently described in terms
of the annihilation operator 𝑎 = (1/√2)(𝑥 + (d/d𝑥)) and
its adjoint 𝑎† = (1/√2)(𝑥 − (d/d𝑥)). According to the basic
properties ofHermite polynomials, one has 𝑎 : Φ → Φ given
by

𝑎 (𝜓
𝑛
) =

1

√2

(𝑥 +

d
d𝑥
)𝜓
𝑛
= √𝑛𝜓

𝑛−1
. (10)

Meanwhile, it is not difficult to check that for any 𝑖 ∈ N and
any 𝜙 = ∑∞

𝑛=0
𝑐
𝑛
𝜓
𝑛
∈ Φ,

𝑎
𝑖

(𝜙) =

∞

∑

𝑛=𝑖

√𝐴
𝑖

𝑛
⋅ 𝑐
𝑛
⋅ 𝜓
𝑛−𝑖
=

∞

∑

𝑛=0

√𝐴
𝑖

𝑛+𝑖
⋅ 𝑐
𝑛+𝑖
⋅ 𝜓
𝑛
, (11)

where 𝐴𝑖
𝑛
= 𝑛 ⋅ (𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 − 𝑖 + 1). The 𝑎 acts as a kind of

backward shift on the spaceΦ. In fact, it is a special weighted
backward shift on the Fréchet space (see [6–8] for the recent
results on this topic).

Applying a result of Godefroy and Shapiro [9], Gulisas-
hvili andMacCluer [10] proved that the annihilation operator
𝑎 is Devaney chaotic. Then, Duan et al. [11] obtained that 𝑎 is
also Li-Yorke chaotic. However, it follows directly from [12,
Theorem 4.1] that this holds trivially. Oprocha [13] showed
that 𝑎 is distributionally 𝜀-chaotic with 𝜀 = 1/16. Recently,
in [14] it was further shown that 𝑎 exhibits distributional 𝜀-
chaos for any 0 < 𝜀 < 2 and that the principal measure of
𝑎 is 1. Moreover, Wu and Chen [15] proved that 𝑎 admits an
invariant distributionally 𝜀-scrambled set for any 0 < 𝜀 < 2
and posed the following question.

Question. Is there an invariant manifold 𝐷 of Φ such that 𝐷
is a distributionally 𝜀-scrambled set for any 0 < 𝜀 < 2?

This paper gives a positive answer to the question above;
see the following theorem.

Theorem 1. There exists an invariant manifold 𝐸 ⊂ Φ such
that 𝐸 is a distributionally 𝜀-scrambled set under 𝑎 for any 0 <
𝜀 < 2 = diamΦ.

Proof. Let 𝐿
1
= L
1
= 2, 𝐿

𝑛
= 2
𝐿
1
+⋅⋅⋅+𝐿

𝑛−1 , andL
𝑛
= ∑
𝑛

𝑗=1
𝐿
𝑗

for 𝑛 > 1. Arrange all odd primenumbers by the natural order
“<” and denote them by P

1
,P
2
, . . .. For any 𝑛,𝑚 ∈ N, set

A
𝑛,𝑚
= {𝑗 ∈ Z

+

:LP𝑚
𝑛

≤ 𝑗 <LP𝑚
𝑛
+1
, 𝑗 −LP𝑚

𝑛

≡ 0 (mod)} .
(12)

Take a point 𝜉 = ∑∞
𝑗=0
𝜉
𝑗
𝜓
𝑗
such that

𝜉
𝑗
=

{
{

{
{

{

√

P𝑚
𝑛

𝑗!

, 𝑗 ∈ A
𝑛,𝑚
, 𝑛, 𝑚 ∈ N,

0, otherwise.
(13)

Since 𝑗 ≥LP𝑚
𝑛

≥ P𝑚
𝑛
if 𝑗 ∈ A

𝑛,𝑚
, we have that, for any 𝑗 ∈ N,






𝜉
𝑗






≤

1

√(𝑗 − 1)!

. (14)

This implies that, for any 𝑟 ≥ 0,

∞

∑

𝑗=0






𝜉
𝑗







2

(𝑗 + 1)
𝑟

≤

∞

∑

𝑗=1

1

(𝑗 − 1)!

(𝑗 + 1)
𝑟

< +∞. (15)

Hence 𝜉 ∈ Φ.
Take𝐸 := span{𝜉(𝑛) : 𝑛 ∈ Z+}, where 𝜉(𝑛) = 𝑎 𝑛(𝜉). Clearly,

𝐸 is an invariant linear manifold under 𝑎. Given two fixed
points 𝜙, 𝜓 ∈ 𝐸 with 𝜙 ̸= 𝜓, according to the construction of
𝐸, there exist 𝛼

0
, 𝛽
0
, . . . , 𝛼

𝑁
, 𝛽
𝑁
∈ K, such that 𝜙 = 𝛼

0
𝜉
(0)
+

⋅ ⋅ ⋅ + 𝛼
𝑁
𝜉
(𝑁) and 𝜓 = 𝛽

0
𝜉
(0)
+ ⋅ ⋅ ⋅ + 𝛽

𝑁
𝜉
(𝑁).

Now, we assert that (𝜙, 𝜓) is a distributionally 𝜀-chaotic
pair for any 0 < 𝜀 < 2.

First, observe that for any L
2𝑛
≤ 𝑗 < L

2𝑛+1
, 𝜉
𝑗
= 0 and

𝑎
𝑗
(𝜉) = ∑

∞

𝑛=0
√𝐴
𝑗

𝑛+𝑗
⋅ 𝜉
𝑛+𝑗
⋅ 𝜓
𝑛
. Combining this with (14), it
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follows that for any fixed 𝑚 ∈ Z+ and anyL
2𝑛
≤ 𝑗 ≤ L

2𝑛
+

(𝐿
2𝑛+1
/2),

𝑝
𝑚
(𝑎
𝑗

(𝜉)) = (

∞

∑

𝑘=0











√𝐴
𝑗

𝑘+𝑗
⋅ 𝜉
𝑘+𝑗











2

(𝑘 + 1)
𝑚

)

1/2

≤ (

∞

∑

𝑘=L
2𝑛+1
−(𝑗+1)











√𝐴
𝑗

𝑘+𝑗
⋅ 𝜉
𝑘+𝑗











2

(𝑘 + 1)
𝑚

)

1/2

≤ (

∞

∑

𝑘=(𝐿2𝑛+1/2)−1

𝑘 + 𝑗

𝑘!

(𝑘 + 1)
𝑚

)

1/2

,

(16)

asL
2𝑛+1
−(𝑗+1) ≥L

2𝑛+1
−(L
2𝑛
+(𝐿
2𝑛+1
/2)+1) ≥ (𝐿

2𝑛+1
/2)−

1. Meanwhile, it is easy to see that, for anyL
2𝑛
≤ 𝑗 ≤ L

2𝑛
+

(𝐿
2𝑛+1
/2),
∞

∑

𝑘=(𝐿2𝑛+1/2)−1

𝑘 + 𝑗

𝑘!

(𝑘 + 1)
𝑚

≤

∞

∑

𝑘=(𝐿2𝑛+1/2)−1

𝑘 +L
2𝑛
+ (𝐿
2𝑛+1
/2)

𝑘!

(𝑘 + 1)
𝑚

=

∞

∑

𝑘=(𝐿2𝑛+1/2)−1

𝑘 + log
2
𝐿
2𝑛+1
+ (𝐿
2𝑛+1
/2)

𝑘!

(𝑘 + 1)
𝑚

→ 0

(𝑛 → ∞) .

(17)

For any fixed 𝑡 > 0, one can choose a 𝐾
1
∈ N such that

∑
∞

𝑛=𝐾
1
+1
(1/2
𝑛
) < (𝑡/2(𝑁 + 1)). It is clear that, for any 𝑗, 𝑚 ∈

Z+,

𝑝
𝑚
(𝑎
𝑗

(𝜙) − 𝑎
𝑗

(𝜓)) ≤

𝑁

∑

𝑘=0





𝛼
𝑘
− 𝛽
𝑘





⋅ 𝑝
𝑚
(𝑎
𝑗+𝑘

(𝜉)) . (18)

This, together with (16) and (17), leads to that there exists a
𝐾
2
∈ N such that for any 𝑛 ≥ 𝐾

2
and any L

2𝑛
≤ 𝑗 ≤ L

2𝑛
+

(𝐿
2𝑛+1
/2) − 𝑁,

max {

𝛼
𝑘
− 𝛽
𝑘





⋅ 𝑝
𝑚
(𝑎
𝑗+𝑘

(𝜉)) : 0 ≤ 𝑘 ≤ 𝑁, 0 ≤ 𝑚 ≤ 𝐾
1
}

<

𝑡

4 (𝑁 + 1)

.

(19)

This implies that, for any L
2𝑛
≤ 𝑗 ≤ L

2𝑛
+ (𝐿
2𝑛+1
/2) −

𝑁 (𝑛 ≥ 𝐾
2
),

𝜌 (𝑎
𝑗

(𝜙) , 𝑎
𝑗

(𝜓))

≤

𝑁

∑

𝑘=0

𝜌 (𝑎
𝑗+𝑘

(𝛼
𝑘
𝜉) , 𝑎
𝑗+𝑘

(𝛽
𝑘
𝜉))

≤

𝑁

∑

𝑘=0

(

𝐾
1

∑

𝑚=0

1

2
𝑚





𝛼
𝑘
− 𝛽
𝑘





⋅ 𝑝
𝑚
(𝑎
𝑗+𝑘

(𝜉))

1 +




𝛼
𝑘
− 𝛽
𝑘





⋅ 𝑝
𝑚
(𝑎
𝑗+𝑘
(𝜉))

+

∞

∑

𝑚=𝐾
1
+1

1

2
𝑚
)

<

𝑁

∑

𝑘=0

(

𝐾
1

∑

𝑚=0

1

2
𝑚

(𝑡/4 (𝑁 + 1))

1 + (𝑡/4 (𝑁 + 1))

+

𝑡

2 (𝑁 + 1)

)

<

𝑁

∑

𝑘=0

𝑡

𝑁 + 1

= 𝑡.

(20)

Consequently,

𝐹
∗

𝜙,𝜓
(𝑡, 𝑎)

= lim sup
𝑛→∞

1

𝑛






{𝑗 : 𝜌 (𝑎

𝑗

(𝜙) , 𝑎
𝑗

(𝜓)) < 𝑡, 1 ≤ 𝑗 ≤ 𝑛}







≥ lim sup
𝑛→∞

1

L
2𝑛
+ (𝐿
2𝑛+1
/2) − 𝑁

×










{𝑗 : 𝜌 (𝑎
𝑗

(𝜓) , 𝑎
𝑗

(𝜙)) < 𝑡, 1 ≤ 𝑗 ≤L
2𝑛
+

𝐿
2𝑛+1

2

− 𝑁}










≥ lim sup
𝑛→∞

(𝐿
2𝑛+1
/2) − 𝑁

L
2𝑛
+ (𝐿
2𝑛+1
/2) − 𝑁

= lim sup
𝑛→∞

2
L
2𝑛
−1
− 𝑁

L
2𝑛
+ 2

L
2𝑛
−1
− 𝑁

= 1.

(21)

Second, since 𝜙 ̸= 𝜓, there exists 0 ≤ ℓ ≤ 𝑁 such that
𝛼
ℓ
̸= 𝛽
ℓ
. It follows from (11) that, for any 𝑗 ∈ Z+,

𝑎
𝑗

(𝜙) − 𝑎
𝑗

(𝜓)

=

𝑁

∑

𝑘=0

(𝛼
𝑘
− 𝛽
𝑘
) ⋅ 𝑎
𝑗+𝑘

(𝜉)

=

∞

∑

𝑛=0

(

𝑁

∑

𝑘=0

(𝛼
𝑘
− 𝛽
𝑘
) ⋅ √𝐴

𝑗+𝑘

𝑛+𝑗+𝑘
⋅ 𝜉
𝑛+𝑗+𝑘

⋅ 𝜓
𝑛
) .

(22)

For any fixedLP𝑁+1
𝑛

≤ 𝑗 ≤LP𝑁+1
𝑛

+ (𝐿P𝑁+1
𝑛
+1
/2)(𝑛 ≥ 𝑁), there

exists 0 ≤ 𝑖
0
≤ 𝑁 such that 𝑗 + ℓ + 𝑖

0
∈ A
𝑛,𝑁+1

. According to
the choice of 𝜉, it follows that for all 𝑖 ∈ [0,𝑁]\{𝑖

0
}, 𝜉
𝑗+ℓ+𝑖
= 0.

This implies that

(𝑎
𝑗

(𝜙) − 𝑎
𝑗

(𝜓))
𝑖
0

= (𝛼
ℓ
− 𝛽
ℓ
) ⋅ √𝐴

𝑗+ℓ

𝑖
0
+𝑗+ℓ
⋅ √

P𝑁+1
𝑛

(𝑖
0
+ 𝑗 + ℓ)!

= (𝛼
ℓ
− 𝛽
ℓ
) ⋅ √

P𝑁+1
𝑛

𝑖
0
!

.

(23)
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Then, for any𝑚 ∈ Z+,

𝑝
𝑚
(𝑎
𝑗

(𝜙) − 𝑎
𝑗

(𝜓))

≥ 𝑝
0
(𝑎
𝑗

(𝜙) − 𝑎
𝑗

(𝜓))

≥




𝛼
ℓ
− 𝛽
ℓ





⋅ √

P𝑁+1
𝑛

𝑖
0
!

≥




𝛼
ℓ
− 𝛽
ℓ





⋅
√
P𝑁+1
𝑛

𝑁!

.

(24)

Combining this with the fact that the function 𝑡 ∈ [0, +∞) →
(𝑡/(1 + 𝑡)) ∈ R is increasing, it follows that, for anyLP𝑁+1

𝑛

≤

𝑗 ≤LP𝑁+1
𝑛

+ (𝐿P𝑁+1
𝑛
+1
/2),

𝜌 (𝑎
𝑗

(𝜙) , 𝑎
𝑗

(𝜓))

=

∞

∑

𝑚=0

1

2
𝑚

𝑝
𝑚
(𝑎
𝑗
(𝜙) − 𝑎

𝑗
(𝜓))

1 + 𝑝
𝑚
(𝑎
𝑗
(𝜙) − 𝑎

𝑗
(𝜓))

≥

∞

∑

𝑚=0

1

2
𝑚
⋅





𝛼
ℓ
− 𝛽
ℓ





⋅ √(P𝑁+1
𝑛
/𝑁!)

1 +




𝛼
ℓ
− 𝛽
ℓ





⋅ √(P𝑁+1
𝑛
/𝑁!)

=

2




𝛼
ℓ
− 𝛽
ℓ





⋅ √(P𝑁+1
𝑛
/𝑁!)

1 +




𝛼
ℓ
− 𝛽
ℓ





⋅ √(P𝑁+1
𝑛
/𝑁!)

→ 2 (𝑛 → +∞) .

(25)

Hence, for any 0 < 𝜀 < 2,

𝐹
𝜙,𝜓
(𝜀, 𝑎)

= lim inf
𝑛→∞

1

𝑛






{𝑗 : 𝜌 (𝑎

𝑗

(𝜙) , 𝑎
𝑗

(𝜓)) < 𝜀, 1 ≤ 𝑗 ≤ 𝑛}







≤ lim inf
𝑛→∞

1

LP𝑁+1
𝑛

+ (𝐿P𝑁+1
𝑛
+1
/2)

×











{𝑗 : 𝜌 (𝑎
𝑗

(𝜙) , 𝑎
𝑗

(𝜓)) < 𝜀, 1 ≤ 𝑗 ≤LP𝑁+1
𝑛

+

𝐿P𝑁+1
𝑛
+1

2

}











≤ lim inf
𝑛→∞

LP𝑁+1
𝑛

LP𝑁+1
𝑛

+ (𝐿P𝑁+1
𝑛
+1
/2)

= lim inf
𝑛→∞

LP𝑁+1
𝑛

LP𝑁+1
𝑛

+ 2
LP𝑁+1
𝑛

−1
= 0.

(26)

Summing up the above discussions, since both 𝜙 and 𝜓
are arbitrary, it follows that 𝐸 is an invariant distributionally
𝜀-scrambled linear manifold for any 0 < 𝜀 < 2.
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