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A complete family of solutions for the one-dimensional reaction-diffusion equation, 𝑢𝑥𝑥(𝑥, 𝑡) − 𝑞(𝑥)𝑢(𝑥, 𝑡) = 𝑢𝑡(𝑥, 𝑡), with a
coefficient 𝑞 depending on 𝑥 is constructed. The solutions represent the images of the heat polynomials under the action of a
transmutation operator.Their use allows one to obtain an explicit solution of the noncharacteristic Cauchy problemwith sufficiently
regular Cauchy data as well as to solve numerically initial boundary value problems. In the paper, theDirichlet boundary conditions
are considered; however, the proposed method can be easily extended onto other standard boundary conditions. The proposed
numerical method is shown to reveal good accuracy.

1. Introduction

In the present work a complete system of solutions of a
one-dimensional reaction-diffusion equation with a variable
coefficient

𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑞 (𝑥) 𝑢 (𝑥, 𝑡) = 𝑢𝑡 (𝑥, 𝑡) (1)

considered on Ω fl (−𝑏, 𝑏) × (0, 𝜏) is obtained. We assume
that the potential 𝑞 ∈ 𝐶[−𝑏, 𝑏] may be complex valued. The
completeness of the system is with respect to the uniform
norm in the closed rectangle Ω. The system of solutions is
shown to be useful for uniform approximation of solutions
of initial boundary value problems for (1) as well as for
explicit solution of the noncharacteristic Cauchy problem
(see [1]) for (1) in terms of the formal powers arising in the
spectral parameter power series (SPPS)method (see [2, 3]). In
the paper, the Dirichlet boundary conditions are considered;
however the proposed method can be easily extended onto
other standard boundary conditions.

The complete system of solutions is constructed with the
aid of the transmutation operators relating (1) to the heat
equation (see, e.g., [4–6]). The possibility of constructing
complete systems of solutions by means of transmutation
operatorswas proposed and explored in [4], and the approach

developed in [4] requires the knowledge of the transmutation
operators. In the present work using a mapping property
of the transmutation operators discovered in [7] we show
that the construction of the complete systems of solutions
for equations of form (1), representing transmuted heat
polynomials, can be realizedwith no previous construction of
the transmutation operator.Moreover, the use of themapping
property leads to an explicit solution of the noncharacteristic
Cauchy problem for (1) with Cauchy data belonging to a
Holmgren class [1].

We illustrate the implementation of the complete system
of the transmuted heat polynomials by a numerical solution
of an initial boundary value problem for (1).The approximate
solution is sought in the form of a linear combination
of the transmuted heat polynomials and the initial and
boundary conditions are satisfied by a collocation method.
A remarkable accuracy is achieved in few seconds using
MATLAB 2012 on a usual PC.

Besides this Introduction the paper contains five sections.
In Section 2 we recall the transmutation operators and some
of their properties. In Section 3 an explicit solution of the
noncharacteristic Cauchy problem for (1) is obtained. In
Section 4 we prove the completeness of the transmuted heat
polynomials. In Section 5 the numerical method for solving
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initial boundary value problems for (1) implementing the
transmuted heat polynomials is discussed. Section 6 presents
a numerical illustration.

2. Transmutation Operators and
Formal Powers

2.1. System of Recurrent Integrals. Let 𝑞 be a continuous
complex valued function defined on the segment [−𝑏, 𝑏].
Throughout the paper we suppose that 𝑓 is a nonvanishing
solution of the equation

𝑓 − 𝑞 (𝑥) 𝑓 = 0 (2)

on (−𝑏, 𝑏) such that 𝑓(0) = 1 and 𝑓(0) = 𝛼, where 𝛼 is a
complex number. In [3] the existence of such solution was
proved.

Consider two sequences of recurrent integrals (see [2, 3]):

𝑋(0) ≡ 1,
𝑋(𝑛) (𝑥) = 𝑛∫𝑥

0
𝑋(𝑛−1) (𝑠) (𝑓2 (𝑠))(−1)𝑛 𝑑𝑠,

𝑋(0) ≡ 1,
𝑋(𝑛) (𝑥) = 𝑛∫𝑥

0
𝑋(𝑛−1) (𝑠) (𝑓2 (𝑠))(−1)𝑛−1 𝑑𝑠,

𝑥 ∈ [−𝑏, 𝑏] , 𝑛 ∈ N.

(3)

Definition 1. The family of functions {𝜑𝑘}∞𝑘=0 constructed
according to the rule

𝜑𝑘 (𝑥) = {{{
𝑓 (𝑥)𝑋(𝑘) (𝑥) , 𝑘 odd

𝑓 (𝑥)𝑋(𝑘) (𝑥) , 𝑘 even
(4)

is called the system of formal powers associated with 𝑓.
The formal powers arise in the spectral parameter

power series (SPPS) representation for solutions of the one-
dimensional Schrödinger equation (see [2, 3]).

2.2. The Transmutation Operator. For any 𝑞 ∈ 𝐶[−𝑏, 𝑏] it is a
well-known result [5, Chapter 1] that there exists a function(𝑥, 𝑠) → 𝐾(𝑥, 𝑠) defined on the domain 0 ≤ |𝑠| ≤ |𝑥| ≤ 𝑏,
continuously differentiable, such that the equality

𝐴𝑇V = 𝑇𝐵V (5)

is valid for all V ∈ 𝐶2[−𝑏, 𝑏], where 𝐴 fl 𝜕2/𝜕𝑥2 − 𝑞, 𝐵 fl𝜕2/𝜕𝑥2, and𝑇 has the form of a second-kind Volterra integral
operator

𝑇V (𝑥) fl V (𝑥) + ∫𝑥
−𝑥
𝐾 (𝑥, 𝑠) V (𝑠) 𝑑𝑠. (6)

The operator 𝑇 is called transmutation operator. Moreover,
the function 𝐾 is not unique and can be chosen so that

𝑇[1] = 𝑓 (see, e.g., [7, 8]). When 𝑞 ∈ 𝐶1[−𝑏, 𝑏] such function𝐾 is the unique solution of the Goursat problem

𝐾𝑥𝑥 (𝑥, 𝑠) − 𝑞 (𝑥)𝐾 (𝑥, 𝑠) = 𝐾𝑠𝑠 (𝑥, 𝑠) ,
𝐾 (𝑥, 𝑥) = 𝛼

2 +
1
2 ∫
𝑥

0
𝑞 (𝑦) 𝑑𝑦,

𝐾 (𝑥, −𝑥) = 𝛼
2 ,

𝑥 ∈ [−𝑏, 𝑏] .

(7)

For any 𝑞 ∈ 𝐶[−𝑏, 𝑏] the kernel𝐾 can be defined as𝐾(𝑥, 𝑠) =𝐻((𝑥 + 𝑠)/2, (𝑥 − 𝑠)/2) and |𝑠| ≤ |𝑥| ≤ 𝑏, with 𝐻 being the
unique solution of the Goursat problem

𝐻𝑢V (𝑢, V) = 𝑞 (𝑢 + V)𝐻 (𝑢, V) ,
𝐻 (𝑢, 0) = 𝛼

2 +
1
2 ∫
𝑢

0
𝑞 (𝑠) 𝑑𝑠,

𝐻 (0, V) = 𝛼
2 .

(8)

If the potential 𝑞 is 𝑛 times continuously differentiable
on (−𝑏, 𝑏), the kernel 𝐾(𝑥, 𝑠) is 𝑛 + 1 times continuously
differentiable with respect to both independent variables.

The followingmapping property of the operator 𝑇 is used
throughout the paper.

Proposition 2 (see [7]).

𝑇 [𝑥𝑘] = 𝜑𝑘 (𝑥) , ∀𝑘 ∈ N0. (9)

The inverse operator 𝑇−1 also has the form of a second-
kind Volterra integral operator and satisfies the following
correspondence of the initial values (see [8]):

V (0) = 𝑢 (0) ,
V (0) = 𝑢 (0) − 𝛼𝑢 (0) , (10)

where V fl 𝑇−1𝑢.
3. The Noncharacteristic Cauchy
Problem for (1)

In this section an explicit solution of the noncharacteristic
Cauchy problem for (1) in terms of the formal powers 𝜑𝑘 is
obtained. This fact is a direct consequence of the mapping
property (9).

Definition 3 (see [1]). For the positive constants 𝛾1, 𝛾2, and𝐶1, the Holmgren class𝐻(𝛾1, 𝛾2, 𝐶1, 𝑡0) is the set of infinitely
differentiable functions V defined on |𝑡 − 𝑡0| < 𝛾2 that satisfy

V(𝑗) (𝑡) ≤ 𝐶1𝛾−2𝑗1 (2𝑗)!, 𝑗 = 0, 1, . . . (11)

for all 𝑡 ∈ |𝑡 − 𝑡0| < 𝛾2.
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Proposition 4. Let 𝑞 ∈ 𝐶[−𝑏, 𝑏] and 𝑢(𝑥, 𝑡) be a solution of
the noncharacteristic Cauchy problem

𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑞 (𝑥) 𝑢 (𝑥, 𝑡) = 𝑢𝑡 (𝑥, 𝑡) ,
−𝑏 < 𝑥 < 𝑏, |𝑡| < 𝜏 (12)

𝑢 (0, 𝑡) = 𝐹 (𝑡) , |𝑡| < 𝜏 (13)

𝑢𝑥 (0, 𝑡) = 𝐺 (𝑡) , |𝑡| < 𝜏 (14)

where 𝐹, 𝐺 ∈ 𝐻(𝑏, 𝜏, 𝐶, 0), 𝐶 > 0. Then the series
∞∑
𝑗=0

[𝐹(𝑗) (𝑡)(2𝑗)! (𝜑2𝑗 (𝑥) −
𝛼

2𝑗 + 1𝜑2𝑗+1 (𝑥))

+ 𝐺(𝑗) (𝑡)
(2𝑗 + 1)!𝜑2𝑗+1 (𝑥)]

(15)

converges uniformly and absolutely for |𝑥| ≤ 𝑟 < 𝑏 to the
solution 𝑢(𝑥, 𝑡), where 𝜑𝑘 are the formal powers (4).

Remark 5. Note that the functions 𝜑2𝑗(𝑥) − (𝛼/(2𝑗 +1))𝜑2𝑗+1(𝑥) coincide with the formal powers (4) constructed
starting with the particular solution 𝑔 of (2) satisfying the
initial conditions 𝑔(0) = 1 and 𝑔(0) = 0; see [9, Proposition4.7].
Proof. Let 𝑢(𝑥, 𝑡) be a solution of (12). Consider the functionℎ fl 𝑇−1𝑢, where the operator 𝑇−1 is applied with respect to
the variable𝑥.The function ℎ is a solution of the heat equation
(cf. [4, Theorem 2.1.2]) and due to (10) satisfies the following
noncharacteristic Cauchy problem:

ℎ𝑥𝑥 = ℎ𝑡, − 𝑏 < 𝑥 < 𝑏, |𝑡| < 𝜏
ℎ (0, 𝑡) = 𝐹 (𝑡) , |𝑡| < 𝜏
ℎ𝑥 (0, 𝑡) = 𝐺 (𝑡) − 𝛼𝐹 (𝑡) , |𝑡| < 𝜏.

(16)

Since𝐺−𝛼𝐹 ∈ 𝐻(𝑏, 𝜏, (1+𝛼)𝐶, 0), the solution of this problem
is given by the absolutely and uniformly convergent series for|𝑥| ≤ 𝑟 < 𝑏 (see, e.g., [1]):

ℎ (𝑥, 𝑡)
= ∞∑
𝑘=0

(𝐹(𝑘) (𝑡)(2𝑘)! 𝑥2𝑘 +
𝐺(𝑘) (𝑡) − 𝛼𝐹(𝑘) (𝑡)

(2𝑘 + 1)! 𝑥2𝑘+1) . (17)

Due to (9) we obtain

𝑢 (𝑥, 𝑡) = 𝑇ℎ (𝑥, 𝑡)
= ∞∑
𝑘=0

[𝐹(𝑘) (𝑡)(2𝑘)! (𝜑2𝑘 (𝑥) −
𝛼

2𝑘 + 1𝜑2𝑘+1 (𝑥))

+ 𝐺(𝑘) (𝑡)
(2𝑘 + 1)!𝜑2𝑘+1 (𝑥)] .

(18)

This series converges uniformly and absolutely for |𝑥| ≤ 𝑟 < 𝑏
due to the uniform boundedness of 𝑇 and of its inverse.

4. Transmuted Heat Polynomials

In this section a complete system of solutions of (1) is
presented.

Consider the heat polynomials (see, e.g., [10]) defined by

ℎ𝑛 (𝑥, 𝑡) = 𝑛!
[𝑛/2]∑
𝑘=0

𝑡𝑘𝑥𝑛−2𝑘
𝑘! (𝑛 − 2𝑘)! , 𝑛 ∈ N0. (19)

Due to (9) we obtain that the functions

𝑢𝑛 (𝑥, 𝑡) = 𝑛!
[𝑛/2]∑
𝑘=0

𝑡𝑘𝜑𝑛−2𝑘 (𝑥)𝑘! (𝑛 − 2𝑘)! , 𝑛 ∈ N0 (20)

are solutions of (1) for all −𝑏 < 𝑥 < 𝑏 and 𝑡 > 0. Indeed, we
have that 𝑢𝑛 = 𝑇ℎ𝑛,𝑛 ∈ N0, and

𝜕2𝑢𝑛𝜕𝑥2 − 𝑞 (𝑥) 𝑢𝑛 (𝑥, 𝑡) −
𝜕𝑢𝑛𝜕𝑡 (𝑥, 𝑡)

= 𝑇(𝜕2ℎ𝑛𝜕𝑥2 −
𝜕ℎ𝑛𝜕𝑡 (𝑥, 𝑡)) = 0.

(21)

The completeness of the system of the heat polynomials
with respect to the maximum norm proved in [4] and the
uniform boundedness of 𝑇 and 𝑇−1 imply the completeness
of (20) in the space of classical solutions of (1). Thus, the
following statement is true.

Theorem6. Let 𝑢(𝑥, 𝑡) be continuous inΩ and satisfy (1) inΩ.
Then given 𝜀 > 0 there exist𝑁 ∈ N and constants 𝑎0, 𝑎1, . . . , 𝑎𝑁
such that

max
Ω

𝑢 (𝑥, 𝑡) −
𝑁∑
𝑛=0

𝑎𝑛𝑢𝑛 (𝑥, 𝑡)
 < 𝜀. (22)

Proof. Choose 𝜀 > 0. Consider ℎ(𝑥, 𝑡) = 𝑇−1𝑢(𝑥, 𝑡). Due to
the completeness of (19), for any 𝜀1 > 0 there exist𝑁 ∈ N and
constants 𝑎0, 𝑎1, . . . , 𝑎𝑁 such that

max
Ω

ℎ (𝑥, 𝑡) −
𝑁∑
𝑛=0

𝑎𝑛ℎ𝑛 (𝑥, 𝑡)
 < 𝜀1. (23)

Then

max
Ω

𝑢 (𝑥, 𝑡) −
𝑁∑
𝑛=0

𝑎𝑛𝑢𝑛 (𝑥, 𝑡)


= max
Ω

𝑇ℎ (𝑥, 𝑡) −
𝑁∑
𝑛=0

𝑎𝑛𝑇ℎ𝑛 (𝑥, 𝑡)
 ≤ 𝐶𝜀1,

(24)

where the constant𝐶 is the uniform norm of 𝑇. The choice of𝜀1 = 𝜀/𝐶 finishes the proof.

5. Solution of Initial Boundary Value
Problems for (1)

Consider the problem to find the solution of the equation

𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑞 (𝑥) 𝑢 (𝑥, 𝑡) = 𝑢𝑡 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω (25)
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subject to the Dirichlet boundary conditions

𝑢 (−𝑏, 𝑡) = 𝜓1 (𝑡) ,
𝑢 (𝑏, 𝑡) = 𝜓2 (𝑡) ,

𝑡 ∈ [0, 𝜏]
(26)

and the initial condition

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ [−𝑏, 𝑏] , (27)

where 𝜓1, 𝜓2, and 𝜑 are continuously differentiable functions
satisfying the compatibility conditions

𝜓1 (0) = 𝜑 (−𝑏) ,
𝜓2 (0) = 𝜑 (𝑏) . (28)

Problem (25)–(27) possesses a unique solution which
depends continuously on the data (see, e.g., [11]).

The result of Theorem 6 suggests the following simple
method to approximate the solution of problem (25)–(27).
The approximate solution �̃� is sought in the form

�̃� (𝑥, 𝑡) = 𝑁∑
𝑛=0

𝑎𝑛𝑢𝑛 (𝑥, 𝑡) . (29)

Since every 𝑢𝑛 is a solution of (25), their linear combination
satisfies (25) as well. The coefficients {𝑎𝑛}𝑁𝑛=0 are sought
in such a way that �̃� satisfy the initial and the boundary
conditions approximately. For this we used the collocation
method. 𝑀 points {(𝑥𝑖, 𝑡𝑖)}𝑀𝑖=1 are chosen on the parabolic
boundary ({−𝑏}×[0, 𝜏])∪([−𝑏, 𝑏]×{0})∪({𝑏}×[0, 𝜏]) in order
to construct a linear system of equations for the coefficients{𝑎𝑛}𝑁𝑛=0:
𝑁∑
𝑛=0

𝑎𝑛𝑢𝑛 (𝑥𝑖, 𝑡𝑖) =
{{{{{{{{{

𝜓1 (𝑡𝑖) , 𝑥𝑖 = −𝑏
𝜑 (𝑥𝑖) , 𝑡𝑖 = 0
𝜓2 (𝑡𝑖) , 𝑥𝑖 = 𝑏

,

𝑖 = 1, . . . ,𝑀.
(30)

System (30) is the result of imposing conditions (26) and (27)
onto the approximate solution (29). Using the pseudoinverse
matrix system (30) is solved, and the approximate solution
(29) is computed onΩ using the obtained coefficients {𝑎𝑛}𝑁𝑛=0
and the definition of the transmuted heat polynomials (20).

Needless to add, the same approach is applicable to other
kinds of boundary conditions.

6. Numerical Illustration

We present a numerical example of the application of the
method described in the previous section. It reveals a
remarkable accuracy with very little computational efforts.
The implementation was realized in MATLAB 2012.

On the first step a nonvanishing solution 𝑓 of (2)
was computed using the SPPS method (see [3]). The
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Figure 1: The absolute value of the difference |𝑢(𝑥, 𝑡) − 𝑢26(𝑥, 𝑡)|
between the exact and the approximate solutions for problem
(31)–(33).

formal powers 𝜑𝑘 were constructed like in [6] using
the spapi and fnint MATLAB routines from the spline
Toolbox. Then the transmuted heat polynomials (20) were
calculated. In order to obtain a unique solution of system (30)𝑁 + 1 equally spaced points on the parabolic boundary were
chosen. Finally, the approximate solution (29) was computed
on a mesh of 200 × 100 points in the interior of the rectangle
and compared with the corresponding exact solution.

Example 1. Consider the initial Dirichlet problem

𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑥2𝑢 (𝑥, 𝑡) = 𝑢𝑡 (𝑥, 𝑡) ,
(𝑥, 𝑡) ∈ (−1, 1) × (0, 1) , (31)

𝑢 (𝑥, 0) = 𝑒−0.5𝑥2 , 𝑥 ∈ [−1, 1] , (32)

𝑢 (−1, 𝑡) = 𝑢 (1, 𝑡) = 𝑒−0.5−𝑡, 𝑡 ∈ [0, 1] . (33)

The exact solution of this problem has the form

𝑢 (𝑥, 𝑡) = exp(−12𝑥2 − 𝑡) . (34)

The distribution of the absolute error of the approximate
solution for 𝑁 = 26 is presented on Figure 1. The maximum
absolute error of the approximate solution is of order 10−13.

It is often stated that boundary collocation methods
(in particular, the heat polynomials method) lead to ill-
conditioned systems of linear equations; see [12–14]. It is also
the case for the proposed method. As is illustrated in Table 1,
the condition number of the matrix in (30) grows rather
fast. Nevertheless, the straightforward implementation of the
proposed method presented no numerical difficulties. The
convergence and the robustness of the method are illustrated
in Table 1 where the maximum absolute and the maximum
relative error of the approximate solution for different values
of 𝑁 used for approximation (29) are presented. As one
can appreciate, the convergence rate for small values of 𝑁
is exponential, while values of 𝑁 considerably larger than
the optimum do not lead to significant loss of precision.



Advances in Mathematical Physics 5

Table 1: Maximal absolute and relative errors of the approximate solution and condition number of the matrix in (30) for problem (31)–(33)
obtained for different values of𝑁 in (29).

𝑁 Max. absolute error Max. relative error Cond. number
5 2.3 ⋅ 10−2 6.2 ⋅ 10−2 55.7
10 1.4 ⋅ 10−4 5.5 ⋅ 10−4 1.82 ⋅ 105
15 9.6 ⋅ 10−8 4.0 ⋅ 10−7 3.65 ⋅ 109
20 2.0 ⋅ 10−10 8.6 ⋅ 10−10 1.76 ⋅ 1014
23 7.6 ⋅ 10−13 3.2 ⋅ 10−12 1.67 ⋅ 1017
26 1.8 ⋅ 10−13 7.8 ⋅ 10−13 2.59 ⋅ 1023
29 2.5 ⋅ 10−12 1.1 ⋅ 10−11 1.23 ⋅ 1023
34 1.7 ⋅ 10−10 7.3 ⋅ 10−10 1.37 ⋅ 1025
39 2.3 ⋅ 10−9 9.8 ⋅ 10−9 2.86 ⋅ 1029
50 4.7 ⋅ 10−10 2.1 ⋅ 10−9 1.25 ⋅ 1041
75 6.1 ⋅ 10−11 2.7 ⋅ 10−10 2.89 ⋅ 1073
100 2.8 ⋅ 10−10 1.2 ⋅ 10−9 5.63 ⋅ 10105

Moreover, a simple test based on the accuracy of fulfilment of
the initial and boundary conditions (32)-(33) can be utilized
to estimate both the optimal 𝑁 and the accuracy of the
obtained approximate solution.

7. Conclusions

A complete system of solutions of equation (1) is obtained.
The solutions represent the images of the heat polynomials
under the action of the transmutation operator. They are
shown to be convenient for uniform approximation of solu-
tions of initial boundary value problems for (1) as well as
for explicit solution of the noncharacteristic Cauchy problem.
Besides the Dirichlet boundary conditions considered in this
paper the method is applicable to other standard boundary
conditions.The complete system of solutions obtained can be
used for solving moving and free boundary problems.
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