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We consider the Hermitian positive definite solution of the nonlinear matrix equation 𝑋 = 𝑄 + ∑𝑚
𝑖=1
𝐴
𝑖
(𝐵 + 𝑋

−1

)
−1

𝐴
∗

𝑖
. Some new

sufficient conditions and necessary conditions for the existence of Hermitian positive definite solutions are derived. An iterative
method is proposed to compute the Hermitian positive definite solution. In the end, an example is used to illustrate the correctness
and application of our results.

1. Introduction

In this paper we consider the Hermitian positive definite
solution of the nonlinear matrix equation

𝑋 = 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
(𝐵 + 𝑋

−1

)

−1

𝐴
∗

𝑖
, (1)

where 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
are 𝑛 × 𝑛 complex matrices; 𝑄 and

𝐵 are 𝑛 × 𝑛 Hermitian positive definite matrices. Here,
𝐴
∗

𝑖
denotes the conjugate transpose of the matrix 𝐴

𝑖
. The

nonlinear matrix equation (1) plays an important role in
linear optimal and robust control. For instance, the solvability
of the discrete-time linear quadratic optimal control problem

min
𝑢𝑘

1

2

∞

∑

𝑘=0

[

𝑥
𝑘

𝑢
𝑘

]

∗

[

𝑀
𝑑
𝑁
𝑑

𝑁
∗

𝑑
𝑅
𝑑

] [

𝑥
𝑘

𝑢
𝑘

]

s.t. 𝐸
𝑑
𝑥
𝑘+1
= 𝐴
𝑑
𝑥
𝑘
+ 𝐵
𝑑
𝑢
𝑘
, 𝑥
0
= 𝑥
0

,

(2)

with𝑀∗
𝑑
= 𝑀
𝑑
, 𝑅∗
𝑑
= 𝑅
𝑑
depends on the solvability of (1) in

some special cases [1–4]. Due to the important applications in
system and control theory, in the past decades, (1) with𝑚 = 1

has been extensively studied, and the research results mainly
concentrated on the following:

(a) sufficient conditions and necessary conditions for the
existence of an Hermitian solution [5–9];

(b) numerical methods for computing the Hermitian
solution [4, 10–13];

(c) properties of the Hermitian solution [14, 15];
(d) perturbation analysis for the discrete algebraic Riccati

equation [16–18].
(e) connection with symplectic matrix pencil [9, 19, 20];
(f) connection with stochastic realization and spectral

factorization [21–23].

Nonetheless, (1) with𝑚 > 1 has not been studied as far as we
know.

In this paper we study the generalized nonlinear matrix
equation (1). Firstly, we transform (1) into an equivalent non-
linear matrix equation. By Sherman-Woodbury-Morrison
formula [24, Page 50], we have

(𝐵 + 𝑋
−1

)

−1

= 𝐵
−1

− 𝐵
−1

(𝐵
−1

+ 𝑋)

−1

𝐵
−1

; (3)
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then

𝑋 = 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
(𝐵 + 𝑋

−1

)

−1

𝐴
∗

𝑖

= 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
[𝐵
−1

− 𝐵
−1

(𝐵
−1

+ 𝑋)

−1

𝐵
−1

]𝐴
∗

𝑖

= 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
−

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

(𝐵
−1

+ 𝑋)

−1

𝐵
−1

𝐴
∗

𝑖
.

(4)

Set

𝑀
𝑖
= 𝐴
𝑖
𝐵
−1

, 𝑁 = 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
; (5)

then

𝑋 = 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
. (6)

That is,

𝑋 +

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
= 𝑁. (7)

Therefore, the nonlinear matrix equation (1) can be equiva-
lently rewritten as (7). So we first investigate the Hermitian
positive definite solution of (7) in Section 2 and then derive
some new results on the nonlinear matrix equation (1) by
using the matrix transformations (5) in Section 3. Finally, we
use an example to illustrate the correctness and application of
the results of Section 3.

Throughout this paper, we write 𝐵 > 0 (𝐵 ≥ 0) if the
matrix𝐵 is Hermitian positive definite (semidefinite). If𝐵−𝐶
is Hermitian positive definite (semidefinite), then we write
𝐵 > 𝐶 (𝐵 ≥ 𝐶). If an Hermitian positive definite matrix
𝑋 satisfies 𝐵 < 𝑋 ≤ 𝐶, we denote by 𝑋 ∈ (𝐵, 𝐶]. We use
𝜆
1
(𝐵) ≥ 𝜆

2
(𝐵) ≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
(𝐵) to denote all eigenvalues

(each repeated as many times as its algebraic multiplicity) of
an 𝑛 × 𝑛 Hermitian matrix 𝐵. The symbol ‖𝐵‖ denotes the
spectral norm of the matrix 𝐵.

2. Hermitian Positive Definite Solution of (7)
In this section, we first give some sufficient conditions and
necessary conditions for the existence of an Hermitian posi-
tive definite solution of (7), and thenwe construct an iterative
method to compute the Hermitian positive definite solution.
We begin with some lemmas.

Lemma 1 (see [25]). If 𝐴 ≥ 𝐵 > 0, then 𝐴−1 ≤ 𝐵−1.

Lemma 2. If (7) has an Hermitian positive definite solution
𝑋, then

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑁)

−1

𝑀
∗

𝑖
≤ 𝑁. (8)

Proof. Since (7) has an Hermitian positive definite solution
𝑋, that is,

𝑋 +

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
= 𝑁, (9)

then

𝑋 ≤ 𝑁. (10)

And from Lemma 1 it follows that

(𝐵
−1

+ 𝑋)

−1

≥ (𝐵
−1

+ 𝑁)

−1

, (11)

which leads to
𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑁)

−1

𝑀
∗

𝑖

≤

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
= 𝑁 − 𝑋 < 𝑁;

(12)

that is,
𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑁)

−1

𝑀
∗

𝑖
≤ 𝑁. (13)

Lemma 3. Suppose that the matrices 𝑀
𝑖
,𝑀
2
, . . . ,𝑀

𝑚
are

nonsingular; if (7) has an Hermitian positive definite solution
𝑋, then

𝑋 ∈ (

1

𝑚

𝑚

∑

𝑖=1

𝑀
∗

𝑖
𝑁
−1

𝑀
𝑖
− 𝐵
−1

, 𝑁) . (14)

Proof. Since (7) has an Hermitian positive definite solution
𝑋, that is,

𝑋 +

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
= 𝑁, (15)

then

𝑋 < 𝑁,

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
< 𝑁, (16)

which implies

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
< 𝑁, 𝑖 = 1, 2, . . . , 𝑚. (17)

By (17) and Lemma 1 and noting that the matrices 𝑀
𝑖
,

𝑀
2
, . . . ,𝑀

𝑚
are nonsingular, then we have

𝑋 > 𝑀
∗

𝑖
𝑁
−1

𝑀
𝑖
− 𝐵
−1

, 𝑖 = 1, 2, . . . , 𝑚, (18)

which leads to

𝑚𝑋 >

𝑚

∑

𝑖=1

𝑀
∗

𝑖
𝑁
−1

𝑀
𝑖
− 𝑚𝐵
−1

; (19)

that is,

𝑋 >

1

𝑚

𝑚

∑

𝑖=1

𝑀
∗

𝑖
𝑁
−1

𝑀
𝑖
− 𝐵
−1

. (20)
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By (16) and (20), we have

𝑋 ∈ (

1

𝑚

𝑚

∑

𝑖=1

𝑀
∗

𝑖
𝑁
−1

𝑀
𝑖
− 𝐵
−1

, 𝑁) . (21)

Theorem 4. Let

Δ
1
= [𝜆
𝑛
(𝑁) − 𝜆

𝑛
(𝐵
−1

)]

2

− 4

× [

𝑚

∑

𝑖=1

𝜆
1
(𝑀
𝑖
𝑀
∗

𝑖
) − 𝜆
𝑛
(𝑁) 𝜆

𝑛
(𝐵
−1

)] ,

Δ
2
= [𝜆
1
(𝑁) − 𝜆

1
(𝐵
−1

)]

2

− 4

× [

𝑚

∑

𝑖=1

𝜆
𝑛
(𝑀
𝑖
𝑀
∗

𝑖
) − 𝜆
1
(𝑁) 𝜆

1
(𝐵
−1

)] .

(22)

If

Δ
1
≥ 0, 𝜆

1
(𝑁) − 𝜆

1
(𝐵
−1

) ≥ 𝜆
𝑛
(𝑁) − 𝜆

𝑛
(𝐵
−1

) > 0,

(23)

then (7) has an Hermitian positive definite solution𝑋 and𝑋 ∈
[𝛼𝐼, 𝛽𝐼], where

𝛼 =

𝜆
𝑛
(𝑁) − 𝜆

𝑛
(𝐵
−1

) + √Δ
1

2

,

𝛽 =

𝜆
1
(𝑁) − 𝜆

1
(𝐵
−1

) + √Δ
2

2

.

(24)

Proof. Since

Δ
1
= [𝜆
𝑛
(𝑁) − 𝜆

𝑛
(𝐵
−1

)]

2

− 4

× [

𝑚

∑

𝑖=1

𝜆
1
(𝑀
𝑖
𝑀
∗

𝑖
) − 𝜆
𝑛
(𝑁) 𝜆

𝑛
(𝐵
−1

)] ≥ 0,

𝜆
1
(𝑁) − 𝜆

1
(𝐵
−1

) ≥ 𝜆
𝑛
(𝑁) − 𝜆

𝑛
(𝐵
−1

) > 0

(25)

and noting that

𝑚

∑

𝑖=1

𝜆
𝑛
(𝑀
𝑖
𝑀
∗

𝑖
) − 𝜆
1
(𝑁) 𝜆

1
(𝐵
−1

)

≤

𝑚

∑

𝑖=1

𝜆
1
(𝑀
𝑖
𝑀
∗

𝑖
) − 𝜆
𝑛
(𝑁) 𝜆

𝑛
(𝐵
−1

) ,

(26)

then we have

Δ
2
= [𝜆
1
(𝑁) − 𝜆

1
(𝐵
−1

)]

2

− 4

× [

𝑚

∑

𝑖=1

𝜆
𝑛
(𝑀
𝑖
𝑀
∗

𝑖
) − 𝜆
1
(𝑁) 𝜆

1
(𝐵
−1

)] ≥ 0.

(27)

Therefore, the quadratic equation

𝑥
2

− [𝜆
𝑛
(𝑁) − 𝜆

𝑛
(𝐵
−1

)] 𝑥

+ [

𝑚

∑

𝑖=1

𝜆
1
(𝑀
𝑖
𝑀
∗

𝑖
) − 𝜆
𝑛
(𝑁) 𝜆

𝑛
(𝐵
−1

)] = 0

(28)

has a positive root 𝛼, and the quadratic equation

𝑥
2

− [𝜆
1
(𝑁) − 𝜆

1
(𝐵
−1

)] 𝑥

+ [

𝑚

∑

𝑖=1

𝜆
𝑛
(𝑀
𝑖
𝑀
∗

𝑖
) − 𝜆
1
(𝑁) 𝜆

1
(𝐵
−1

)] = 0

(29)

has a positive root 𝛽, where 𝛼 and 𝛽 are defined by (24).
Now we consider the map

𝐹 (𝑋) = 𝑁−

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
,

𝑋 ∈ Ω = [𝛼𝐼, 𝛽𝐼] .

(30)

Obviously, Ω is a convex, closed, and bounded set and the
map𝐹 is continuous onΩ. For arbitrary𝑋 ∈ Ω, since 𝛼 and 𝛽
are positive roots of (28) and (29), respectively, then we have

𝜆
𝑛
(𝐹 (𝑋)) = 𝜆

𝑛
[𝑁 −𝑀

1
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

1

− ⋅ ⋅ ⋅ − 𝑀
𝑚
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑚
]

≥ 𝜆
𝑛
(𝑁) − 𝜆

1
(𝑀
1
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

1
)

− ⋅ ⋅ ⋅ − 𝜆
1
(𝑀
𝑚
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑚
)

≥ 𝜆
𝑛
(𝑁) −

𝜆
1
(𝑀
1
𝑀
∗

1
)

𝜆
𝑛
(𝐵
−1
) + 𝜆
𝑛
(𝑋)

− ⋅ ⋅ ⋅ −

𝜆
1
(𝑀
𝑚
𝑀
∗

𝑚
)

𝜆
𝑛
(𝐵
−1
) + 𝜆
𝑛
(𝑋)

≥ 𝜆
𝑛
(𝑁) −

𝜆
1
(𝑀
1
𝑀
∗

1
)

𝜆
𝑛
(𝐵
−1
) + 𝛼

− ⋅ ⋅ ⋅ −

𝜆
1
(𝑀
𝑚
𝑀
∗

𝑚
)

𝜆
𝑛
(𝐵
−1
) + 𝛼

= 𝛼,
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𝜆
1
(𝐹 (𝑋)) = 𝜆

1
[𝑁 −𝑀

1
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

1

− ⋅ ⋅ ⋅ − 𝑀
𝑚
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑚
]

≤ 𝜆
1
(𝑁) − 𝜆

𝑛
(𝑀
1
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

1
)

− ⋅ ⋅ ⋅ − 𝜆
𝑛
(𝑀
𝑚
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑚
)

≤ 𝜆
1
(𝑁) −

𝜆
𝑛
(𝑀
1
𝑀
∗

1
)

𝜆
1
(𝐵
−1
) + 𝜆
1
(𝑋)

− ⋅ ⋅ ⋅ −

𝜆
𝑛
(𝑀
𝑚
𝑀
∗

𝑚
)

𝜆
1
(𝐵
−1
) + 𝜆
1
(𝑋)

≤ 𝜆
1
(𝑁) −

𝜆
𝑛
(𝑀
1
𝑀
∗

1
)

𝜆
1
(𝐵
−1
) + 𝛽

− ⋅ ⋅ ⋅ −

𝜆
𝑛
(𝑀
𝑚
𝑀
∗

𝑚
)

𝜆
1
(𝐵
−1
) + 𝛽

= 𝛽;

(31)

that is, 𝐹(𝑋) ∈ Ω, which implies that 𝐹(Ω) ⊆ Ω. By Brouwer’s
fixed point theorem, the map 𝐺 has a fixed point 𝑋 ∈ Ω,
which is the positive definite solution of (7). The theorem is
proved.

Theorem 5. If

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
≤ 𝑁 −

1

𝑚

𝑚

∑

𝑖=1

𝑀
𝑖
𝑁
−1

𝑀
∗

𝑖
+ 𝐵
−1 (32)

for all 𝑋 ∈ [(1/𝑚)∑𝑚
𝑖=1
𝑀
∗

𝑖
𝑁
−1

𝑀
𝑖
− 𝐵
−1

, 𝑁], then (7) has an
Hermitian positive definite solution. Furthermore, if

𝑞 = 𝑚
2

(

𝑚

∑

𝑖=1





𝑀
𝑖






2

)













(

𝑚

∑

𝑖=1

𝑀
𝑖
𝑁
−1

𝑀
∗

𝑖
)

−1










2

< 1, (33)

then (7) has a unique Hermitian positive definite solution.

Proof. Consider the map

𝐹 (𝑋) = 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
,

𝑋 ∈ 𝑊 = {𝑋 |

1

𝑚

𝑚

∑

𝑖=1

𝑀
∗

𝑖
𝑁
−1

𝑀
𝑖
− 𝐵
−1

≤ 𝑋 ≤ 𝑁} .

(34)

Obviously, 𝑊 is a convex, closed, and bounded set and the
map 𝐹 is continuous on𝑊. If

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
≤ 𝑁 −

1

𝑚

𝑚

∑

𝑖=1

𝑀
𝑖
𝑁
−1

𝑀
∗

𝑖
+ 𝐵
−1 (35)

for all𝑋 ∈ 𝑊, then we have

𝑁 ≥ 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖

≥ 𝑁 −𝑁 +

1

𝑚

𝑚

∑

𝑖=1

𝑀
𝑖
𝑁
−1

𝑀
∗

𝑖
− 𝐵
−1

=

1

𝑚

𝑚

∑

𝑖=1

𝑀
𝑖
𝑁
−1

𝑀
∗

𝑖
− 𝐵
−1

;

(36)

that is,

1

𝑚

𝑚

∑

𝑖=1

𝑀
𝑖
𝑁
−1

𝑀
∗

𝑖
− 𝐵
−1

≤ 𝐹 (𝑋) ≤ 𝑁. (37)

Hence, 𝐹(𝑊) ⊆ 𝑊. By Brouwer’s fixed point theorem, the
map 𝐹 has a fixed point in𝑊, which is the Hermitian positive
definite solution of (7).

For arbitrary𝑋,𝑌 ∈ 𝑊, we have

‖𝐹 (𝑋) − 𝐹 (𝑌)‖

=












[𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
]

−[𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑌)

−1

𝑀
∗

𝑖
]












=












𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑌)

−1

𝑀
∗

𝑖

−

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖












=












𝑚

∑

𝑖=1

𝑀
𝑖
[(𝐵
−1

+ 𝑌)

−1

− (𝐵
−1

+ 𝑋)

−1

]𝑀
∗

𝑖












≤

𝑚

∑

𝑖=1








𝑀
𝑖
[(𝐵
−1

+ 𝑌)

−1

− (𝐵
−1

+ 𝑋)

−1

]𝑀
∗

𝑖








≤ (

𝑚

∑

𝑖=1





𝑀
𝑖






2

)








(𝐵
−1

+ 𝑌)

−1

− (𝐵
−1

+ 𝑋)

−1





= (

𝑚

∑

𝑖=1





𝑀
𝑖






2

)








(𝐵
−1

+ 𝑋)

−1

[(𝐵
−1

+ 𝑋) − (𝐵
−1

+ 𝑌)]

×(𝐵
−1

+ 𝑌)

−1





≤ (

𝑚

∑

𝑖=1





𝑀
𝑖






2

)








(𝐵
−1

+ 𝑋)

−1












(𝐵
−1

+ 𝑌)

−1





‖𝑋 − 𝑌‖

≤ (

𝑚

∑

𝑖=1





𝑀
𝑖






2

)𝑚
2













(

𝑚

∑

𝑖=1

𝑀
𝑖
𝑁
−1

𝑀
∗

𝑖
)

−1










2

‖𝑋 − 𝑌‖

= 𝑞 ‖𝑋 − 𝑌‖ .

(38)
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Since 𝑞 < 1, then 𝐹(𝑋) is a contraction map in 𝑊. By
Banach’s fixed point theorem, we know that the map 𝐹 has
a unique fixed point in 𝑊, and this shows that (1) has a
unique Hermitian positive definite solution in ((1/𝑚)∑𝑚

𝑖=1

𝑀
∗

𝑖
𝑁
−1

𝑀
𝑖
− 𝐵
−1

, 𝑁). Noting Lemma 3, we know that (1) has
a unique Hermitian positive definite solution.The theorem is
proved.

Nextly, we give an iterative method to compute the Her-
mitian positive definite solution of (7).

Theorem 6. If there is a real number 𝛼 satisfying

𝑁 − 𝛼𝐼 ≤

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝛼𝐼)

−1

𝑀
∗

𝑖
, (39)

then thematrix sequence {𝑋
𝑘
} converges theHermitian positive

definite solution of (7), where the sequence {𝑋
𝑘
} is generated by

the following iterative method:

𝑋
0
= 𝛼𝐼,

𝑋
𝑘+1
= 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
𝑘
)

−1

𝑀
∗

𝑖
, 𝑘 = 0, 1, 2, . . . .

(40)

Proof. Consider the iterative method (40). From (39) it
follows that

𝑋
1
= 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
0
)

−1

𝑀
∗

𝑖

= 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝛼𝐼)

−1

𝑀
∗

𝑖

≤ 𝛼𝐼

= 𝑋
0
.

(41)

Since𝑋
1
≤ 𝑋
0
, then (𝐵−1 + 𝑋

1
)
−1

≥ (𝐵
−1

+ 𝑋
0
)
−1 and

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
1
)

−1

𝑀
∗

𝑖
≥

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
0
)

−1

𝑀
∗

𝑖
(42)

which implies that

𝑋
2
= 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
1
)

−1

𝑀
∗

𝑖

≤ 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
0
)

−1

𝑀
∗

𝑖
= 𝑋
1
.

(43)

Therefore,

𝑋
2
≤ 𝑋
1
≤ 𝑋
0
. (44)

Assume that when 𝑘 = 𝑙, we have𝑋
𝑙
≤ 𝑋
𝑙−1

; then

(𝐵
−1

+ 𝑋
𝑙
)

−1

≥ (𝐵
−1

+ 𝑋
𝑙−1
)

−1

,

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
𝑙
)

−1

𝑀
∗

𝑖
≥

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
𝑙−1
)

−1

𝑀
∗

𝑖
,

(45)

which implies that

𝑋
𝑙+1
= 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
𝑙
)

−1

𝑀
∗

𝑖

≤ 𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
𝑙−1
)

−1

𝑀
∗

𝑖
= 𝑋
𝑙
.

(46)

By mathematical induction, we obtain that the matrix
sequence {𝑋

𝑘
} is monotone decreasing. Now we begin to use

mathematical induction to show that the matrix sequence
{𝑋
𝑘
} is bounded below by some Hermitian positive definite

solution of (7).
When 𝑘 = 0, by (39) we have

𝑋
0
− 𝑋 = 𝛼𝐼 − [𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
] ≥ 0. (47)

Assume that when 𝑘 = 𝑙, we have𝑋
𝑙
≥ 𝑋; then (𝐵−1+𝑋

𝑙
)
−1

≤

(𝐵
−1

+ 𝑋)
−1, and for 𝑘 = 𝑙 + 1 we have

𝑋
𝑙+1
− 𝑋 = [𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
𝑙
)

−1

𝑀
∗

𝑖
]

− [𝑁 −

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖
]

=

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋)

−1

𝑀
∗

𝑖

−

𝑚

∑

𝑖=1

𝑀
𝑖
(𝐵
−1

+ 𝑋
𝑙
)

−1

𝑀
∗

𝑖

=

𝑚

∑

𝑖=1

𝑀
𝑖
[(𝐵
−1

+ 𝑋)

−1

− (𝐵
−1

+ 𝑋
𝑙
)

−1

]𝑀
∗

𝑖

≥ 0.

(48)

Therefore, the matrix sequence {𝑋
𝑘
} is a monotonic de-

creasing sequence and bounded below by some Hermitian
positive definite solution 𝑋, and then it converges to an
Hermitian positive definite solution 𝑋 of (1). The theorem is
proved.

3. Hermitian Positive Definite Solution of (1)
By the matrix transformations (5), Lemmas 2 and 3, and
Theorems 4–6, we have the following theorems.

Theorem 7. If (1) has an Hermitian positive definite solution
𝑋, then

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

(𝐵
−1

+ 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
)

−1

𝐵
−1

𝐴
∗

𝑖

< 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
.

(49)



6 International Journal of Computational Mathematics

Theorem 8. Suppose that the matrices 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
are

nonsingular; if (1) has an Hermitian positive definite solution
𝑋, then

𝑋 ∈ (

1

𝑚

𝑚

∑

𝑖=1

𝐵
−1

𝐴
∗

𝑖
(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
)

−1

𝐴
𝑖
𝐵
−1

− 𝐵
−1

,

𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
) .

(50)

Remark 9. The upper bounds of Hermitian solution for the
discrete algebraic Riccati equation have been extensively
studied in the past three decades (see [14] and references
therein). Compared with previous works, one gives a new
upper bound of Hermitian solution but also gives a lower
bound inTheorem 8.

Theorem 10. Let

Δ


1
= [𝜆
𝑛
(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
) − 𝜆

𝑛
(𝐵
−1

)]

2

− 4[

𝑚

∑

𝑖=1

𝜆
1
(𝐴
𝑖
𝐵
−2

𝐴
∗

𝑖
) − 𝜆
𝑛
(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
)

× 𝜆
𝑛
(𝐵
−1

) ] ;

(51)

Δ


2
= [𝜆
1
(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
) − 𝜆

1
(𝐵
−1

)]

2

− 4[

𝑚

∑

𝑖=1

𝜆
𝑛
(𝐴
𝑖
𝐵
−2

𝐴
∗

𝑖
)

− 𝜆
1
(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
)𝜆
𝑛
(𝐵
−1

)] .

(52)

If

Δ


1
≥ 0,

𝜆
1
(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
) − 𝜆

1
(𝐵
−1

)

≥ 𝜆
𝑛
(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
) − 𝜆

𝑛
(𝐵
−1

) > 0,

(53)

then (1) has an Hermitian positive definite solution𝑋, and𝑋 ∈
[𝛼


𝐼, 𝛽


𝐼], where

𝛼


=

𝜆
𝑛
(𝑄 + ∑

𝑚

𝑖=1
𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
) − 𝜆
𝑛
(𝐵
−1

) + √Δ


1

2

,

𝛽


=

𝜆
1
(𝑄 + ∑

𝑚

𝑖=1
𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
) − 𝜆
1
(𝐵
−1

) + √Δ


2

2

.

(54)

Theorem 11. If
𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

(𝐵
−1

+ 𝑋)

−1

𝐵
−1

𝐴
∗

𝑖

≤ 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖

−

1

𝑚

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
)

−1

𝐵
−1

𝐴
∗

𝑖
+ 𝐵
−1

(55)

for all 𝑋 ∈ [(1/𝑚)∑𝑚
𝑖=1
𝐵
−1

𝐴
∗

𝑖
(𝑄 + ∑

𝑚

𝑖=1
𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
)
−1

𝐵
−1

𝐴
𝑖
−

𝐵
−1

, 𝑄 + ∑
𝑚

𝑖=1
𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
], then (1) has an Hermitian positive

definite solution. Furthermore, if

𝑞 = 𝑚
2

(

𝑚

∑

𝑖=1






𝐴
𝑖
𝐵
−1






2

)

×














(

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

(𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
)

−1

𝐵
−1

𝐴
∗

𝑖
)

−1












2

< 1,

(56)

then (1) has a unique Hermitian positive definite solution.

Theorem 12. If there is a real number 𝛼 satisfying

𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
− 𝛼


𝐼

≤

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

(𝐵
−1

+ 𝛼


𝐼)

−1

𝐵
−1

𝐴
∗

𝑖
,

(57)

then the matrix sequence {𝑋
𝑘
} converges to the Hermitian

positive definite solution of (1), where thematrix sequence {𝑋
𝑘
}

is generated by the following iterative method:

𝑋
0
= 𝛼


𝐼,

𝑋
𝑘+1
= 𝑄 +

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

𝐴
∗

𝑖
−

𝑚

∑

𝑖=1

𝐴
𝑖
𝐵
−1

(𝐵
−1

+ 𝑋
𝑘
)

−1

𝐵
−1

𝐴
∗

𝑖
,

𝑘 = 0, 1, 2, . . . .

(58)

4. Numerical Experiments

In this section, we give an example to demonstrate the cor-
rectness and application of our results.

Example 1. Consider the following discrete-time LQR opti-
mal control problem:

min
𝑢[0,⋅]

lim
𝑁→∞

𝐽
𝑁
w.r.t 𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑢 (𝑘) ,

𝑥 (0) = 𝑥
0
, 𝑥 (⋅) , 𝑢 (⋅) ⊂ 𝑅

4

(59)
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with the additional constraint that lim
𝑁→∞

𝑥(𝑁) = 0, where

𝐽
𝑁
=

1

2

𝑁−1

∑

𝑘=0

{𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢
𝑇

(𝑘) 𝑢 (𝑘)} , (60)

𝑥
0
= [0.45, 0.72, −0.67, −0.16]

𝑇, and both 𝐴 and 𝑄 are as
follows:

𝐴 = (

8 2 −3 4

−8 2 3 4

2 3 4 5

2 1 −1 7

) ,

𝑄 = (

292 −18 −48 60

−18 94 −36 54

−48 −36 186 22

60 54 22 232

) .

(61)

The optimal control sequence that minimizes the perfor-
mance index is 𝑢(𝑘) = −𝐾𝑥(𝑘), where 𝐾 = (𝐼 + 𝑋)−1𝑋𝐴 and
𝑋 = 𝑋

𝑇

> 0 satisfies the discrete algebraic Riccati equation

𝑋 = 𝑄 + 𝐴 [𝑋 − 𝑋(𝐼 + 𝑋)
−1

𝑋]𝐴
𝑇

= 𝑄 + 𝐴(𝐼 + 𝑋
−1

)

−1

𝐴
𝑇

.

(62)

It is easy to verify that the nonlinear matrix equation (62)
satisfies the conditions of Theorem 10; hence, (62) has an
Hermitian positive definite solution 𝑋. Now we use iterative
method (58) to compute the Hermitian positive definite
solution of (62). Let 𝛼 = 58.6, and after 6 iterations, we get
the positive definite solution

𝑋 ≈ 𝑋
6
= (

384.74 −70.83 −18.07 108.90

−70.83 186.66 −14.05 64.88

−18.07 −14.05 239.83 59.93

108.90 64.88 59.93 286.78

) , (63)

and its residual error 𝑅(𝑋
6
) = ‖𝑋

6
− 𝐴(𝐼 + 𝑋

−1

6
)
−1

𝐴
𝑇

− 𝑄‖ ≈

3.28 × 10
−15. Of course it is easy to verify that

𝑋 ≈ 𝑋
6
∈ (𝐴
∗

(𝑄 + 𝐴𝐴
∗

)
−1

𝐴,𝑄 + 𝐴𝐴
∗

) , (64)

which confirms the correctness of Lemma 3.
From

𝑢 (𝑘) = −𝐾𝑥 (𝑘) = −(𝐼 + 𝑋)
−1

𝑋𝐴𝑥 (𝑘)

≈ −(𝐼 + 𝑋
6
)
−1

𝑋
6
𝐴𝑥 (𝑘) ,

(65)

we have

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑢 (𝑘) ≈ [𝐴 − (𝐼 + 𝑋
6
)
−1

𝑋
6
𝐴] 𝑥 (𝑘) ;

(66)

hence, 𝑥(𝑘) ≈ [𝐴 − (𝐼 + 𝑋
6
)
−1

𝑋
6
𝐴]
𝑘

𝑥
0
. Then taking𝑁 = 36

we have

𝐽
𝑁
≈

1

2

𝑁−1

∑

𝑘=0

𝑥
𝑇

(𝑘) [𝑄 + 𝐴
𝑇

𝑋
6
(𝐼 + 𝑋

6
)
−2

𝑋
6
𝐴]𝑥 (𝑘)

= 298.4449.

(67)

5. Conclusion

In this paper, we consider the Hermitian positive definite
solution of the nonlinearmatrix equation𝑋 = 𝑄+∑𝑚

𝑖=1
𝐴
𝑖
(𝐵+

𝑋
−1

)
−1

𝐴
∗

𝑖
, which plays an important role in linear optimal

and robust control. By making use of Sherman-Woodbury-
Morrison formula, we transform this equation into an
equivalent nonlinear matrix equation. So we can investigate
this nonlinear matrix equation by the aid of the equivalent
nonlinear matrix equation. Some new sufficient conditions
and necessary conditions for the existence of an Hermitian
positive definite solution are derived. An iterative method is
proposed to compute its Hermitian positive definite solution.
In the end, an example is used to illustrate the correctness and
application of our results.
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