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Albanese and Monk (2006) have shown that, it is impossible to recover the support of a three-dimensional current distribution
within a conductingmedium from the knowledge of the electric potential outside the conductor. On the other hand, it is possible to
obtain the support of a currentwhich lives in a subspace of dimension lower than three. In the presentwork, we actually demonstrate
this possibility by assuming a one-dimensional current distribution supported on a small line segment having arbitrary location
and orientation within a uniform spherical conductor. The immediate representation of this problem refers to the inverse problem
of electroencephalography (EEG) with a linear current distribution and the spherical model of the brain-head system. It is shown
that the support is identified through the solution of a nonlinear algebraic system which is investigated thoroughly. Numerical tests
show that this system has exactly one real solution. Exact solutions are analytically obtained for a couple of special cases.

1. Introduction

Electroencephalography (EEG) has a history of almost 90
years [1]. It is actually an imaging modality that associates
the electric potential that is generated on the surface of the
head with the electric neuronal activity in the interior of
the head. The brain is modeled as a conductive material and
therefore, any elementary current, running in the neurons,
generates a secondary induction current in the whole of
the conductive brain. Hence, the measurements recorded on
the surface of the head involve not only the effects of the
primary neuronal current but those of the induction current
as well. In some sense, the conductivity of the brain “hides”
the primary electric activity. Then, the principal problem of
electroencephalography is to strip the secondary effects of
the induction current from the measured data, in order to
identify the actual neuronal current.

From Maxwell’s equations we know that the electric
activity of a medium cannot be isolated from the corre-
sponding magnetic one and the coupled field is what we
call electromagnetic wave field. However, if the natural
wavelength is larger than the characteristic dimension of the
medium, then the time-derivative terms of the electric and
the magnetic fields in Maxwell’s equations can be omitted
and the resulting theory is known as the Quasi-Static Theory

of Electromagnetism [2]. In the case where the conductive
medium is the brain tissue Plonsey and Heppner [3] have
calculated thewavelength of the brain to be [4] approximately
equal to 400m. Since the half of this length is much larger
than the characteristic dimension of the brain-head system
it follows that the Quasi-Static theory is well justified as the
appropriate theory for the investigation of the electric and
magnetic brain activity.

As it is the case withmost of real-life problems, electroen-
cephalography involves a forward and an inverse problem.
In the forward EEG problem, the neuronal current is given
and we seek to calculate the electric potential on the surface
of the head. In the inverse EEG problem, we are given the
potential on the surface of the head andwe seek to reconstruct
the primary neuronal current that gave rise to this potential.
The forward problem has a unique solution up to an additive
constant [5], while for the inverse problem one can recover
nothing more than the scalar function of the Helmholtz
representation of the current [6]. In fact, the qualitative
result that it is not possible to identify the current within
a conductor from data collected outside the conductor was
stated by Helmholtz 160 years ago [7]. However, the ultimate
quantitative result on this problem was reached recently [6].

An excellent review of the electromagnetic activity of the
human brain can be found in [8]. A standard book on the field
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is given in [1]. As far as the inverse source problem for the full
Maxwell equations is concerned we refer to [4, 9].

Albanese and Monk [10] demonstrated that it is in
general impossible to find even the support of a localized
current in the interior of a conductor if this support has
the same dimensionality with the conductor. This result was
demonstrated in practice in [11] where it was assumed that
the current is supported inside of a small sphere which is
located in the interior of a larger conducting sphere. It was
shown in [11] that it is impossible to recover the radius of the
small sphere supporting the current.TheAlbanese andMonk
result though is not true if the current lives in a set having a
lower dimension and it is the purpose of the present work to
demonstrate this result in practice.

In this work we solve the forward problem of EEG in
the case where the current is continuously distributed along
a small line segment, and then we try to solve the inverse
problem of identifying the location, the orientation, the size,
and the average dipolar moment. The inverse problem is
reduced to a nonlinear algebraic systemwhich can be handled
by computational methods. However, we demonstrate an
appropriate analytic manipulation of the system that reduces
drastically the numerical interference, leading finally to a
hybrid algorithm for the solution. With the help of this
algorithmwe provide a series of different solutions of the EEG
inverse problem. Furthermore, two special cases are consid-
ered where the solution of the system is solved analytically.

The paper is organized as follows. Section 2 involves the
mathematical formulation of the EEG problem and provides
the solution of the forward problem in the fundamental case
where the current is a single dipole. Then, in Section 3, we
solve the forward problem when the current is distributed
along a small line segment, and in Section 4 we develop the
inverse problem that controls identification of this current.
Finally, a thorough investigation of the inversion algorithm,
developed in Section 4, is given in Section 5.

2. The EEG Problem and
Its Fundamental Solution

We consider a sphere of radius 𝑎 to be a homogeneous
conductor with conductivity 𝜎 as the geometrical model of
the total brain tissue. At the point r

0
, inside this sphere, a

dipolar current with moment Q is activated, representing
a synchronous excitation of a few thousand neurons. The
generated current is then written as

J𝑝 (r) = Q𝛿 (r − r
0
) (1)

while, according to the Quasi-Static Theory of Electromag-
netism [2, 3], the generated electric potential𝑢− in the interior
of the sphere has to solve the following Neumann boundary
value problem:

𝜎Δ r𝑢
−
(r; r
0
) = Q ⋅ ∇r𝛿 (r − r

0
) , 𝑟 < 𝑎,

𝜕

𝜕𝑛

𝑢
−
(r; r
0
) = 0, 𝑟 = 𝑎,

(2)

where the operator 𝜕/𝜕𝑛 denotes the outward normal deriva-
tive on the surface of sphere.

Once the solution 𝑢
− is obtained, the electric potential

𝑢
+ in the domain exterior to sphere satisfies the Dirichlet

boundary value problem:

𝜎Δ r𝑢
+
(r; r
0
) = 0, 𝑟 > 𝑎,

𝑢
+
(r; r
0
) = 𝑢
−
(r; r
0
) , 𝑟 = 𝑎,

𝑢
+
(r; r
0
) = 𝑂(

1

𝑟
2
) , 𝑟 → ∞.

(3)

The solution of Neumann problem (2), corresponding to zero
value of the undetermined constant, is given in the form [5,
12]

𝑢
−
(r; r
0
) =

1

4𝜋𝜎

Q ⋅

r − r
0





r − r
0






3
+ 𝑤 (r) (4)

with

𝑤 (r) = 1

𝜎

(Q ⋅ ∇r0)

×

∞

∑

𝑛=1

𝑛

∑

𝑚=−𝑛

𝑛 + 1

𝑛 (2𝑛 + 1)

𝑟
𝑛

0
𝑟
𝑛

𝑎
2𝑛+1

𝑌
𝑚

𝑛
(r̂
0
)
∗
𝑌
𝑚

𝑛
(r̂) ,

(5)

where 𝑌
𝑚

𝑛
stands for the normalized complex spherical

harmonics

𝑌
𝑚

𝑛
(r̂) = √

2𝑛 + 1

4𝜋

(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!

𝑃
|𝑚|

𝑛
(cos 𝜗) e𝑖𝑚𝜑 (6)

and 𝑃𝑚
𝑛
denotes the Legendre functions of the first kind. The

symbol “̂” on the top of a vector denotes that the vector has
unit length. In view of the addition theorem

𝑃
𝑛
(r̂ ⋅ r̂) = 4𝜋

2𝑛 + 1

𝑛

∑

𝑚=−𝑛

𝑌
𝑚

𝑛
(r̂) 𝑌𝑚
𝑛
(r̂)
∗

, (7)

where 𝑃
𝑛
is the Legendre polynomial of degree 𝑛, the interior

solution is written as

𝑢
−
(r; r
0
) =

1

4𝜋𝜎

Q ⋅

r − r
0





r − r
0






3
+

1

4𝜋𝜎

(Q ⋅ ∇r0)

×

∞

∑

𝑛=1

(1 +

1

𝑛

)

𝑟
𝑛

0
𝑟
𝑛

𝛼
2𝑛+1

𝑃
𝑛
(r̂ ⋅ r̂
0
) .

(8)

Utilizing the Laplace expansion [13, 14]

1





r − r



=

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

4𝜋

2𝑛 + 1

𝑟
𝑛

𝑟
𝑛+1

𝑌
𝑚

𝑛
(r̂) 𝑌𝑚
𝑛
(r̂)
∗

=

∞

∑

𝑛=0

𝑟
𝑛

𝑟
𝑛+1

𝑃
𝑛
(r̂ ⋅ r̂)

(9)

and evaluating the electric potential on the spherical bound-
ary we arrive at the expression

𝑢
−
(𝑎r̂; r
0
) =

1

4𝜋𝜎

(Q ⋅ ∇r0)
∞

∑

𝑛=1

2𝑛 + 1

𝑛

𝑟
𝑛

0

𝛼
𝑛+1

𝑃
𝑛
(r̂ ⋅ r̂
0
) , (10)
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where 𝑎 = |r| and r̂ is the unit vector in the direction of the
observation point r.

Then, using the boundary values (10) as the Dirichlet data
for the exterior problem (3) we obtain the exterior potential
[5]

𝑢
+
(r; r
0
) =

1

4𝜋𝜎

(Q ⋅ ∇r0)
∞

∑

𝑛=1

2𝑛 + 1

𝑛

𝑟
𝑛

0

𝑟
𝑛+1

𝑃
𝑛
(r̂ ⋅ r̂
0
) . (11)

The solution 𝑢
−
(r; r
0
), given in (8), provides the solution of

the interior problem (2), and the solution 𝑢+(r; r
0
), given in

(11), provides the solution of the exterior problem (3), both
for the case of a point excitation at r

0
. Therefore, they can

be considered as the corresponding fundamental solutions
for these two problems [15]. The relative solutions due to any
distribution of current dipoles can be obtained by integrating
these fundamental solutions over the source variable r

0
[11].

3. The Potential of a Linearly
Distributed Current

We assume that the neuronal current J𝑝 is supported on a
small segment of a smooth curve parametrically centered at
the point r

0
. Let this curve be represented by the equation

r = r (𝑡) , 𝑡 ∈ [−𝐿, 𝐿] , r (0) = r
0
. (12)

The neuronal current is then described by the function
J𝑝(r(𝑡)), 𝑡 ∈ [−𝐿, 𝐿]. Since the support curve has been
assumed to be small we can approximate the current J𝑝(r(𝑡))
by the linear part of its Taylor expansion; that is,

J𝑝 (r (𝑡)) = J𝑝 (r
0
) + 𝑡

𝑑r (0)
𝑑𝑡

⋅ [∇ ⊗ J𝑝 (r
0
)] + 𝑂 (𝑡

2
) . (13)

In particular, if the curve is a small line segment of length
2𝐿, centered at r

0
and oriented along the direction �̂� =

(𝛼
1
, 𝛼
2
, 𝛼
3
), that is,

r (𝑡) = r
0
+ 𝑡�̂�, 𝑡 ∈ [−𝐿, 𝐿] , (14)

then representation (13) is written as

J𝑝 (r (𝑡)) ≈ Q + 𝑡l, (15)

where Q = (𝑄
1
, 𝑄
2
, 𝑄
3
) = J𝑝(r

0
) provides an average

moment and l = (𝑙
1
, 𝑙
2
, 𝑙
3
) = �̂� ⋅ ∇⊗ J𝑝(r

0
) provides an average

directional derivative of the current along the direction �̂�.
Next we calculate the total potential which is generated by

the approximate current (15). In fact, since our ultimate goal
is to invert the EEG data that will give us the quantitiesQ, r

0
,

�̂�, and 𝐿 we will calculate as many terms of expansion (11) as
we actually need.

Formula (11), for the excitation dipole {r, J(r)}, is written
as
𝑢
+
(r; r)

=

J𝑝 (r)
4𝜋𝜎

⋅ [

3

𝑟
2
∇r (𝑟

𝑃
1
(r̂ ⋅ r̂)) + 5

2𝑟
3
∇r (𝑟
2
𝑃
2
(r̂ ⋅ r̂))

+

7

3𝑟
4
∇r (𝑟
3
𝑃
3
(r̂ ⋅ r̂))] + 𝑂 (𝑟

−5
) .

(16)

Using the standard expressions of the Legendre polynomials
[14] and performing the indicated calculation, we obtain the
following relations, which are written in dyadic form [16] in
order to isolate the factors that are going to be integrated:

∇r (𝑟

𝑃
1
(r̂ ⋅ r̂)) = r̂,

∇r (𝑟
2
𝑃
2
(r̂ ⋅ r̂)) = (3r̂ ⊗ r̂ − Ĩ) ⋅ r

= (3r̂ ⊗ r̂ − Ĩ) ⋅ (r
0
+ 𝑡�̂�) ,

∇r (𝑟
3
𝑃
3
(r̂ ⋅ r̂)) = 3

2

(5r̂ ⊗ r̂ ⊗ r̂ − 2Ĩ ⊗ r̂ − r̂ ⊗ Ĩ) : r ⊗ r

=

3

2

(5r̂ ⊗ r̂ ⊗ r̂ − 2Ĩ

⊗ r̂ − r̂ ⊗ ̃I) : (r
0
+ 𝑡�̂�) ⊗ (r

0
+ 𝑡�̂�) .

(17)

The symbol ̃I denotes the identity dyadic, and “:” defines the
double contraction [16]:

(a ⊗ b) : (c ⊗ d) = (b ⋅ c) (a ⋅ d) (18)

and similarly the triple contraction is defined as

(a ⊗ b ⊗ c)
... (d ⊗ e ⊗ f) = (c ⋅ d) (b ⋅ e) (a ⋅ f) . (19)

On the other hand, the exterior potential given in (16) can be
written in its Cartesian form [11, 12] as follows:

𝑢
+
(r; r) = 1

4𝜋𝜎

[

𝐻
1
(r)
𝑟
3

+

𝐻
2
(r)
𝑟
5

+

𝐻
3 (
r)

𝑟
7

] + 𝑂 (𝑟
−5
) ,

(20)

where the coefficients

𝐻
1 (
r) = 3r ⋅ J𝑝 (r) ,

𝐻
2 (
r) = 5

2

(3r ⊗ r − 𝑟2̃I) : r ⊗ J𝑝 (r) ,

𝐻
3 (
r) = 7

2

(5r ⊗ r ⊗ r − 2𝑟2̃I ⊗ r − 𝑟2r ⊗ ̃I)
... r ⊗ r ⊗ J𝑝 (r)

(21)

are homogeneous harmonic functions [11].
All we need to do then is to insert expressions (14) and (15)

in (21) and integrate the resulting equations with respect to 𝑡
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from −𝐿 to 𝐿. Performing these long calculations we arrive at
the expressions

𝐻
1
(r) = 3r ⋅ ∫

𝐿

−𝐿

(Q + 𝑡l) 𝑑𝑡

= 6𝐿r ⋅Q,
(22)

𝐻
2 (
r) = 5

2

(3r ⊗ r − 𝑟2̃I) : ∫
𝐿

−𝐿

(r
0
+ 𝑡�̂�) ⊗ (Q + 𝑡l) 𝑑𝑡

=

5

3

(3r ⊗ r − 𝑟2Ĩ) : (3𝐿r
0
⊗Q + 𝐿

3
�̂� ⊗ l) ,

(23)

𝐻
3
(r) = 7

2

(5r ⊗ r ⊗ r − 2𝑟2Ĩ ⊗ r − 𝑟2r ⊗ Ĩ)

...∫
𝐿

−𝐿

(r
0
+ 𝑡�̂�) ⊗ (r

0
+ 𝑡�̂�) ⊗ (Q + 𝑡l) 𝑑𝑡

=

7

3

(5r ⊗ r ⊗ r − 2𝑟2̃I ⊗ r − 𝑟2r ⊗ ̃I)

... [3𝐿r
0
⊗ r
0
⊗Q

+ 𝐿
3
(�̂� ⊗ �̂� ⊗Q + r

0
⊗ �̂� ⊗ l + �̂� ⊗ r

0
⊗ l)] .

(24)

After we replace the above expressions of the harmonic
functions 𝐻

1
, 𝐻
2
, 𝐻
3
in expansion (20) we arrive at the

Cartesian representation of the exterior potential 𝑢+ up to
the terms of order 𝑟−5. That solves the relative forward EEG
problem for a neuronal excitation that is supported on a small
line segment.

4. The Structure of the Inverse Problem

Since the harmonic functions 𝐻
1
, 𝐻
2
, and 𝐻

3
are homo-

geneous polynomials of degrees 1, 2, and 3, respectively, it
follows that

𝐻
1
(r) = 𝐴

1
𝑥
1
+ 𝐴
2
𝑥
2
+ 𝐴
3
𝑥
3
, (25)

𝐻
2
(r) = 𝐵

1
𝑥
2

1
+ 𝐵
2
𝑥
2

2
+ 𝐵
3
𝑥
2

3
+ 𝐵
12
𝑥
1
𝑥
2
+ 𝐵
23
𝑥
2
𝑥
3

+ 𝐵
31
𝑥
3
𝑥
1

(26)

with

𝐵
1
+ 𝐵
2
+ 𝐵
3
= 0, (27)

𝐻
3
(r) = 𝐶

1
𝑥
3

1
+ 𝐶
2
𝑥
3

2
+ 𝐶
3
𝑥
3

3

+ 𝐶
12
𝑥
2

1
𝑥
2
+ 𝐶
21
𝑥
2

2
𝑥
1
+ 𝐶
23
𝑥
2

2
𝑥
3

+ 𝐶
32
𝑥
2

3
𝑥
2
+ 𝐶
31
𝑥
2

3
𝑥
1
+ 𝐶
13
𝑥
2

1
𝑥
3
+ 𝐶
123
𝑥
1
𝑥
2
𝑥
3

(28)

with
3𝐶
1
+ 𝐶
21
+ 𝐶
31
= 0,

𝐶
12
+ 3𝐶
2
+ 𝐶
32
= 0,

𝐶
13
+ 𝐶
23
+ 3𝐶
3
= 0.

(29)

Assume the idealized case where the exterior potential 𝑢+
is known. Then, expansion (20) is known and therefore the
coefficients 𝐴, 𝐵, and 𝐶 are also known. Hence, if we rewrite
the polynomials 𝐻

1
, 𝐻
2
, and 𝐻

3
in terms of the Cartesian

monomials that appear in (25), (26), and (28), then we can
utilize their linear independence to equate each monomial
with the corresponding known coefficient 𝐴, 𝐵, or 𝐶.

Actually, the EEG data are given as potential differences
on the boundary of the head, but this is equivalent to knowing
the exterior field for the following reason. Let 𝑓(𝜗, 𝜑) be the
given data on the sphere of radius 𝛼.Then,𝑓 can be expanded
in the spherical harmonics 𝑌𝑚

𝑛
and let 𝐴𝑚

𝑛
be the coefficients

of this expansion. The function 𝑓 is the trace of the exterior
harmonic function 𝑢

+, which also has an expansion in the
spherical harmonics 𝑟

−(𝑛+1)
𝑌
𝑚

𝑛
with coefficients 𝐵

𝑚

𝑛
. It is

obvious that 𝐵𝑚
𝑛

= 𝑎
𝑛+1

𝐴
𝑚

𝑛
. Consequently, the EEG data

on the surface of the sphere uniquely specify the exterior
harmonic field 𝑢+.

Equations (22) and (25) imply immediately that

Q =

1

6𝐿

(𝐴
1
, 𝐴
2
, 𝐴
3
) =

1

6𝐿

A. (30)

We remind that 𝑥
01
, 𝑥
02
, and 𝑥

03
are the three components

of the vector r
0
, representing the middle point of the line

segment, and 𝛼
1
, 𝛼
2
, 𝛼
3
are the directional cosines of the

direction �̂� of the line segment. Then, from (23), (26), and
(30) we obtain the six relations

𝐵
1
=

5

2

𝐴
1
𝑥
01
−

5

6

(A ⋅ r
0
) + 5𝐿

3
𝑎
1
𝑙
1
−

5

3

𝐿
3
(�̂� ⋅ l) ,

𝐵
2
=

5

2

𝐴
2
𝑥
02
−

5

6

(A ⋅ r
0
) + 5𝐿

3
𝑎
2
𝑙
2
−

5

3

𝐿
3
(�̂� ⋅ l) ,

𝐵
3
=

5

2

𝐴
3
𝑥
03
−

5

6

(A ⋅ r
0
) + 5𝐿

3
𝑎
3
𝑙
3
−

5

3

𝐿
3
(�̂� ⋅ l) ,

𝐵
12
=

5

2

(𝐴
1
𝑥
02
+ 𝐴
2
𝑥
01
) + 5𝐿

3
(𝛼
1
𝑙
2
+ 𝛼
2
𝑙
1
) ,

𝐵
23
=

5

2

(𝐴
2
𝑥
03
+ 𝐴
3
𝑥
02
) + 5𝐿

3
(𝛼
2
𝑙
3
+ 𝛼
3
𝑙
2
) ,

𝐵
31
=

5

2

(𝐴
1
𝑥
03
+ 𝐴
3
𝑥
01
) + 5𝐿

3
(𝛼
1
𝑙
3
+ 𝛼
3
𝑙
1
)

(31)

and constraint (27) is obviously satisfied.
Finally, (24), (28), and (30) provide three relations from

the cubic terms 𝑥3
𝑖

𝐶
1
=

7

6

(5𝑥
2

01
− 𝑟
2

0
)𝐴
1
−

7

3

𝑥
01
(A ⋅ r
0
)

+

7

18

𝐿
2
(5𝛼
2

1
− 1)𝐴

1
−

7

9

𝐿
2
𝛼
1
(A ⋅ �̂�)

+

14

3

𝐿
3
[3𝑥
01
𝛼
1
𝑙
1
− 𝑥
01
(�̂� ⋅ l) − 𝑥

02
(𝛼
1
𝑙
2
+ 𝛼
2
𝑙
1
)

− 𝑥
03
(𝛼
1
𝑙
3
+ 𝛼
3
𝑙
1
)] ,
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𝐶
2
=

7

6

(5𝑥
2

02
− 𝑟
2

0
)𝐴
2
−

7

3

𝑥
02
(A ⋅ r
0
)

+

7

18

𝐿
2
(5𝛼
2

2
− 1)𝐴

2
−

7

9

𝐿
2
𝛼
2
(A ⋅ �̂�)

+

14

3

𝐿
3
[3𝑥
02
𝛼
2
𝑙
2
− 𝑥
02
(�̂� ⋅ l)

− 𝑥
01
(𝛼
1
𝑙
2
+ 𝛼
2
𝑙
1
) − 𝑥
03
(𝛼
2
𝑙
3
+ 𝛼
3
𝑙
2
)] ,

𝐶
3
=

7

6

(5𝑥
2

03
− 𝑟
2

0
)𝐴
3
−

7

3

𝑥
03
(A ⋅ r
0
)

+

7

18

𝐿
2
(5𝛼
2

3
− 1)𝐴

3
−

7

9

𝐿
2
𝛼
3 (
A ⋅ �̂�)

+

14

3

𝐿
3
[3𝑥
03
𝛼
3
𝑙
3
− 𝑥
03 (
�̂� ⋅ l)

− 𝑥
01
(𝛼
1
𝑙
3
+ 𝛼
3
𝑙
1
) − 𝑥
02
(𝛼
2
𝑙
3
+ 𝛼
3
𝑙
2
)] ,

(32)

six relations from the cross terms 𝑥2
𝑖
𝑥
𝑗
, 𝑖 ̸= 𝑗,

𝐶
12
=

35

6

(𝑥
2

01
𝐴
2
+ 2𝑥
01
𝑥
02
𝐴
1
) +

35

18

𝐿
2
(𝛼
2

1
𝐴
2
+ 2𝛼
1
𝛼
2
𝐴
1
)

+

70

3

𝐿
3
(𝑥
01
𝛼
1
𝑙
2
+ 𝑥
01
𝛼
2
𝑙
1
+ 𝑥
02
𝛼
1
𝑙
1
)

−

7

3

𝑥
02
(A ⋅ r
0
) −

7

9

𝐿
2
𝛼
2 (
A ⋅ �̂�) −

14

3

𝐿
3
𝑥
02 (
�̂� ⋅ l)

−

14

3

𝐿
3
𝛼
2
(r
0
⋅ l) − 7

6

𝑟
2

0
𝐴
2
−

7

18

𝐿
2
𝐴
2

−

14

3

𝐿
3
𝑙
2
(�̂� ⋅ r
0
) ,

𝐶
21
=

35

6

(𝑥
2

02
𝐴
1
+ 2𝑥
01
𝑥
02
𝐴
2
) +

35

18

𝐿
2
(𝛼
2

2
𝐴
1
+ 2𝛼
1
𝛼
2
𝐴
2
)

+

70

3

𝐿
3
(𝑥
02
𝛼
2
𝑙
1
+ 𝑥
02
𝛼
1
𝑙
2
+ 𝑥
01
𝛼
2
𝑙
2
)

−

7

3

𝑥
01
(A ⋅ r
0
) −

7

9

𝐿
2
𝛼
1
(A ⋅ �̂�) −

14

3

𝐿
3
𝑥
01
(�̂� ⋅ l)

−

14

3

𝐿
3
𝛼
1
(r
0
⋅ l) − 7

6

𝑟
2

0
𝐴
1
−

7

18

𝐿
2
𝐴
1

−

14

3

𝐿
3
𝑙
1
(�̂� ⋅ r
0
) ,

𝐶
23
=

35

6

(𝑥
2

02
𝐴
3
+ 2𝑥
02
𝑥
03
𝐴
2
) +

35

18

𝐿
2
(𝛼
2

2
𝐴
3
+ 2𝛼
2
𝛼
3
𝐴
2
)

+

70

3

𝐿
3
(𝑥
02
𝛼
2
𝑙
3
+ 𝑥
02
𝛼
3
𝑙
2
+ 𝑥
03
𝛼
2
𝑙
2
)

−

7

3

𝑥
03
(A ⋅ r
0
) −

7

9

𝐿
2
𝛼
3
(A ⋅ �̂�) −

14

3

𝐿
3
𝑥
03
(�̂� ⋅ l)

−

14

3

𝐿
3
𝛼
3
(r
0
⋅ l) − 7

6

𝑟
2

0
𝐴
3
−

7

18

𝐿
2
𝐴
3

−

14

3

𝐿
3
𝑙
3
(�̂� ⋅ r
0
) ,

𝐶
32
=

35

6

(𝑥
2

03
𝐴
2
+ 2𝑥
02
𝑥
03
𝐴
3
) +

35

18

𝐿
2
(𝛼
2

3
𝐴
2
+ 2𝛼
2
𝛼
3
𝐴
3
)

+

70

3

𝐿
3
(𝑥
03
𝛼
3
𝑙
2
+ 𝑥
03
𝛼
2
𝑙
3
+ 𝑥
02
𝛼
3
𝑙
3
)

−

7

3

𝑥
02
(A ⋅ r
0
) −

7

9

𝐿
2
𝛼
2
(A ⋅ �̂�) −

14

3

𝐿
3
𝑥
02
(�̂� ⋅ l)

−

14

3

𝐿
3
𝛼
2
(r
0
⋅ l) − 7

6

𝑟
2

0
𝐴
2
−

7

18

𝐿
2
𝐴

−

14

3

𝐿
3
𝑙
2
(�̂� ⋅ r
0
) ,

𝐶
31
=

35

6

(𝑥
2

03
𝐴
1
+ 2𝑥
01
𝑥
03
𝐴
3
) +

35

18

𝐿
2
(𝛼
2

3
𝐴
1
+ 2𝛼
1
𝛼
3
𝐴
3
)

+

70

3

𝐿
3
(𝑥
03
𝛼
3
𝑙
1
+ 𝑥
03
𝛼
1
𝑙
3
+ 𝑥
01
𝛼
3
𝑙
3
)

−

7

3

𝑥
01
(A ⋅ r
0
) −

7

9

𝐿
2
𝛼
1 (
A ⋅ �̂�) −

14

3

𝐿
3
𝑥
01 (
�̂� ⋅ l)

−

14

3

𝐿
3
𝛼
1
(r
0
⋅ l) − 7

6

𝑟
2

0
𝐴
1
−

7

18

𝐿
2
𝐴
1

−

14

3

𝐿
3
𝑙
1
(�̂� ⋅ r
0
) ,

𝐶
13
=

35

6

(𝑥
2

01
𝐴
3
+ 2𝑥
01
𝑥
03
𝐴
1
) +

35

18

𝐿
2
(𝛼
2

1
𝐴
3
+ 2𝛼
1
𝛼
3
𝐴
1
)

+

70

3

𝐿
3
(𝑥
01
𝛼
1
𝑙
3
+ 𝑥
01
𝛼
3
𝑙
1
+ 𝑥
03
𝛼
1
𝑙
1
)

−

7

3

𝑥
03
(A ⋅ r
0
) −

7

9

𝐿
2
𝛼
3
(A ⋅ �̂�) −

14

3

𝐿
3
𝑥
03
(�̂� ⋅ l)

−

14

3

𝐿
3
𝛼
3
(r
0
⋅ l) − 7

6

𝑟
2

0
𝐴
3
−

7

18

𝐿
2
𝐴
3

−

14

3

𝐿
3
𝑙
3
(�̂� ⋅ r
0
) ,

(33)

and one relation from the product term 𝑥
1
𝑥
2
𝑥
3

𝐶
123

=

35

3

(𝑥
01
𝑥
02
𝐴
3
+ 𝑥
02
𝑥
03
𝐴
1
+ 𝑥
03
𝑥
01
𝐴
2
)

+

35

9

𝐿
2
(𝛼
1
𝛼
2
𝐴
3
+ 𝛼
2
𝛼
3
𝐴
1
+ 𝛼
1
𝛼
3
𝐴
2
)

+

70

3

𝐿
3
(𝑥
01
𝛼
2
𝑙
3
+ 𝑥
02
𝛼
3
𝑙
1
+ 𝑥
03
𝛼
1
𝑙
2

+ 𝑥
01
𝛼
3
𝑙
2
+ 𝑥
03
𝛼
2
𝑙
1
+ 𝑥
02
𝛼
1
𝑙
3
) ,

(34)

where it is easy to verify that the three constraints (29) hold
true.

Equations (30)–(34) define a nonlinear system of 19
equations, 15 of which are linearly independent because of
constraints (27) and (29), for the determination of the 12
independent unknowns Q, r

0
, �̂�, l, and 𝐿, since only two out
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of the three components of �̂� are independent. In fact, we can
use relations (31) to reduce the above system to

𝐶
1
=

14

15

[3𝐵
1
𝑥
01
− 𝐵
12
𝑥
02
− 𝐵
31
𝑥
03
]

+

7

6

[(𝑟
2

0
− 5𝑥
2

01
)𝐴
1
+ 2𝑥
01
(A ⋅ r
0
)]

+

7

18

𝐿
2
[(5𝛼
2

1
− 1)𝐴

1
− 2𝛼
1
(A ⋅ �̂�)] ,

(35)

𝐶
2
=

14

15

[3𝐵
2
𝑥
02
− 𝐵
12
𝑥
01
− 𝐵
23
𝑥
03
]

+

7

6

[(𝑟
2

0
− 5𝑥
2

02
)𝐴
2
+ 2𝑥
02
(A ⋅ r
0
)]

+

7

18

𝐿
2
[(5𝛼
2

2
− 1)𝐴

2
− 2𝛼
2
(A ⋅ �̂�)] ,

(36)

𝐶
3
=

14

15

[3𝐵
3
𝑥
03
− 𝐵
23
𝑥
02
− 𝐵
31
𝑥
01
]

+

7

6

[(𝑟
2

0
− 5𝑥
2

03
)𝐴
3
+ 2𝑥
03
(A ⋅ r
0
)]

+

7

18

𝐿
2
[(5𝛼
2

3
− 1)𝐴

3
− 2𝛼
3
(A ⋅ �̂�)] ,

(37)

𝐶
12
=

7

6

[(𝑟
2

0
− 5𝑥
2

01
)𝐴
2
+ 2𝑥
02
(A ⋅ r
0
) − 10𝐴

1
𝑥
01
𝑥
02
]

+

14

15

[4𝐵
12
𝑥
01
+ (5𝐵

1
− 2𝐵
2
) 𝑥
02
− 𝐵
23
𝑥
03
]

+

7

18

𝐿
2
[(5𝛼
2

1
− 1)𝐴

2
− 2𝛼
2 (
A ⋅ �̂�) + 10𝐴1

𝛼
1
𝛼
2
] ,

(38)

𝐶
21
=

7

6

[(𝑟
2

0
− 5𝑥
2

02
)𝐴
1
+ 2𝑥
01
(A ⋅ r
0
) − 10𝐴

2
𝑥
01
𝑥
02
]

+

14

15

[(5𝐵
2
− 2𝐵
1
) 𝑥
01
+ 4𝐵
12
𝑥
02
− 𝐵
31
𝑥
03
]

+

7

18

𝐿
2
[(5𝛼
2

2
− 1)𝐴

1
− 2𝛼
1 (
A ⋅ �̂�) + 10𝐴2

𝛼
1
𝛼
2
] ,

(39)

𝐶
23
=

7

6

[(𝑟
2

0
− 5𝑥
2

02
)𝐴
3
+ 2𝑥
03
(A ⋅ r
0
) − 10𝐴

2
𝑥
02
𝑥
03
]

+

14

15

[−𝐵
31
𝑥
01
+ 4𝐵
23
𝑥
02
+ (5𝐵

2
− 2𝐵
3
) 𝑥
03
]

+

7

18

𝐿
2
[(5𝛼
2

2
− 1)𝐴

3
− 2𝛼
3
(A ⋅ �̂�) + 10𝐴

2
𝛼
2
𝛼
3
] ,

(40)

𝐶
32
=

7

6

[(𝑟
2

0
− 5𝑥
2

03
)𝐴
2
+ 2𝑥
02
(A ⋅ r
0
) − 10𝐴

3
𝑥
02
𝑥
03
]

+

14

15

[−𝐵
12
𝑥
01
+ (5𝐵

3
− 2𝐵
2
) 𝑥
02
+ 4𝐵
23
𝑥
03
]

+

7

18

𝐿
2
[(5𝛼
2

3
− 1)𝐴

2
− 2𝛼
2
(A ⋅ �̂�) + 10𝐴

3
𝛼
2
𝛼
3
] ,

(41)

𝐶
31
=

7

6

[(𝑟
2

0
− 5𝑥
2

03
)𝐴
1
+ 2𝑥
01
(A ⋅ r
0
) − 10𝐴

3
𝑥
01
𝑥
03
]

+

14

15

[(5𝐵
3
− 2𝐵
1
) 𝑥
01
− 𝐵
12
𝑥
02
+ 4𝐵
31
𝑥
03
]

+

7

18

𝐿
2
[(5𝛼
2

3
− 1)𝐴

1
− 2𝛼
1
(A ⋅ �̂�) + 10𝐴

3
𝛼
1
𝛼
3
] ,

(42)

𝐶
13
=

7

6

[(𝑟
2

0
− 5𝑥
2

01
)𝐴
3
+ 2𝑥
03
(A ⋅ r
0
) − 10𝐴

1
𝑥
01
𝑥
03
]

+

14

15

[4𝐵
31
𝑥
01
− 𝐵
23
𝑥
02
+ (5𝐵

1
− 2𝐵
3
) 𝑥
03
]

+

7

18

𝐿
2
[(5𝛼
2

1
− 1)𝐴

3
− 2𝛼
3
(A ⋅ �̂�) + 10𝐴

1
𝛼
1
𝛼
3
] ,

(43)

𝐶
123

= −

35

3

(𝐴
1
𝑥
02
𝑥
03
+ 𝐴
2
𝑥
01
𝑥
03
+ 𝐴
3
𝑥
01
𝑥
02
)

+

14

3

(𝐵
23
𝑥
01
+ 𝐵
31
𝑥
02
+ 𝐵
12
𝑥
03
)

+

35

9

𝐿
2
(𝐴
1
𝛼
2
𝛼
3
+ 𝐴
2
𝛼
1
𝛼
3
+ 𝐴
3
𝛼
1
𝛼
2
) .

(44)

The system of 7 independent equations (35)–(44) (10 equa-
tionsminus 3 constraints) involves only the 6 unknowns r

0
, �̂�,

and𝐿, since again only two components of �̂� are independent.
Therefore, the solution of this system provides the position
of the middle point r

0
of the line segment, the orientation �̂�

of the line segment, and its length 2𝐿. Finally, inserting the
length 𝐿 in (30) we obtain the average moment Q. This way
we obtain a good approximation of the linearly supported
neuronal current and therefore the solution of the inverse
EEG problem.

Obviously, it is extremely difficult, if possible, to solve the
above nonlinear system without the use of a computational
machine, but it is straightforward to obtain the numerical
solution once the 𝐴, 𝐵, and 𝐶 constants are inserted into the
system. Numerical tests show that there is exactly one real
solution of this system modulo the orientation of the line
segment. However, a further analytical manipulation of the
system is possible, as demonstrated in the next section.

5. A Hybrid Investigation of
the Inversion Algorithm

First, we utilize the identity

𝛼
2

1
+ 𝛼
2

2
+ 𝛼
2

3
= 1 (45)

and introduce the scaling

𝐿𝛼
𝑖
= 𝑎
𝑖
, 𝑖 = 1, 2, 3 (46)

in order for the system to contain only the six unknowns 𝑥
01
,

𝑥
02
, and 𝑥

03
and 𝑎
1
, 𝑎
2
, and 𝑎

3
. Next, we can ignore (40), (41),
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and (42) since they are automatically satisfied because of (27)
and (29). Then the reduced system reads

𝐶
1
=

14

15

(3𝐵
1
𝑥
01
− 𝐵
12
𝑥
02
− 𝐵
31
𝑥
03
)

−

7

6

[𝐴
1
(4𝑥
2

01
− 𝑥
2

02
− 𝑥
2

03
)

− 2𝑥
01
(𝐴
1
𝑥
01
+ 𝐴
2
𝑥
02
+ 𝐴
3
𝑥
03
) ]

+

7

18

[𝐴
1
(4𝑎
2

1
− 𝑎
2

2
− 𝑎
2

3
)

− 2𝑎
1
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) ] ,

(47)

𝐶
2
=

14

15

(−𝐵
12
𝑥
01
+ 3𝐵
2
𝑥
02
− 𝐵
23
𝑥
03
)

−

7

6

[𝐴
2
(−𝑥
2

01
+ 4𝑥
2

02
− 𝑥
2

03
)

− 2𝑥
02
(𝐴
1
𝑥
01
+ 𝐴
2
𝑥
02
+ 𝐴
3
𝑥
03
) ]

+

7

18

[𝐴
2
(−𝑎
2

1
+ 4𝑎
2

2
− 𝑎
2

3
)

− 2𝑎
2
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) ] ,

(48)

𝐶
3
=

14

15

(−𝐵
23
𝑥
02
+ 3𝐵
3
𝑥
03
− 𝐵
31
𝑥
01
)

−

7

6

[𝐴
3
(−𝑥
2

01
− 𝑥
2

02
+ 4𝑥
2

03
)

− 2𝑥
03
(𝐴
1
𝑥
01
+ 𝐴
2
𝑥
02
+ 𝐴
3
𝑥
03
) ]

+

7

18

[𝐴
3
(−𝑎
2

1
− 𝑎
2

2
+ 4𝑎
2

3
)

− 2𝑎
3
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
A
3
) ] ,

(49)

𝐶
12
=

7

6

[2𝑥
02
(𝐴
1
𝑥
01
+ 𝐴
2
𝑥
02
+ 𝐴
3
𝑥
03
) − 10𝐴

1
𝑥
01
𝑥
02

+ 𝐴
2
(−4𝑥
2

01
+ 𝑥
2

02
+ 𝑥
2

03
)]

+

14

15

[𝑥
02
(4𝐵
1
− 3𝐵
2
− 𝐵
3
) + 4𝐵

12
𝑥
01
− 𝐵
23
𝑥
03
]

+

7

18

[𝐴
2
(4𝑎
2

1
− 𝑎
2

2
− 𝑎
2

3
)

− 2𝑎
2
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) + 10𝑎

1
𝑎
2
𝐴
1
] ,

(50)

𝐶
21
=

7

6

[2𝑥
01
(𝐴
1
𝑥
01
+ 𝐴
2
𝑥
02
+ 𝐴
3
𝑥
03
)

+ 𝐴
1
(𝑥
2

01
− 4𝑥
2

02
+ 𝑥
2

03
) − 10𝐴

2
𝑥
01
𝑥
02
]

+

14

15

[𝑥
01
(−3𝐵
1
+ 4𝐵
2
− 𝐵
3
) + 4𝐵

12
𝑥
02
− 𝐵
31
𝑥
03
]

+

7

18

[𝐴
1
(−𝑎
2

1
+ 4𝑎
2

2
− 𝑎
2

3
)

− 2𝑎
1
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) + 10𝑎

1
𝑎
2
𝐴
2
] ,

(51)

𝐶
13
=

7

6

[2𝑥
03
(𝐴
1
𝑥
01
+ 𝐴
2
𝑥
02
+ 𝐴
3
𝑥
03
)

− 10𝐴
1
𝑥
01
𝑥
03
+ 𝐴
3
(−4𝑥
2

01
+ 𝑥
2

02
+ 𝑥
2

03
)]

+

14

15

[𝑥
03
(4𝐵
1
− 𝐵
2
− 3𝐵
3
) − 𝐵
23
𝑥
02
+ 4𝐵
31
𝑥
01
]

+

7

18

[𝐴
3
(4𝑎
2

1
− 𝑎
2

2
− 𝑎
2

3
)

− 2𝑎
3
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) + 10𝑎

1
𝑎
3
𝐴
1
] ,

(52)

𝐶
123

= −

35

3

(𝐴
3
𝑥
01
𝑥
02
+ 𝐴
2
𝑥
01
𝑥
03
+ 𝐴
1
𝑥
02
𝑥
03
)

+

14

3

(𝐵
12
𝑥
03
+ 𝐵
23
𝑥
01
+ 𝐵
31
𝑥
02
)

+

35

9

(𝑎
1
𝑎
2
𝐴
3
+ 𝑎
2
𝑎
3
𝐴
1
+ 𝑎
3
𝑎
1
𝐴
2
) .

(53)

Introducing the quantities

𝐷
1
=

18𝐶
1

7

− 6 ( − 𝐴
1
𝑥
2

01
+ 𝐴
2
𝑥
01
𝑥
02
+ 𝐴
3
𝑥
01
𝑥
03

+

𝐴
1
𝑥
2

02

2

+

𝐴
1
𝑥
2

03

2

+

6𝐵
1
𝑥
01

5

−

2𝐵
12
𝑥
02

5

−

2𝐵
31
𝑥
03

5

) ,

𝐷
2
=

18𝐶
2

7

− 6 (𝐴
1
𝑥
01
𝑥
02
− 𝐴
2
𝑥
2

02
+ 𝐴
3
𝑥
02
𝑥
03

+

𝐴
2
𝑥
2

01

2

+

𝐴
2
𝑥
2

03

2

−

2𝐵
12
𝑥
01

5

+

6𝐵
2
𝑥
02

5

−

2𝐵
23
𝑥
03

5

) ,

𝐷
3
=

18𝐶
3

7

− 6 (𝐴
1
𝑥
01
𝑥
03
+ 𝐴
2
𝑥
02
𝑥
03
− 𝐴
3
𝑥
2

03

+

𝐴
3
𝑥
2

01

2

+

𝐴
3
𝑥
2

02

2

−

2𝐵
31
𝑥
01

5

−

2𝐵
23
𝑥
02

5

+

6𝐵
3
𝑥
03

5

) ,
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𝐷
4
=

18𝐶
12

7

− 6 ( − 4𝐴
1
𝑥
01
𝑥
02
− 2𝐴
2
𝑥
2

01
+ 𝐴
3
𝑥
02
𝑥
03

+

3𝐴
2
𝑥
2

02

2

+

𝐴
2
𝑥
2

03

2

+

2

5

𝑥
02
(4𝐵
1
− 3𝐵
2
− 𝐵
3
)

+

8𝐵
12
𝑥
01

5

−

2𝐵
23
𝑥
03

5

) ,

𝐷
5
=

18𝐶
21

7

− 6 ( − 4𝐴
2
𝑥
01
𝑥
02
− 2𝐴
1
𝑥
2

02
+ 𝐴
3
𝑥
01
𝑥
03

+

3𝐴
1
𝑥
2

01

2

+

𝐴
1
𝑥
2

03

2

+

2

5

𝑥
01
(−3𝐵
1
+ 4𝐵
2
− 𝐵
3
)

+

8𝐵
12
𝑥
02

5

−

2𝐵
31
𝑥
03

5

) ,

𝐷
6
=

18𝐶
13

7

− 6 ( − 4𝐴
1
𝑥
01
𝑥
03
+ 𝐴
2
𝑥
02
𝑥
03
− 2𝐴
3
𝑥
2

01

+

𝐴
3
𝑥
2

02

2

+

3𝐴
3
𝑥
2

03

2

+

2

5

𝑥
03
(4𝐵
1
− 𝐵
2
− 3𝐵
3
)

+

8𝐵
31
𝑥
01

5

−

2𝐵
23
𝑥
02

5

) ,

𝐷
10
=

18𝐶
123

7

− 6 (−5𝐴
3
𝑥
01
𝑥
02

− 5𝐴
1
𝑥
02
𝑥
03
− 5𝐴
2
𝑥
01
𝑥
03

+ 2𝐵
23
𝑥
01
+ 2𝐵
31
𝑥
02
+ 2𝐵
12
𝑥
03
) ,

(54)

the system is further reduced to

𝐷
1
= 𝐴
1
(4𝑎
2

1
− 𝑎
2

2
− 𝑎
2

3
) − 2𝑎

1
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) ,

𝐷
2
= 𝐴
2
(−𝑎
2

1
+ 4𝑎
2

2
− 𝑎
2

3
) − 2𝑎

2
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) ,

𝐷
3
= 𝐴
3
(−𝑎
2

1
− 𝑎
2

2
+ 4𝑎
2

3
) − 2𝑎

3
(𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) ,

𝐷
4
= 𝐴
2
(4𝑎
2

1
− 𝑎
2

2
− 𝑎
2

3
) − 2𝑎

2
(−4𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) ,

𝐷
5
= 𝐴
1
(−𝑎
2

1
+ 4𝑎
2

2
− 𝑎
2

3
) − 2𝑎

1
(𝑎
1
𝐴
1
− 4𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) ,

𝐷
6
= 𝐴
3
(4𝑎
2

1
− 𝑎
2

2
− 𝑎
2

3
) − 2𝑎

3
(−4𝑎
1
𝐴
1
+ 𝑎
2
𝐴
2
+ 𝑎
3
𝐴
3
) ,

𝐷
10
= 10 (𝑎

1
𝑎
2
𝐴
3
+ 𝐴
1
𝑎
2
𝑎
3
+ 𝐴
2
𝑎
1
𝑎
3
) .

(55)

With the help of a series of appropriate row operations we can
rewrite the system (55) in the form

0 = −2(𝑎
1
𝑎
2
)
2
(𝑎
2
𝑎
3
) (𝐴
2

1
+ 2𝐴
2

2
)

+ 3𝐴
1
𝐴
2
[(𝑎
1
𝑎
2
)
2
(𝑎
1
𝑎
3
) − (𝑎

1
𝑎
3
) (𝑎
2
𝑎
3
)
2
]

− (𝑎
1
𝑎
2
) (𝑎
2
𝑎
3
) (𝐴
1
𝐷
2
+ 2𝐴
2
𝐷
1
)

− 2𝐴
1
(𝑎
1
𝑎
2
) (𝑎
2
𝑎
3
)
2
𝐴
3
− 4 (𝑎

1
𝑎
2
) (𝑎
2
𝑎
3
) (𝑎
1
𝑎
3
) 𝐴
2
𝐴
3
,

(56)

0 = −2(𝑎
1
𝑎
2
)
2
(𝑎
1
𝑎
3
) (2𝐴
2

1
+ 𝐴
2

2
)

+ 3𝐴
1
𝐴
2
[(𝑎
1
𝑎
2
)
2
(𝑎
2
𝑎
3
) − (𝑎

1
𝑎
3
)
2
(𝑎
2
𝑎
3
)]

− (𝑎
1
𝑎
2
) (𝑎
1
𝑎
3
) (2𝐴
1
𝐷
2
+ 𝐴
2
𝐷
1
)

− 4𝐴
1
(𝑎
1
𝑎
2
) (𝑎
1
𝑎
3
) (𝑎
2
𝑎
3
) 𝐴
3
− 2 (𝑎

1
𝑎
2
) (𝑎
1
𝑎
3
)
2
𝐴
2
𝐴
3
,

(57)

𝑎
1
𝑎
2
=

−𝐴
1
𝐷
2
+ 𝐴
1
𝐷
4
− 𝐴
2
𝐷
1
+ 𝐴
2
𝐷
5

10 (𝐴
2

1
+ 𝐴
2

2
)

, (58)

𝑎
2
𝑎
3
=

1

10𝐴
3
(𝐴
2

1
+ 𝐴
2

2
) (𝐴
2

1
+ 𝐴
2

2
+ 2𝐴
2

3
)

× (−4𝐴
4

1
𝐷
2
− 𝐴
4

1
𝐷
4
+ 3𝐴
3

1
𝐴
2
𝐷
1
+ 2𝐴
3

1
𝐴
2
𝐷
5

− 3𝐴
2

1
𝐴
2

2
𝐷
2
− 2𝐴
2

1
𝐴
2

2
𝐷
4
− 5𝐴
2

1
𝐴
2
𝐴
3
𝐷
3

− 8𝐴
2

1
𝐴
2

3
𝐷
2
− 2𝐴
2

1
𝐴
2

3
𝐷
4
+ 4𝐴
1
𝐴
3

2
𝐷
1

+ 𝐴
1
𝐴
3

2
𝐷
5
− 𝐴
1
𝐴
2
𝐴
2

3
𝐷
1
+ 𝐴
1
𝐴
2
𝐴
2

3
𝐷
5

− 5𝐴
3

2
𝐴
3
𝐷
3
− 7𝐴
2

2
𝐴
2

3
𝐷
2
− 3𝐴
2

2
𝐴
2

3
𝐷
4
) ,

(59)

𝑎
1
𝑎
3
=

1

10𝐴
3
(𝐴
2

1
+ 𝐴
2

2
) (𝐴
2

1
+ 𝐴
2

2
+ 2𝐴
2

3
)

× (4𝐴
3

1
𝐴
2
𝐷
2
+ 𝐴
3

1
𝐴
2
𝐷
4
− 5𝐴
3

1
𝐴
3
𝐷
3
− 3𝐴
2

1
𝐴
2

2
𝐷
1

− 2𝐴
2

1
𝐴
2

2
𝐷
5
− 7𝐴
2

1
𝐴
2

3
𝐷
1
− 3𝐴
2

1
𝐴
2

3
𝐷
5

+ 3𝐴
1
𝐴
3

2
𝐷
2
+ 2𝐴
1
𝐴
3

2
𝐷
4
− 5𝐴
1
𝐴
2

2
𝐴
3
𝐷
3

− 𝐴
1
𝐴
2
𝐴
2

3
𝐷
2
+ 𝐴
1
𝐴
2
𝐴
2

3
𝐷
4
− 4𝐴
4

2
𝐷
1
− 𝐴
4

2
𝐷
5

− 8𝐴
2

2
𝐴
2

3
𝐷
1
− 2𝐴
2

2
𝐴
2

3
𝐷
5
) ,

(60)

0 = (𝑎
1
𝑎
2
) (−4𝐴

2

1
𝐴
3
− 14𝐴

2

2
𝐴
3
)

+ (𝑎
1
𝑎
3
) (−24𝐴

2

1
𝐴
2
− 14𝐴

2
𝐴
2

3
)

+ (𝑎
2
𝑎
3
) (6𝐴

1
𝐴
2

2
− 4𝐴
1
𝐴
2

3
)

+ 3𝐴
1
𝐴
2
𝐷
6
− 2𝐴
1
𝐴
3
𝐷
2
− 7𝐴
2
𝐴
3
𝐷
1
,

(61)
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0 = 10𝐴
1
(𝑎
2
𝑎
3
) + 10 (𝑎

1
𝑎
2
) 𝐴
3
+ 10 (𝑎

1
𝑎
3
) 𝐴
2
− 𝐷
10
.

(62)

Inserting (58), (59), and (60) that provide the values of the
products 𝑎

1
𝑎
2
, 𝑎
2
𝑎
3
, and 𝑎

3
𝑎
1
, respectively, in the remaining

four equations of the system and inserting the expressions for
the𝐷’s given in (55) we arrive at seven equations of the form

0 = 𝑃
1
(𝑥
01
, 𝑥
02
, 𝑥
03
) , (63)

0 = 𝑃
2
(𝑥
01
, 𝑥
02
, 𝑥
03
) , (64)

𝑎
1
𝑎
2
= 𝑃
3
(𝑥
01
, 𝑥
02
, 𝑥
03
) , (65)

𝑎
2
𝑎
3
= 𝑃
4
(𝑥
01
, 𝑥
02
, 𝑥
03
) , (66)

𝑎
3
𝑎
1
= 𝑃
5
(𝑥
01
, 𝑥
02
, 𝑥
03
) , (67)

0 = 𝑃
6
(𝑥
01
, 𝑥
02
, 𝑥
03
) , (68)

0 = 𝑃
7
(𝑥
01
, 𝑥
02
, 𝑥
03
) , (69)

where the functions 𝑃
1
and 𝑃

2
are polynomials of degree five

in the variables 𝑥
01
, 𝑥
02
, and 𝑥

03
, while the functions 𝑃

6
and

𝑃
7
are polynomials of the first degree in the same variables.

Solving the system (68), (69) with respect to 𝑥
02

and 𝑥
03

in
terms of 𝑥

01
and substituting these values in either of the

functions 𝑃
1
or 𝑃
2
we end up with a fifth degree polynomial

in the variable 𝑥
01
which can be solved easily with a standard

numerical scheme. Once 𝑥
01

is obtained we calculate via
substitution of the values of 𝑥

02
, 𝑥
03

and 𝑎
1
, 𝑎
2
, 𝑎
3
. Some

further trivial substitutions lead to the solution of the inverse
problem.

The following numerical example demonstrates the valid-
ity of this hybrid inversion algorithm.

From the solution of the corresponding forward problem,
with

(𝑄
1
, 𝑄
2
, 𝑄
3
) = (

3

12

,

4

12

,

2

12

) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
) = (1, 2, −2) ,

(𝛼
1
, 𝛼
2
, 𝛼
3
) = (

2

3

,

2

3

,

1

3

)

(70)

and 𝐿 = 2, we extract the following values of the 𝐴, 𝐵, and 𝐶
constants:

(𝐴
1
, 𝐴
2
, 𝐴
3
) = (3.0453463, 4.0275938, 1.9948525) ,

(𝐵
1
, 𝐵
2
, 𝐵
3
) = (12.301466, 13.710550, −26.012016) ,

(𝐵
12
, 𝐵
23
, 𝐵
31
) = (51.666667, −10.3150859, −4.8332202) ,

(𝐶
1
, 𝐶
2
, 𝐶
3
) = (−45.587908, −12.703180, 103.68997) ,

(𝐶
12
, 𝐶
21
, 𝐶
13
) = (235.73554, 323.78438, −154.79058) ,

𝐶
123

= −347.68131

(71)

which imply that (68) and (69) assume the form

0 = 130.352 + 3.94029𝑥
01
− 24.2337𝑥

02
+ 42.9124𝑥

03
,

0 = − 2.88367 − 56.3856𝑥
01
+ 38.3283𝑥

02
+ 8.69373𝑥

03
.

(72)

Hence, we obtain the expressions

𝑥
01
= 4.05320 + 1.52660𝑥

03
,

𝑥
02
= 6.03799 + 2.01899𝑥

03
.

(73)

Inserting these values of 𝑥
01
, 𝑥
02
in (63)–(67) we arrive at the

following system:

0 = −61.2662 + 137.598𝑥
03
+ 378.011𝑥

2

03

+ 282.942𝑥
3

03
+ 87.3784𝑥

4

03
+ 9.69061𝑥

5

03
,

(74)

0 = −150.468 − 460.991𝑥
03
− 513.007𝑥

2

03

− 264.509𝑥
3

03
− 63.2272𝑥

4

03
− 5.50254𝑥

5

03
,

(75)

𝑎
1
𝑎
2
= 7.03737 + 21.123𝑥

03
+ 9.2466𝑥

2

03
, (76)

𝑎
2
𝑎
3
= 25.2989 + 24.319𝑥

03
+ 6.05698𝑥

2

03
, (77)

𝑎
1
𝑎
3
= 12.7037 + 15.067𝑥

03
+ 4.57981𝑥

2

03
, (78)

𝑥
01
= 4.05320 + 1.52660𝑥

03
, (79)

𝑥
02
= 6.03799 + 2.01899𝑥

03
. (80)

The numerical solution of (75) yields the five approximate
roots

𝑥
31
= − 4.89255,

𝑥
32
= − 2.00021,

𝑥
33
= − 1.99979,

𝑥
34
= − 1.83761,

𝑥
35
= − 0.760384.

(81)

However, only the roots

𝑥
32
= − 2.00021,

𝑥
33
= − 1.99979

(82)

which are very close to the value −2 satisfy (74) as well. In
fact, eliminating the fifth degree terms among (74) and (75)
we obtain the fourth degree equation

−𝑃
1
−

9.69061

5.50254

𝑃
2
= 23.972𝑥

4

03
+ 182.888𝑥

3

03

+ 525.453𝑥
2

03
+ 674.259𝑥

03
+ 326.258

= 0

(83)
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which has the double real root 𝑥
03

= −2. Then, by a
straightforward substitution of 𝑥

32
and 𝑥

33
we obtain

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
𝑎
2
, 𝑎
2
𝑎
3
, 𝑎
1
𝑎
3
)
1

= (0.999677, 1.99957, −2.00021,

1.78113, 0.888872, 0.889575) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
𝑎
2
, 𝑎
2
𝑎
3
, 𝑎
1
𝑎
3
)
2

= (1.00032, 2.00042, −1.99979,

1.77444, 0.888910, 0.888205)

(84)
or

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
1

= (0.999677, 1.99957, −2.00021,

1.33512, 1.33406, 0.666290) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
2

= (0.999677, 1.99957, −2.00021,

−1.33512, −1.33406, −0.666290) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
3
, 𝑎
3
)
3

= (1.00032, 2.00042, −1.99979,

1.33155, 1.33261, 0.667044) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
3
, 𝑎
3
)
4

(1.00032, 2.00042, −1.99979,

−1.33155, −1.33261, −0.667044) .

(85)

For comparison we also give the corresponding approximate
solution, obtained by the function NSolve of Mathematica,
for the 6 × 6 system (47), (48), (50)–(53), which is

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
1

= (1.00000, 2.00000, −2.00000,

1.33333, 1.33333, 0.666666) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
3
, 𝑎
3
)
2

= (1.00000, 2.00000, −2.00000, −1.33333,

−1.33333, −0.666666) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
3

= (1.00000, 2.00000, −2.00000, 1.33333,

1.33333, 0.666666) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
3
, 𝑎
3
)
4

= (1.00000, 2.00000, −2.00000, −1.33333,

−1.33333, −0.666666) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
5

= (−3.82890, −10.3370, −7.00206,

11.9783, 22.5330, 7.88115) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
6

= (−3.82890, −10.3370, −7.00206,

−11.9783, −22.5330, −7.88115) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
3
, 𝑎
3
)
7

= (7.12154, 0.778341, −0.869492,

6.09759, −3.74636, 4.17589) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
3
, 𝑎
3
)
8

= (7.12154, 0.778341, −0.869492,

−6.09759, 3.74636, −4.17589) .

(86)

Among these eight solutions, only the following four are
compatible with (49):

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
1

= (𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
3

= (1.00000, 2.00000, −2.00000, 1.33333,

1.33333, 0.666666) ,

(𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
3
, 𝑎
3
)
2

= (𝑥
01
, 𝑥
02
, 𝑥
03
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
4

= (1.00000, 2.00000, −2.00000, −1.33333,

− 1.33333, −0.666666) .

(87)

These two solutions are compatible with the initial system
(31)–(34).

These two solutions are physically equivalent since they
identify the same position (𝑥

01
, 𝑥
02
, 𝑥
03
) and two opposite

directions ±(𝑎
1
, 𝑎
2
, 𝑎
3
) identifying the line segment that

supports the current.
Consequently, the initial system has a unique solution

which implies that the one-dimensional current distribution
is fully recoverable from EEG data.

As an analytical application we solve, in the sequel,
the system in two special cases based on some a priori
information about the characteristics of the current.

Special Case I. Let us assume that we have the a priori
information that the line segment is oriented along the 𝑥

1
-

axis and that itsmiddle point is r
0
= (0, 0, 𝑟

0
).Then, from (44)
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we obtain the distance of the middle point from the center of
the sphere

𝑟
0
=

2

5

𝐵
23

𝐴
2

, (88)

from (38) we obtain the semilength of the line segment

𝐿 = √
9

14

𝐶
12

𝐴
2

+

3

25

(

𝐵
23

𝐴
2

)

2

, (89)

and finally, from (30) we obtain the moment

Q =

1

6

[

9

14

𝐶
12

𝐴
2

+

3

25

(

𝐵
23

𝐴
2

)

2

]

−1/2

A. (90)

Special Case II. If the r
0
= (0, 0, 𝑟

0
) is located at the same point

as in the previous case but now the segment is oriented along
the 𝑥
3
-axis, then from (41), (42) we obtain

𝑟
0
=

15

56

𝐴
2
𝐶
31
− 𝐴
1
𝐶
32

𝐴
2
𝐵
31
− 𝐴
1
𝐵
32

(91)

and from (35) we obtain

𝐿 = (3(

15

56

𝐴
2
𝐶
31
− 𝐴
1
𝐶
32

𝐴
2
𝐵
31
− 𝐴
1
𝐵
32

)

2

−

9

14

𝐵
31

𝐴
1

𝐴
2
𝐶
31
− 𝐴
1
𝐶
32

𝐴
2
𝐵
31
− 𝐴
1
𝐵
32

−

18

7

𝐶
1

𝐴
1

)

1/2

.

(92)

As before, the moment is obtained from (30) and it is equal
to

Q =

1

6

[3(

15

56

𝐴
2
𝐶
31
− 𝐴
1
𝐶
32

𝐴
2
𝐵
31
− 𝐴
1
𝐵
32

)

2

−

9

14

𝐵
31

𝐴
1

𝐴
2
𝐶
31
− 𝐴
1
𝐶
32

𝐴
2
𝐵
31
− 𝐴
1
𝐵
32

−

18

7

𝐶
1

𝐴
1

]

−1/2

A.

(93)
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