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1. Introduction

It is well known that in an early phase of the development of the solitons theory, there
were already many applications in physics and engineering. In particular, traveling waves
as solutions of the KdV equation

ut + 6uux + uxxx = 0 (1.1)

have been of some interest since 150 years. Some generalizations of this last equation have
been studied recently. For instance, the equation

ut + k1t
nuux + k2t

muxxx = 0, (1.2)

where k1, k2 are arbitrary constants, which have applications in physics, has been analyzed
in [1] from the point of view of its exact solutions. The search of explicit solutions to
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nonlinear partial differential equations (NLPDEs) using analytic methods is not an easy
task. However, the use of computational methods facilitates this work. Some powerful
computational methods such as the tanh method [2], the generalized tanh method [3, 4],
the extended tanh method [5–10], the improved tanh-coth method [11–13], the Exp-function
method [14–18], the modified Exp-function method [19], the Cole-Hopf transformation [20],
the projective Riccati equation method (PREM) [21, 22], the generalized projective Riccati
equations method [23–25], the extended hyperbolic function method [26], and many other
methods have been developed in this direction. The PREM and the Exp-function method
have been used in a satisfactory form to solve some NLPDEs [15–17, 24, 25, 27–30]. In this
paper, we use this last two methods to obtain soliton and periodic solutions to the following
special KdV equation with variable coefficients and forcing term:

ut + α(t)uux + kα(t)uxxx = F(t), (1.3)

where F(t) is an external forcing function varying with time t, k is a constant, and α = α(t) is a
function of t, α(t)/= 0. Equation (1.3) is a generalization of the following equation [15, 17, 31]:

ut + αuux + βuxxx = F(t)
(
α, β = const

)
, (1.4)

which results from (1.3) by taking α = const and k = β/α.
We suppose that the solution to (1.3) has the form

u(x, t) =
∫
F(t)dt + v(x, t). (1.5)

Therefore, (1.3) reduces to

vt + α(t)vvx + α(t)
∫
F(t)dtvx + kα(t)vxxx = 0. (1.6)

Now we consider the transformation

v = V (ξ), ξ = λx +
∫
h(t)dt, (1.7)

where λ is a constant and h(t) is an unknown function of t to be determined later. Substituting
(1.7) into (1.6), we obtain

h(t)V ′(ξ) + α(t)λ
(
V (ξ) + f(t)

)
V ′(ξ) + kλ3α(t)V ′′′(ξ) = 0, (1.8)

where

f = f(t) =
∫
F(t)dt. (1.9)
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2. The Exp-Function Method

Recently He and Wu [14] have introduced the Exp-function method to solve nonlinear
equations. In particular, the Exp-function method is a useful tool for solving nonlinear
equations with high nonlinearity. The method has been used in a satisfactory way by other
authors to solve a great variety of nonlinear wave equations [14–19]. The Exp-function
method is very simple and straightforward and is based on a priori assumption that traveling
wave solutions to a nonlinear partial differential equation in the form

F(u, ux, ut, uxx, uxt, utt, . . .) = 0 (2.1)

can be found using the expression

u(ξ) =
∑d

n=−c an exp(nξ)
∑q

n=−p am exp(mξ)
, (2.2)

where c, d, p, and q are positive integers which could be freely chosen; an and bn are unknown
constants to be determined. According to this, we suppose that solutions to (1.8) can be
expressed in the form

v(ξ) =
∑d

n=−c an exp(nξ)
∑q

m=−p bm exp(mξ)
=

a−c exp(−cξ) + · · · + ad exp(dξ)
b−p exp

(−pξ) + · · · + bq exp
(
qξ
) , (2.3)

where c, d, p, and q are positive integers which are unknown to be determined later; an and
bm are unknown constants. We have the following two cases.

2.1. Case 1: p = c = 1 and d = q = 1

In this case, the trial solution to (1.8) becomes

V (ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)
exp(ξ) + b0 + b−1 exp(−ξ) . (2.4)

Substituting (2.4) into (1.8) we obtain a polynomial equation in the variable η = exp(ξ).
Equating to zero the coefficients of all powers of η yields a set of algebraic equations. Solving
it with the aid of a computer, we get a0 = b0(a1 + 6kλ2), a−1 = (1/4)a1b

2
0, b−1 = b20/4, and

h(t) = −λα(t)(a1 + f(t) + kλ2), and, from (1.5), (1.7), and (2.3), one solution to (1.3) is given
by

u(x, t) =
a1
(
b0 + 2eξ

)2 + 24b0kλ2eξ
(
b0 + 2eξ

)2 +
∫
F(t)dt, (2.5)
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where

ξ = ξ(x, t) = λx +
∫
h(t)dt = λx −

∫
λα(t)

(
a1 + kλ2 +

∫
F(t)dt

)
dt, (2.6)

and a1, b0, and λ are arbitrary real or complex numbers.

2.2. Case 2: p = c = 2 and d = q = 2

In this case, the trial solution to (1.8) becomes

V (ξ) =
a2 exp(2ξ) + a1 exp(ξ) + a0 + a−1 exp(−ξ) + a−2 exp(−2ξ)
exp(2ξ) + b1 exp(ξ) + b0 + b−1 exp(−ξ) + b−2 exp(−2ξ) . (2.7)

As in the first case, we obtain an algebraic system. Solving it gives

a0 = −−2a1b1
(
a2 + 3kλ2

)
+ a2

(
a2b

2
1 + 6

(
b21 − b0

)
kλ2

)
+ a2

1

6kλ2
,

a−1 =
a1 − a2b1
432k3λ6

(
−a1b1

(
27a2kλ

2 + 2a2
2 + 72k2λ4

)

+
(
a2 + 6kλ2

)(
12a2b

2
1kλ

2 + a2
2b

2
1 + 72b0k2λ4

)
+ a2

1

(
a2 + 9kλ2

))
,

a−2 =
1

6912k4λ8
a2(a1 − a2b1)

2
(
8a2b

2
1kλ

2 − 2a1b1
(
a2 + 4kλ2

)
+ a2

2b
2
1 + a2

1 + 48b0k2λ4
)
,

b−1 =
1

432k3λ6
(a1 − a2b1)

(
9a2b

2
1kλ

2 − a1b1
(
2a2 + 9kλ2

)
+ a2

2b
2
1 + a2

1 + 72b0k2λ4
)
,

b−2 =
1

6912k4λ8
(a1 − a2b1)

2
(
8a2b

2
1kλ

2 − 2a1b1
(
a2 + 4kλ2

)
+ a2

2b
2
1 + a2

1 + 48b0k2λ4
)
,

h(t) = −λα(t)(a2 + f(t) + kλ2
)
.

(2.8)

From (1.5), (1.7), and (2.7)we may verify that to this set of values corresponds the solution

u(x, t) =
1

(
a1 − a2b1 + 12kλ2eξ

)2

(
a2
1a2 + a1

(
−2a2

2b1 + 24a2kλ
2eξ + 144k2λ4eξ

)

+a2

(
a2
2b

2
1 − 24a2b1kλ

2eξ + 144k2λ4eξ
(
eξ − b1

)))

+
∫
F(t)dt,

(2.9)
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where

ξ = ξ(x, t) = λx +
∫
h(t)dt = λx −

∫
λα(t)

(
a2 + kλ2 +

∫
F(t)dt

)
dt, (2.10)

and a1, a2, b1, and λ are arbitrary real or complex numbers.

3. General Projective Riccati Equation Method

The projective Riccati equation method was introduced initially in [21] and generalizations
of this method have been used in a satisfactory way by several authors to solve nonlinear
partial equations [22–25]. Using this last method [24, 25, 27–30], we seek solutions to (1.8) in
the form

V (ξ) = a0 +
m∑

i=1

σi−1(ξ)(aiσ(ξ) + biτ(ξ)), (3.1)

where a0, a1, b1, . . . are constants and σ(ξ) and τ(ξ) satisfy the system

σ ′(ξ) = εσ(ξ)τ(ξ), τ ′(ξ) = R + ετ2(ξ) − μσ(ξ). (3.2)

In (3.2), ε = ±1 and R and μ are certain constants. These equations have following solutions.

Case 1. When ε = −1 and R/= 0,

σ1(ξ) =
R sech

(√
Rξ

)

μ sech
(√

Rξ
)
+ 1

, τ1(ξ) =

√
R tanh

(√
Rξ

)

μ sech
(√

Rξ
)
+ 1

,

σ2(ξ) =
R csch

(√
Rξ

)

μ csch
(√

Rξ
)
+ 1

, τ2(ξ) =

√
R coth

(√
Rξ

)

μ csch
(√

Rξ
)
+ 1

.

(3.3)

Case 2. When ε = 1 and R/= 0,

σ3(ξ) =
R sec

(√
Rξ

)

μ sec
(√

Rξ
)
+ 1

, τ3(ξ) =

√
R tan

(√
Rξ

)

μ sec
(√

Rξ
)
+ 1

,

σ4(ξ) =
R csc

(√
Rξ

)

μ csc
(√

Rξ
)
+ 1

, τ4(ξ) =

√
R cot

(√
Rξ

)

μ csc
(√

Rξ
)
+ 1

.

(3.4)
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Case 3. When R = μ = 0,

σ5(ξ) =
C

ξ
, τ5(ξ) =

1
εξ

. (3.5)

In this last case, we seek solutions to (1.8) in the form

V (ξ) =
m∑

i=0

aiτ
i(ξ), (3.6)

where τ ′(ξ) = τ2(ξ).
For any pair (σ(ξ), τ(ξ)) of functions given by (3.3) or (3.4) the following equation

holds:

τ2(ξ) = −ε
[

R − 2μσ(ξ) +
μ2 − 1
R

σ2(ξ)

]

. (3.7)

3.1. Periodic and Soliton Solutions

Periodic and soliton solutions are obtained when R/= 0 and ε = ±1 and it corresponds to the
first two cases. Substituting (3.1), along with (3.2) and (3.7) into the left hand of (1.8) and
collecting all terms with the same power in σi(ξ)τj(ξ), we get a polynomial in the variables
σ = σ(ξ) and τ = τ(ξ). We may choose m = 2. Thus, we seek solutions to (1.8) in the form

V (ξ) = a0 + a1σ(ξ) + b1τ(ξ) + σ(ξ)(a2σ(ξ) + b2τ(ξ)). (3.8)

We equate each coefficient of the polynomial to zero. This will give an overdetermined system
of algebraic equations involving the parameters ai, bi (i = 0, . . . , m), λ and μ, R, and the
unknown function h(t). Having determined these parameters, we may determine V (ξ), and
using (1.5) we obtain an exact solution u(x, t) in a closed form. The corresponding system
reads.

(i) b21R
3αλ − b21R

3αε2λ = 0.

(ii) 6a1kRαλ
3ε4 − 6a1kRαλ

3μ2ε4 + 48a2kR
2αλ3με4 − 3b1b2Rαλμ2ε2 + 3b1b2Rαλε2 −

18a2kR
2αλ3με2 + 4b22R

2αλμε2 + 3a1a2R
2αλε − b22R

2αλμ = 0.

(iii) 24a2kRαλ
3ε4 − 24a2kRαλ

3μ2ε4 − 2b22Rαλμ
2ε2 + 2b22Rαλε

2 + 2a2
2R

2αλε = 0.

(iv) 6b1kαλ3μ4ε5 + 6b1kαλ3ε5 − 96b2kRαλ3μ3ε5 − 12b1kαλ3μ2ε5 + 96b2kRαλ3με5 +
36b2kRαλ3μ3ε3 − 36b2kRαλ3με3 − 3a2b1Rαλμ

2ε2 − 3a1b2Rαλμ
2ε2 + 3a2b1Rαλε

2 +
3a1b2Rαλε

2 + 8a2b2R
2αλμε2 − a2b2R

2αλμ = 0.

(v) 24b2kαλ3μ4ε5 + 24b2kαλ3ε5 − 48b2kαλ3μ2ε5 − 4a2b2Rαλμ
2ε2 + 4a2b2Rαλε

2 = 0,
−6a1kR

3αλ3ε4 +5a1kR
3αλ3ε2 −3b1b2R3αλε2 +2b21R

2αλμε2 +a0a1R
2αλε+a1fR

2αλε+
a1R

2hε + 2b1b2R3αλ − b21R
2αλμ = 0.

(vi) −24a2kR
3αλ3ε4+12a1kR

2αλ3με4+16a2kR
3αλ3ε2−b21Rαλμ2ε2−2b22R3αλε2+b21Rαλε

2−
6a1kR

2αλ3με2 + 6b1b2R2αλμε2 + a2
1R

2αλε + 2a0a2R
2αλε + 2a2fR

2αλε + 2a2R
2hε +

b22R
3αλ − 2b1b2R2αλμ = 0.
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(vii) 6b1kR4αλ3ε5 − 8b1kR4αλ3ε3 − a0b1R
3αλε2 − b1fR

3αλε2 − b1R
3hε2 + 2b1kR4αλ3ε +

a0b1R
3αλ + b1fR

3αλ + b1R
3h = 0.

(viii) 24b2kR4αλ3ε5 − 24b1kR3αλ3με5 − 28b2kR4αλ3ε3 + 28b1kR3αλ3με3 − 2a1b1R
3αλε2 −

2a0b2R
3αλε2 − 2b2fR3αλε2 + 2a0b1R

2αλμε2 + 2b1fR2αλμε2 − 2b2R3hε2 + 2b1R2μhε2 +
5b2kR4αλ3ε−5b1kR3αλ3με+a1b1R

3αλ+a0b2R
3αλ+b2fR3αλ−a0b1R

2αλμ−b1fR2αλμ+
b2R

3h − b1R
2μh = 0.

(ix) −12b1kR2αλ3ε5+36b1kR2αλ3μ2ε5−96b2kR3αλ3με5+8b1kR2αλ3ε3−32b1kR2αλ3μ2ε3+
92b2kR3αλ3με3 − a0b1Rαλμ

2ε2 − b1fRαλμ
2ε2 − 3a2b1R

3αλε2 − 3a1b2R
3αλε2 +

a0b1Rαλε
2 + b1fRαλε

2 + 4a1b1R
2αλμε2 + 4a0b2R

2αλμε2 + 4b2fR2αλμε2 − b1Rμ
2hε2 +

b1Rhε
2 + 4b2R2μhε2 + 3b1kR2αλ3μ2ε − 11b2kR3αλ3με + a2b1R

3αλ + a1b2R
3αλ −

a1b1R
2αλμ − a0b2R

2αλμ − b2fR
2αλμ − b2R

2μh = 0.

(x) −48b2kR2αλ3ε5−24b1kRαλ3μ3ε5+144b2kR2αλ3μ2ε5+24b1kRαλ3με5+28b2kR2αλ3ε3+
12b1kRαλ3μ3ε3−100b2kR2αλ3μ2ε3−12b1kRαλ3με3−2a1b1Rαλμ

2ε2−2a0b2Rαλμ
2ε2−

2b2fRαλμ2ε2−4a2b2R
3αλε2+2a1b1Rαλε

2+2a0b2Rαλε
2+2b2fRαλε2+6a2b1R

2αλμε2+
6a1b2R

2αλμε2 − 2b2Rμ2hε2 + 2b2Rhε2 + 6b2kR2αλ3μ2ε + a2b2R
3αλ − a2b1R

2αλμ −
a1b2R

2αλμ = 0.

In the equations above, f = f(t) =
∫
F(t)dt, α = α(t), and h = h(t). Solving the previous

system with the aid of a computer, we obtain many solutions to (1.3). These solutions may
be obtained from (1.5) and are given by (3.9)–(3.19). In these formulas, H(t) =

∫
h(t) dt and

λ, a0 are arbitrary parameters. In a formula containing
√
R, we suppose that R > 0 and if the

expression
√−R appears, we choose R < 0. If a formula involves

√−R and
√
1 − μ2 (see, e.g.,

(3.17)) we consider that R < 0 and |μ| ≤ 1.

First Group. ε = 1:

(i) a2 = b1 = b2 = 0, a1 = 6kλ2, h(t) = −λα(t)(a0 +
∫
F(t)dt − Rkλ2), μ = −1:

u1(x, t) =
∫
F(t)dt + a0 − 6kλ2R

1 − sin
(√

R(λx +H(t))
) ,

u2(x, t) =
∫
F(t)dt + a0 − 6kλ2R

1 − cos
(√

R(λx +H(t))
) ,

u3(x, t) =
∫
F(t)dt + a0 − 6kλ2R

1 − cosh
(√−R(λx +H(t))

) .

(3.9)

(ii) a2 = b1 = b2 = 0, a1 = −6kλ2, h(t) = −λα(t)(a0 +
∫
F(t)dt − Rkλ2), μ = 1:

u4(x, t) =
∫
F(t)dt + a0 − 6kλ2R

1 + sin
(√

R(λx +H(t))
) ,

u5(x, t) =
∫
F(t)dt + a0 − 6kλ2R

1 + cos
(√

R(λx +H(t))
) ,
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u6(x, t) =
∫
F(t)dt + a0 − 6kλ2R

1 + cosh
(√−R(λx +H(t))

) .

(3.10)

(iii) a1 = −6kλ2μ, b1 = 0, a2 = 6kλ2(μ2−1)/R, b2 = 6kλ2
√
R(1 − μ2)/R, h(t) = −λα(t)(a0+∫

F(t)dt − Rkλ2), μ = μ:

u7(x, t) =
∫
F(t)dt + a0

−
6kλ2R

(
1 + μ cos

(√
R(λx +H(t))

)
−
√
1 − μ2 sin

(√
R(λx +H(t))

))

μ2 + 2μ cos
(√

R(λx +H(t))
)
+ cos2

(√
R(λx +H(t))

) ,

u8(x, t) =
∫
F(t)dt + a0

−
6kλ2R

(
1 + μ cosh

(√−R(λx +H(t))
)
−
√
μ2 − 1 sinh

(√−R(λx +H(t))
))

(
μ + cosh

(√−R(λx +H(t))
))2

,

u9(x, t) =
∫
F(t)dt + a0

−
6λ2kR

(
1 + μ sin

(√
R(λx +H(t))

)
−
√
1 − μ2 cos

(√
R(λx +H(t))

))

1 + μ2 + 2μ sin
(√

R(λx +H(t))
)
− cos2

(√
R(λx +H(t))

) .

(3.11)

(iv) a1 = −6kλ2μ, b1 = 0, a2 = 6kλ2(μ2 − 1)/R, b2 = −6kλ2
√
R(1 − μ2)/R, h(t) =

−λα(t)(a0 +
∫
F(t)dt − Rkλ2), μ = μ:

u10(x, t) =
∫
F(t)dt + a0

−
6kλ2R

(
1 + μ cos

(√
R(λx +H(t))

)
+
√
1 − μ2 sin

(√
R(λx +H(t))

))

μ2 + 2μ cos
(√

R(λx +H(t))
)
+ cos2

(√
R(λx +H(t))

) ,

u11(x, t) =
∫
F(t)dt + a0

−
6kλ2R

(
1 + μ cosh

(√−R(λx +H(t))
)
+
√
μ2 − 1 sinh

(√−R(λx +H(t))
))

(
μ + cosh

(√−R(λx +H(t))
))2

.

(3.12)
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Figure 1 shows solution u11(x, t) for the choices μ = 1.3, R = −2.3, k = 2.3, λ = 1.9,
a0 = 1, F(t) = sin(t), α(t) = t, −3 ≤ x ≤ 4, and −1 ≤ t ≤ 1.1:

u12(x, t) =
∫
F(t)dt + a0

−
6kλ2R

(
1 + μ sin

(√
R(λx +H(t))

)
+
√
1 − μ2 cos

(√
R(λx +H(t))

))

1 + μ2 + 2μ sin
(√

R(λx +H(t))
)
− cos2

(√
R(λx +H(t))

) .

(3.13)

Figure 2 shows solution u12(x, t) for the choices μ = 0.3, R = 2.3, k = 2.3, λ = 1.9, a0 = 1,
F(t) = sin(t), α(t) = t, −3 ≤ x ≤ 4, and −1 ≤ t ≤ 1.1.

Second Group. ε = −1:
(v) a1 = b1 = 0, a2 = 6kλ2/R, b2 = −6kλ2/√−R, h(t) = −λα(t)(a0 +

∫
F(t)dt + Rkλ2),

μ = 0:

u13(x, t) =
∫
F(t)dt + a0 +

6kλ2R
(
1 + sin

(√−R(λx +H(t))
))

cos2
(√−R(λx +H(t))

) . (3.14)

(vi) a1 = b1 = 0, a2 = 6kλ2/R, b2 = 6kλ2/
√−R, h(t) = −λα(t)(a0 +

∫
F(t)dt+Rkλ2), μ = 0:

u14(x, t) =
∫
F(t)dt + a0 +

6kλ2R
(
1 − sin

(√−R(λx +H(t))
))

cos2
(√−R(λx +H(t))

) . (3.15)

(vii) a1 = 6kλ2μ, a2 = 6kλ2(1 − μ2)/R, b1 = 0, b2 = 6kλ2
√
R(μ2 − 1)/R, h(t) = −λα(t)(a0 +∫

F(t)dt + Rkλ2), μ = μ:

u15(x, t) =
∫
F(t)dt + a0 +

6kλ2μR

μ + cosh
(√

R(λx +H(t))
)

+
6kλ2R

(
1 − μ2 +

√
μ2 − 1 sinh

(√
R(λx +H(t))

))

(
μ + cosh

(√
R(λx +H(t))

))2
,

(3.16)

u16(x, t) =
∫
F(t)dt + a0 +

6kλ2μR

μ + cos
(√−R(λx +H(t))

)

+
6kλ2R

(
1 − μ2 +

√
1 − μ2 sin

(√−R(λx +H(t))
))

μ2 + 2μ cos
(√−R(λx +H(t))

)
+ cos2

(√−R(λx +H(t))
) .

(3.17)
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Figure 1: Graphic of solution u11(x, t), −3 ≤ x ≤ 4 and −1 ≤ t ≤ 1.1.

(viii) a1 = 6kλ2μ, a2 = −6kλ2(1 − μ2)/R, b1 = 0, b2 = −6kλ2
√
R(μ2 − 1)/R, h(t) =

−λα(t)(a0 +
∫
F(t)dt + Rkλ2), μ = μ:

u17(x, t) =
∫
F(t)dt + a0 +

6kλ2μR

μ + cosh
(√

R(λx +H(t))
)

+
6kλ2R

(
1 − μ2 −

√
μ2 − 1 sinh

(√
R(λx +H(t))

))

(
μ + cosh

(√
R(λx +H(t))

))2
,

(3.18)

u18(x, t) =
∫
F(t)dt + a0 +

6kλ2μR

μ + cos
(√−R(λx +H(t))

)

+
6kλ2R

(
1 − μ2 −

√
1 − μ2 sin

(√−R(λx +H(t))
))

μ2 + 2μ cos
(√−R(λx +H(t))

)
+ cos2

(√−R(λx +H(t))
) .

(3.19)

3.2. Rational Solutions

We seek rational solutions to (1.8) (R = μ = 0) in the form given by (3.6)withm = 2,

V (ξ) =
2∑

i=0

aiτ
i(ξ), (3.20)
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Figure 2: Graphic of solution u12(x, t), −3 ≤ x ≤ 4 and −1 ≤ t ≤ 1.1.

where

τ ′(ξ) = τ2(ξ). (3.21)

Note that this last equation has the general solution

τ(ξ) = − 1
ξ + C

. (3.22)

We now substitute (3.20) into (1.8), and using the relation τ ′(ξ) = τ2(ξ)we obtain an equation
whose left-hand side is a polynomial in the variable τ = τ(ξ). We equate each coefficient of
this polynomial to zero and we get the following algebraic system.

(i) h(t)a1 + α(t)λ(
∫
F(t)dt)a1 + α(t)λa0a1 = 0.

(ii) α(t)λa2
1 + 2h(t)a2 + 2α(t)λ(

∫
F(t)dt)a2 + 2α(t)λa0a2 = 0.

(iii) 6ka1λ
3 + 3a1a2λ = 0.

(iv) 24ka2λ
3 + 2a2

2λ = 0.

Solving this system gives a0 = a0, a1 = 0, a2 = −12kλ2 and

h(t) = −λα(t)
(∫

F(t)dt + a0

)
. (3.23)

A rational solution of (1.8) is given by

V (ξ) = a0 − 12kλ2

(ξ + C)2
. (3.24)
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According to (1.5), (1.6), and (1.7) we obtain the following rational solution to (1.3):

u19(x, t) =
∫
F(t)dt + a0 − 12kλ2

(λx − ∫
(λα(t)

(∫
F(t)dt + a0

)
)dt + C)2

. (3.25)

4. Conclusions

In this paper, by using the projective Riccati equation and the Exp-function methods, with
the help of a symbolic computation engine, we obtain exact solutions for a generalized KdV
equation with forcing term (1.3). The methods certainly works well for a large class of very
interesting nonlinear equations. The main advantage of these methods is their capability of
greatly reducing the size of computational work compared to existing techniques such as
the pseudospectral method, the inverse scattering method, Hirota’s bilinear method, and the
truncated Painlevé expansion. The Exp-functionmethod gives usmore general solutions with
some free parameters than the projective Riccati equationmethod. It also has other interesting
applications. For instance, the Exp-function method may be applied not only to differential
equations but also to differential-difference equations or Stochastic equations [32–35].
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