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In order to achieve very high data rates in both the uplink and downlink channels, the multiple antenna systems are used within
the mobile terminal as well as the base station of the future generation of mobile networks. When implemented in a size limited
platform, the multiple antenna arrays suffer from strong mutual coupling between closely spaced array elements. In this paper, a
rigorous procedure for the design of a 4-port compact planar antenna array with high port isolation is presented. The proposed
design involves a decoupling network consisting of reactive elements, whose values can be obtained by the method of eigenmode
analysis. Numerical results show the effectiveness of the proposed design approach in improving the port isolation of a compact
four-element planar array.

1. Introduction

The multiple-input-multiple-output (MIMO) system has
become a promising technique in existing and future genera-
tion of wireless communication systems. Exploiting multiple
antennas at both the transmitting and receiving ends can
linearly increase the channel capacity of the system without
increasing its overall bandwidth and power [1]. Implementing
multiple antennas at the fixed terminal is an easywork if space
is not a primary concern [2]. However, the implementation of
multiple antennas in a compact terminal involves challenging
design tradeoffs [3].This is due to the severe effects of mutual
coupling among the closely spaced elements, whichwill cause
significant systemperformance degradation [4]. For example,
the high capacity offered by the MIMO system is reduced if
the various signals at the receiver are correlated, where the
correlation may arise from the mutual coupling between the
transmitting and/or receiving antenna elements [5–7].

The mutual coupling problem in antenna arrays and
MIMO systems has attracted various studies in recent years
[8–10]. Antenna decoupling techniques can be used to
facilitate a smaller antenna separation for a given set of
performance requirements [11]. Signal processing techniques

using different coupling matrices [12] may be applied to the
received signal vectors from adaptive arrays to counter the
effects of mutual coupling.The use of parasitic scatters is also
reported to reduce mutual coupling of MIMO arrays [13, 14].
The defected ground structures can also be implemented to
reduce the mutual coupling effect between elements [15], but
these structures usually occupy large space. A neutralization
line can be inserted between two antennas to cancel the
mutual coupling by introducing some current and creating an
additional electromagnetic field [16]. Another way to isolate
highly coupled monopole antenna elements is based on the
mode-decomposition method, in which a multiport network
using 90∘ or 180∘ hybrid couplers is inserted between the
antennas and their feeding ports [17]. It is also shown that the
passive and lossless decoupling and matching networks can
be used to transform the coupled antenna ports into inde-
pendent and matched ports. The papers [18, 19] introduced
the possibility of connecting a lossless network between the
input ports and the antenna ports for isolation, but it works
in the condition that the antenna mutual impedances should
be purely reactive at the resonance frequency. The design
of decoupling network for arrays with complex impedance
matrices can be found in [20] for a two-element array.
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Figure 1:The decoupling network for a four-element antenna array.

In this paper, a rigorous design of decoupling network
for a compact four-element symmetrical planar array is
presented. The proposed decoupling network consists of
serial- and parallel-connected reactive elements, the values
of which can be calculated by solving a group of equations
derived by using the eigenmode analysis method.The decou-
pled antenna ports can easily be matched using L-section
matching circuit.Numerical results on a four-monopole array
with an antenna spacing of 0.1 wavelength show that the
compact array has highly isolated driving ports and it is
suitable for MIMO applications.

2. The Proposed Decoupling Network

The proposed decoupling network for a four-element sym-
metric planar array is shown in Figure 1. It consists of two
series sections with components 𝑗𝑋

1
and 𝑗𝑋

2
and two

parallel sections with components 𝑗𝐵
1
and 𝑗𝐵

2
. The ports 1

to 4 of the network are connected to the four ports of the
array. The other four ports 1 to 4 are the driving ports of
the decoupled antenna array.

The values of the components in the decoupling network
can be calculated by using the eigenmode analysis method
[19]. The impedance matrix of the symmetrical array is
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The eigenvalues of the impedance matrix are given by 𝑍
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v
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= [1, −1, 1, −1]𝑇. The equivalent circuits of the decoupling

network for different eigenmodes are shown in Figure 2.
According to Figure 2, themodal admittances for the four

modes as seen from the newdriving ports 1 to 4 are obtained
as
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It is noted that 𝑌
2
= 𝑌
3
for modes 𝑏 and 𝑐. In the eigenmode

analysis, the decoupling network decouples the ports of the
array by matching all the modal admittances. The values of
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1
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, and 𝐵
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can be obtained by solving the nonlinear
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By evaluating the real and imaginary parts of (5), the values
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then (2) and (3) can be rewritten as
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Similarly, set 𝑌
1
= 𝑌
2
and evaluate the real and imaginary

parts, respectively. The values of𝑋
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can be calculated
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Then, the decoupled antenna array can easily be matched
to the system impedance 𝑍

0
using the L-section impedance

matching network.
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Figure 2: The equivalent circuits for the different eigenmodes of a four-element array.

Table 1: Calculated components of the decoupling network.

Component Solution 1 Solution 2 Solution 3 Solution 4
𝑋
1

−25.506 −25.506 −19.365 −19.365
𝐵
1

−0.202 −0.202 0.116 0.116
𝑋
2

3.601 −8.755 13.921 −5.498
𝐵
2

0.181 −0.142 0.120 −0.083

3. Example and Discussion

As an illustration of the proposed decoupling theory, a
compact four-monopole symmetrical planar array operating
at 2.5 GHz was designed. The monopole element has length
of 28mm and diameter of 1mm. The element separation
is 12mm, which is about 0.1 wavelength at 2.5 GHz. The
ground plane of the array is a circular metal disc with
radius of 35mm. The EM simulation software Ansoft HFSS
is used for simulation. The simulated scattering parameters
of the monopole array are shown in Figure 3. It can be seen
that the magnitude of the reflection coefficient 𝑆

11
of the

array is about −5 dB at 2.5 GHz while the magnitudes of
coupling coefficients 𝑆

12
and 𝑆
13
are about −10 dB and −13 dB,

respectively. Therefore, the ports of the compact antenna
array are unmatched and highly coupled.

By exploiting the proposed decoupling procedure, the
component values of the decoupling network are calculated
and shown in Table 1. It is noted that there exist four groups
of solutions. As an illustration, taking solution 1 andmatching
the decoupled ports by an L-section with parallel component
𝐵
3
= 0.000205 and serial component 𝑋

3
= 46.515, the
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Figure 3: The 𝑆-parameters of the four-monopole array.

resulting scattering parameters of the decoupled andmatched
array are shown in Figure 3. It can be clearly seen that both the
reflection coefficient and the coupling coefficient have been
reduced to below −30 dB.The results clearly show the validity
of the theory. Figure 4 depicts the simulated normalized
azimuth radiation pattern of the decoupled array when port
1 is excited and the remaining ports are terminated with the
matched loads. It is observed that the pattern is directional



4 International Journal of Antennas and Propagation

1.0

0.5

0.0

0.5

1.0

90

60

30

0

330

300

270

240

210

180

150

120

Figure 4: Normalized radiation pattern of the decoupled array with
the excitation of port 1.
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without the decoupling network.

and the array has strongest radiation at 𝜙 = 45∘. If port 2 or
port 4 is excited, the radiation pattern will rotate about the
𝑧-axis by ±90∘, while, for the excitation of port 3, a rotation
of 180∘ is needed.

As an important parameter for diversity performance, the
envelope correlation coefficient (ECC) 𝜌

𝑒
for the correlation

between antenna elements 𝑖 and 𝑗 in an antenna array
consisting of𝑁 elements can be calculated using [21]
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Equation (10) follows the correlation equation of a two-
antenna system in [22]. However, it is noted that the above-
mentioned correlation equations will fail in the extreme case
of 𝑆
𝑖𝑗
= 0 and a solution to this problem has been provided

in [23]. In this paper, 𝑆
𝑖𝑗

̸= 0 and (10) can still provide a
correlation analysis with reasonable accuracy. The calculated
envelope correlations 𝜌

𝑒
(1, 2, 4) and 𝜌

𝑒
(1, 3, 4) of the four-

monopole array with and without the decoupling network
are shown in Figure 5. It can be seen that the envelope
correlations in the frequency band of interest have been
reduced to much less than 0.1, which means that the antenna
array has good diversity gain and is suitable for MIMO
systems.

4. Conclusions

The decoupling network consisting of simple reactive ele-
ments for a 4-element symmetrical planar array has been
presented. The component values of the decoupling network
can be calculated by using eigenmode analysis method.
The simulated results show that high isolation between the
driving ports of the compact array has been achieved and
the compact design of the antenna system is suitable for
applications in MIMO communications.
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