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At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on
the basis of the negative exponential pair potential (1/R)" between particles. Similar to two-dimensional curved surfaces, we
confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form
of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the
particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the
essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based

potential is preliminarily proved.

1. Introduction

In recent years, various phenomena at micro/nanoscales
increasingly draw people’s attention. The highly curved
spaces widely exist at micro/nanoscales. As a typical form,
curved surfaces are objects studied in differential geometry.
In addition, there is another space form, that is, the curved
surface body. A curved surface body is a three-dimensional
body. In this sense, it is outside the range of curved spaces.
Nevertheless, when the size scale we study is small enough,
the large specific surface area and the highly curved outer
surface will powerfully connect curved surface body with
curved space.

Similar to curved surfaces, curved surface bodies widely
exist at micro/nanoscales. In biological system, organic parti-
cles may be transported between cells by the tubular conduits
of tunneling nanotubes [1] (Figurel). Human fibroblasts
extend by sensing the fiber curvatures [2]. Inward curvatures
of the plasma membrane may cause BAR-domain proteins to
release Rac [2, 3]. Silicone oil droplets on conical surfaces will
move spontaneously towards the end with bigger diameter
[4]. Through the interaction between the tip (Figure 2) and
the tested object [5], atomic force microscope can probe
the morphologies of surfaces [6]. All these cases involve the
interaction of the curved surface bodies.

Previously, based on the pair-potential of particles
((1/R)"), Yin et al. [7] studied the interaction between
micro/nano-curved surface and a particle located outside the
surface. Wu et al. [8, 9] explored the interaction between
micro/nano-curved surface and a particle located inside
the surface. Their researches verify that interaction between
highly curved surface and particle can be expressed as the
function of curvatures. Then they give the following proposi-
tions. (a) At micro/nanoscale, the highly curved surface can
induce driving forces. (b) The essential elements that form the
driving forces are curvatures and the gradient of curvatures.

Previous studies inspire us to raise questions. Will the
interaction potential between curved surface body and par-
ticle be expressed as the function of curvatures? Whether the
curved surface of the curved surface body can induce the
driving forces as well? This paper will give the answers.

2. Interaction between Semi-Infinite
Plane Body and a Particle Located
outside the Plane

As a prelude, we review the interaction between semi-infinite
plane body and a particle located outside the plane, which has
already existed in the flat space.
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FIGURE 1: The transportation of organic particles between cells by tunneling nanotubes [1].

FIGURE 2: Atomic force microscopes with sharp probe (B) and blunt probe (C) [5].

Semi-infinite plane body belongs to the three-
dimensional Euclid space. Thus, the interaction between it
and an outside particle is a classical mechanical problem. The
potential can be found in the book written by Israelachvili
[10]. As shown in Figure 3, if we assume that the pair-
potential between particles has the form of u(r) = C/r", the
number density of molecules in semi-infinite plane body

is p, and the nearest distance between the particle and the
plane is h, then the interaction potential of the particle p and
semi-infinite body can be written as

= 2mpC
" (n=2)(n-3)h"3’

n>4. 1)
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FIGURE 3: The interaction between semi-infinite plane body and an
outside particle.

If the surface of the plane body shown in Figure 3 bends, it
will become a curved surface body. Hence, semi-infinite plane
body is not only a particular case of the curved surface body,
but also the foundation for further studies.

3. Classification of Parabolic Rotators

Previously, researchers have studied the interaction between
certain curved surface body and a particle, like a sphere
and a cylinder [11, 12]. As a preliminary test, this paper will
study another simple case, that is, the interaction between a
parabolic rotator and a particle located outside the rotator.

According to the bending direction, parabolic rotators
can be divided into two categories, that is, convex parabolic
rotator and concave parabolic rotator (Figure 4). Obviously,
these two kinds of parabolic rotators are different when they
interact with an outside particle. From this perspective, these
two cases should be studied separately.

Whatever it is convex or concave, the biggest commonal-
ity of two kinds of parabolic rotators is that they have similar
curved surfaces, that is, the revolutionary paraboloid. In this
sense, it is possible to study two kinds of parabolic rotators
uniformly. A unified coordinate system is used to ensure the
uniformity.

As shown in Figures 5 and 6, a local Cartesian coordinate
system O—xyz is built at the vertex O of the parabolic rotator.
The x — y plane is the tangent plane of the parabolic rotator at
the vertex O. The function of the revolutionary paraboloid for
the convex and concave rotators can be uniformly expressed
asz = (c/2)(x* + yz) in such coordinate system. By the
differential geometry [13], the principal curvatures at the
vertex O of the revolutionary paraboloid are ¢; = ¢, = ¢ with
¢ > 0 in the illustrated coordinate system.

Assuming that the outside particle p is located on the axis
z and has a distance h to the vertex O, the coordinate of the
particle pis (0, 0, —h) for convex parabolic rotator and (0, 0, /1)
for concave parabolic rotator. To ensure uniformity, we
write the coordinate of the particle p as (0,0, zp). Therefore,
z, = —h corresponds to convex parabolic rotator and
z, = h corresponds to concave parabolic rotator. Define the
dimensionless coordinates as

=

Z, = @)

(b)

FIGURE 4: (a) Convex parabolic rotator and an outer particle; (b)
concave parabolic rotator and an outer particle.

FIGURE 5: The coordinate system of convex parabolic rotator and an
outside particle.

Obviously, there are only two values for Z,. Z
corresponds to convex parabolic rotator, and z, = +1
corresponds to concave parabolic rotator.

4. Interaction Potential between Parabolic
Rotator and a Particle

4.1. The General Formulation of the Potential. In order to
derive the interaction potential between the particle p and the
parabolic rotator, we draw a sphere with the center at particle
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FIGURE 6: The coordinate system of concave parabolic rotator and
an outside particle.

p and the radius r. The intersection part of spherical surface
and parabolic rotator is an arc surface with the area S. Then
the potential between the particle and parabolic rotator is

U= | LSy, ()
hnor

Equation (3) is valid for both convex parabolic rotator and
concave parabolic rotator.

4.2. The Uniform Formulation of the Area of the Arc Surface.
The area S in (3) can be determined as follows. For convex
parabolic rotator (Figure 5), we have

2m 0,
§=J d(pJ r*sin0d6 = 2r* (1 - cos6,).  (4)

0 0

The spherical center angle 0, satisfies

cosO, = zth (5)
In triangle ABC, we have
X+ y2 +(z+h)?=r" (6)
By combining z = (¢/2)(x* + y*) with (5) and (6), we get
V(@hfo) + (1/e) + 7 - (1/0) )

cosf, =
r

Substitution of (7) into (4) leads to

§:27rr[r+%—%\l1+2hc+(cr)2]. (8)

For concave parabolic rotator (Figure 6), there is

2 0,
S =dnr? - J d(pJ 1? sin0d0 = 27r* (1 + cos 6,), (9)
0 0

Z_h. (10)

cosO, =
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In triangle ABC, there is
oty (z-h) =1 (11)

By combing z = (c/2)(x* + yz) with (10) and (11), we get

\/— (2h/c) + (1/c®) + 12 = (1/c) (12)

r

cosO, =

Substitution of (12) into (9) gives
y 1 1 >
Szan[r——+—V1—2hc+(cr)]. (13)
c ¢

Obviously, with the dimensionless coordinate Zps (8) and (13)
can be uniformly written as

1 1
S=2nr|r—- —+ —
Z,c Zyc

_ _ N2
1- 2thc + (zpcr) ] . (14)
4.3. Curvature-Based Interaction Potential between Particle
and Parabolic Rotator. By substituting (14) into (3), we obtain
the interaction potential between the particle p and convex
and concave parabolic rotators uniformly:

U, = 2np,C
Jm 1
X
n rn—l
1 1 2
X [r -+ ~—\/1 - 2h2pc + (Epcr) dr.
Z,c Zyc

(15)

The objective of this section is to express (15) as an explicit
function of curvature. The technique is mature, that is,
the series expansion for small parametric variable [14]. The
distance his used as the characteristic length in dimensionless
transformations:

,
C = h, ¥ = . 1
c=c r N (16)
Then (15) can be written as
2mp,C
LLl: hwg
=
>< RN
p
1 1
x [7— — :\/1 ~2z,E+ (EPEF)Z] dF.
Z,C Z,C
P P
(17)
In (17), let

F@) =\1-2c+@> (18)

Here ¢ = Z,¢ and f(¢) is the continuously differentiable
function of €. Suppose that the distance 4 is a small quantity
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TABLE 1: The error of curvature-based potential between the convex parabolic rotator and the particle (n = 6).

Us)

S = (Us)polynomial - (Uﬁ)numerical

c (U6)numerical polynomial =
(UG )numerical

0.5 0.554354020074120 0.625000000000000 0.127438382996544

0.4 0.609849704658992 0.640000000000000 0.049438894715652

0.3 0.677316303948916 0.685000000000000 0.011344324662327

0.1 0.866023611886837 0.865000000000000 0.001181967642437
0.05 0.929014971306476 0.928750000000000 2.852174772848038e — 004
0.03 0.956428713838380 0.956350000000000 8.229974407998883¢e — 005
0.01 0.985151878051310 0.985150000000000 1.906357133214219¢ — 006
0.005 0.992534562174735 0.992537500000000 2.959922381342625e — 006
0.001 0.998496854809661 0.998501500000000 4.652183245473563¢ — 006
0.0001 0.999845094980028 0.999850015000000 4.920782226301011e — 006

compared to the curvature radius at the vertex of parabolic
rotator. Therefore, the dimensionless curvatures satisfy ¢ < 1
and |¢] < 1. Take ¢ as the small parametric variable and use
the method of series expansion [14]. Function f(¢) can be
expanded as Taylor’s series of small parametric variable c:

f(c):f(0)+<a—];f_o)”5(a_6{ezo)az

L(Pf] s, 1(0f] \a
+§<¥E:0>C +Z gezo c +--- (19)
V("] \am, oam

%(WE:())C +O(C )

We omit the terms whose orders are higher than 3 to get the
polynomial of variable ¢:

f@O=fO)+f 0+ fzfo)z% / 3'(0)Z3+O(6‘3)

“1-e (Po)@ e (P2

1
2

\S)

(20)

Substitution of (20) into (17) leads to the uniform polynomial
of curvature-based potential:

U,=0, [1 + ZPE)Z] L@
Equation (21) requires n > 5. The value of index n is
determined by the expanding order of ¢ in (19). If the series
is expanded to ¢, then n > 4 is needed.

Although parabolic rotator is three-dimensional body,
(21) indicates that the interaction potential between the
rotator and the particle is still decided by the curvature c. If
¢ — 0,wehave U, — U,; that is, the interaction potential
U, will degenerate to U,,. Once the flat surface is curved, the
interaction potential is no longer U,,, and a modified term
of curvatures must be involved. The more curved the space
is, the more significant the influence of modified term of
curvatures is.

5. Numerical Verification

What is the accuracy of the curvature-based potential of
polynomial? The answer will be provided through numerical
verification.

First, both sides of curvature-based potential of polyno-
mial (21) are divided by U, to get the dimensionless form:

— U, n-3__ n-3,_ 2
(U")polynomial = 6_71 =1+ n-— 4ZPC + n— 4(ZPC) - (22)

Then both sides of (17) are divided by U, to get the
dimensionless potential of integral form:

(U” )numerical

=(n-2)(n-3)

y fo WL (23)

1 1 2
x [7— —+ —\/1 - 2Z,8+ (2,67) | dF.

Finally, ([7,,)numerical in (23) and ((‘7”)?01},@mial in (22) are
compared, and the accuracy of (22) may be estimated:

(U")polynomial B (U")numerical

S = x 100%. (24)

(U” )numerical

In the numerical calculations, we will take n = 6. The errors
of curvature-based potential of convex and concave parabolic
rotators are listed in Tables 1 and 2, respectively. From these
we can see that the curvature-based potential has enough
accuracy when € is a small quantity.
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TABLE 2: The error of curvature-based potential between the concave parabolic rotator and the particle (1 = 6).
= = T6)poignomist = Tenamen
c (Us)numerical (U6)pulynomial 6= - pOlyno’:m - T
(U6 )numerical
0.5 1.999990099763677 2.125000000000000 0.062505259526582
0.4 1.767008983006020 1.840000000000000 0.041307666059404
0.3 1.548796643131850 1.585000000000000 0.023375151946961
0.1 1.162688575661165 1.165000000000000 0.001987999527320
0.05 1.078359520840800 1.078750000000000 3.621048005354316e — 004
0.03 1.046242770650530 1.046350000000000 1.024899310924430e — 004
0.01 1.015137871366782 1.015150000000000 1.194776942179518e — 005
0.005 1.007530503256329 1.007537500000000 6.94444847921985% — 006
0.001 1.001496244320401 1.001501500000000 5.247827567111332e — 006
0.0001 1.000145034778507 1.000150015000000 4.979499292623452¢ — 006
6. Discussions 0.08
6.1. Local Properties of the Curvature-Based Potential. The
integrand in (3) is
0.06 |
1 11 \] 2
7,0)= ——= |T— ==+ ==\[1-2Z, c+(Z,cr) |. (25
g( ~) -1 |: EPE EPE P ( P ) ( )
The domain of integration is [h,00). Hence the interac- ff 0.04 —
tion between parabolic rotator and the particle reflects the &
global properties of the system. However, in the viewpoint
of physics, the short-range interaction pair-potential deter-
mines that the particle p mainly interacts with the nearest 0.02 -]
zone of curved surface body. Thus, from the mathematical
point of view, the distribution of integrand g(7, ¢) is of highly
local properties, which can be further proved as follows. For
convex and concave parabolic rotators, there are 0
T T T T T
1 2 4 6 8 10
30 = — [~+1 1\/1+2~+(“)2] 7
7,0)=—|F+=-—-= c+ (N,
g 7l c ¢
(26) F1GURE 7: The distribution of g(7, ) along with 7 whenn = 6, ¢ =
. L[ 1.1 - 2] 0.1
7,0)=— |T—=—+=\1-2c+(cr)"|. o
§F0 ?,1_1[ 242y @

The distribution diagrams are shown in Figures 7 and 8. We
can see that the values of the integrand mainly distribute in
the region of the dimensionless radius 7 € [1, 3]. Beyond this
region the integrand decreases to zero rapidly.

Moreover, we can interpret the mechanism in Figures 7
and 8 concretely. Along with the increase of the radius 7,
the area of arc surface cutoff by the sphere with center p
from the curved surface body gets larger. However, the pair-
potential between particle p and particles on the arc surface
decreases sharply. Their product will reach the maximum
when 7 comes to a certain value. Later, the effect decreasing
potential exceeds that of the increasing area, causing the
integrand to decrease rapidly. This is the mathematical
foundation for the local properties of the interaction between
the particle and the parabolic rotator. Since the local particles
of parabolic rotator are mostly distributed on the surface
and the surface morphology is depicted by curvatures, the
interaction between the particle and parabolic rotator is

mainly determined by curvatures and can be written as the
curvature-based form finally.

6.2. The Driving Force on the Particle. The dimensional form
of the curvature-based potential in (21) is

— n—-3 n-3 2
U,,:Un[l+n_4zpc+ m(zpc) ] (27)
Supposing that the movement of the particle is restricted on
the axis z, the driving force exerted on the particle in the z
direction isc

ou, —n-3
2= — aZP = —UnmC [1 + ZZPC]

_E)Un%[ n-3 n_3(zpc)2].

+——2z,c+
oh oz, | " n-4"" " n-4
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FIGURE 8: The distribution of §(,¢) along with 7 whenn = 6, €
0.1.

Here there is 0h/0z,, = £1, and it takes minus sign for convex
curved surface body and positive sign for concave curved
surface body.

Ifc — 0,thatis, parabolic rotator generates on semifinite
plane body, then (28) is

_ Uy ok
*" " oh oz,

(29)

Equation (29) is the driving force acting on the particle by
semifinite plane body, which is a classical conclusion.

Once ¢ — ©0, then F, — o00; that is, there are
infinite forces acting on the particle if curvatures of vertex
of parabolic body tend to infinity. Such vertex with infinite
curvatures is a sharp singularity geometrically. Thus, the
sharp singularity can induce strong driving force, which
provides insight to understand a large amount of abnormal
movements around singularities.

Specifically, if such driving force is attractive, strong
effect of hydrophilic will cause water droplets come into
being around singularities, which can help living organism
to absorb water from environment (Figure 9). Otherwise,
repulsive force will cause hydrophobic effect and help living
organism to discharge water into environment.

The above analysis enhances previous propositions:
curved spaces can induce driving forces. Definitely, curva-
tures can induce driving forces. By changing curvatures,
driving forces acting on the particle can be changed, which
means that it is possible to regulate movements of particles
by noncontacting and geometrical methods.

If the particle P is confined to the parallel curved surface
with i = Const. (Figure 10) and can only move along the
generating line of the parallel curved surface, then the particle
will sense the tangential force induced by the changing of
curvatures. Parabolic body is a particular case of curved
surface body, as principle curvatures at vertex are equal; that

(b)

FIGURE 9: The driving force around singularities: hydrophilic or

hydrophobic effect.
—s|n )%

-1

e

P

FIGURE 10: The movement of the particle induced by curvatures on
the parallel surface.

is, ¢, = ¢, = c¢. But once the particle moves and deviates from
the top of vertex, principle curvatures of two directions at the
nearest point from the body to the particle come to unequal
magnitude. Thus, in order to write the tangential force as
a function of the gradient of curvatures, the interaction
potential between the particle and general curved surface
body should be studied, which will be shown in a subsequent

paper.

7. Conclusions

Although the parabolic rotator at micro/nanoscale may be
a particular case of curved surface bodies, the propositions
deduced from it do not lose universality; that is, they are
valid in curved surface bodies with any bending surfaces.
In the succeeding papers, we will expand the propositions
in this paper to general curved surface bodies. Based on



the progress in this paper, we can say that the propositions
derived in the curved surface and curved line will stay valid
in the curved surface body as well. In other words, the
proposition that micro/nano-curved spaces induce driving
force is of universality. It also means that curvature is a crucial
factor at micro/nanoscale and should be one of the cores in
micro/nanomechanics.
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