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Abstract. Future FAIR experiments have to deal with very high input rates, large track
multiplicities, make full event reconstruction and selection on-line on a large dedicated
computer farm equipped with heterogeneous many-core CPU/GPU compute nodes. To
develop efficient and fast algorithms, which are optimized for parallel computations, is
a challenge for the groups of experts dealing with the HPC computing. Here we present
and discuss the status and perspectives of the data reconstruction and physics analysis
software of one of the future FAIR experiments, namely, the CBM experiment.

1 Introduction

The CBM (Compressed Baryonic Matter) experiment [1] is an experiment being prepared to operate
at the future Facility for Anti-Proton and Ion Research (FAIR, Darmstadt, Germany). Its main focus
is the measurement of very rare probes, that requires interaction rates of up to 10 MHz. Together
with the high multiplicity of charged particles produced in heavy-ion collisions, this leads to huge
data rates of up to 1 TB/s. Most trigger signatures are complex (short-lived particles, e.g. open charm
decays) and require information from several detector sub-systems.

Figure 1. CBM - a future heavy-ion experiment at FAIR.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article available at pffp://www.epj-conterences.orq or



http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20159501007

EPJ Web of Conferences

The First Level Event Selection (FLES) package [2] of the CBM experiment is intended to recon-
struct the full event topology including tracks of charged particles and short-lived particles. The FLES
package consists of several modules: track finder, track fitter, particle finder and physics selection. As
an input the FLES package receives a simplifed geometry of the tracking detectors and the hits, which
are created by the charged particles crossing the detectors. Tracks of the charged particles are recon-
structed by the Cellular Automaton (CA) track finder [3] using to the registered hits. The Kalman
filter (KF) based track fit [4] is used for precise estimation of the track parameters. The short-lived
particles, which decay before the tracking detectors, can be reconstructed via their decay products
only. The KF particle finder, which is based on the KFParticle package is used in order to find and
reconstruct the parameters of short-lived particles by combining already found tracks of the long-lived
charged particles. The KFparticle finder also selects particle-candidates from a large number of ran-
dom combinations. In addition, a module for quality assurance is implemented, that allows to control
the quality of the reconstruction at all stages. It produces an output in a simple ASCII format, that can
be interpreted later as efficiencies and histograms using the ROOT framework. The FLES package is
platform and operating system independent.

The FLES package in the CBM experiment will be performed on-line on a dedicated many-core
CPU/GPU cluster. The FLES algorithms have to be therefore intrinsically local and parallel and
thus require a fundamental redesign of the traditional approaches to event data processing in order
to use the full potential of modern and future many-core CPU/GPU architectures. Massive hardware
parallelization has to be adequately reflected in mathematical and computational optimization of the
algorithms.

One of the efficient features supported by almost all modern processors is the SIMD (Single In-
struction, Multiple Data, vector operations) instruction set. It allows to pack several data values into
a vector register and to work with them simultaneously getting a factor more calculations per clock
cycle. Therefore the reconstruction routines have been revised in order to use SIMD.

In addition, the reconstruction algorithms have been parallelized between cores using the Intel
Threading Building Blocks package (ITBB), that provides a scalable event-level parallelism with
respect to the number of hardware threads and CPU cores.

2 Many-core computer architectures: cores, threads and vectors

Modern high-performance computing (HPC) nodes are equipped with central processing units (CPU)
with dozens of cores and graphics processing units (GPU) with thousands of arithmetic units (Fig. 2).
To illustrate the complexity of the HPC hardware, let us consider a single work-node of an HLT
computer farm, a server equipped with CPUs only. Typically it has 2 to 4 sockets with 8 cores each.
In case of Intel CPUs, each core can run in parallel 2 hardware threads (processes), that increases the
calculation speed by about 30%. The arithmetic units of CPUs operate with vector registers, which
contain 4 (SSE), 8 (AVX) or 16 (MIC) data elements. Vectors realize the SIMD paradigm, that means
they apply an operation to a vector as a whole, giving a speed-up factor of 4/8/16 with respect to the
same operation, but with a scalar. In total, a pure hardware potential speed-up factor of a host is:

f = 4 sockets x 8 cores X 1.3 threads x 8 SIMD = 300,
which is already equivalent to a moderate computer farm with scalar single-core CPUs. In order to
investigate the HPC hardware and to develop efficient algorithms we use different nodes and clusters

in several high-energy physics centers over the worlds (see Tab. 1) ranging from dozens to thousands
of cores.
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Figure 2. Future high-performance computing systems are heterogeneous many-core CPU/GPU compute nodes.

Table 1. List of some heterogeneous HPC nodes, used in our investigations.

Location Architecture (Nodes-)sockets-cores-threads:SIMD  Cores
CERN  Switzerland | AMD 6164HE 4-12-1-4 192
GSI Germany Intel E7-4860 4-10-2-4 320
JINR  Russia Intel E5-2650+AMD HD 7970 2828+232164 256+4960
BNL USA Intel E5-2680+Intel Phi 5120D 2:-8:2-8+2:60-4-16 256+7680
FIAS Germany Intel E5-2600+Intel Phi 7120 2828+261416 256+7808
ITEP  Russia AMD 6272 (100-)2-16-1-4 12800

3 Parallel programming

The hardware provides us two levels of parallelization: a task level parallelism working with cores
and threads, and a data level parallelism working with SIMD vectors. Both levels are implemented
in the reconstruction algorithms. The parts of the algorithms with parallel streams of data, like fit
of several tracks, are SIMDized and run on vectors providing a speedup factor up to 4/8/16. For
SIMDization we have developed special header files, which overload the SIMD instructions inlining
the basic arithmetic and logic functions. An illustrative example of a simple code for calculation of a
polynomial function of the first order, which is written using SSE instructions, is:

_ml28 y = _mm_add_ps(_mm_mul_ps(a,x),b);
The same function, but implemented using the header file, recovers the scalar-like form:

fvec y = a*x + b;
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with overloading in the SIMD header file:

friend fvec operator+( const fvec &a,
const fvec &b ) {
return _mm_add_ps(a,b); }
friend fvec operator*( const fvec &a,
const fvec &b ) {
return _mm_mul_ps(a,b); }

As a further evolution of the header files, the Vc library implements in addition to vertical oper-
ations with full vectors also horizontal operations with elements of a single SIMD vector in order to
manipulate with data within the vector. Random access to array elements is implemented with the
gather and scatter functionality. To create an API for conditional execution, all functions and opera-
tors of the vector classes are able to take a mask argument optionally. The Vc library automatically
determines the platform and chooses the corresponding instruction set during the compilation.

The Vc library is now a part of the CERN ROOT framework, that makes it available for physics
analysis by default.

At the task level parallelism we localize independent parts of the algorithms and run them in
parallel on different cores or threads with or without synchronization between the processes. Paral-
lelization between cores is done using the Intel Threading Build- ing Blocks (ITBB) and the Open
Multi-Processing (OpenMP) techniques.

The OpenCL standard provides a higher abstraction level for the parallel programing. It allows to
write a universal code, which can be run on different types of CPU and GPU processing units, thus
proving a portable and efficient access to heterogeneous computer platforms. The OpenCL standard
supports both vectorization and parallelization between cores of CPUs and GPUs. The vectorized
code in OpenCL looks similar to the previous tools:

float4 y = a*x + b.

In order to be flexible and efficient with respect to the modern many-core computer architectures
we develop the algorithms in a portable form and using advantages of the languages and frameworks
mentioned above. Within the KF track fit library we have reached 72.2% efficiency of hardware
utilization.

Some HEP algorithms we use also in the HPC practical course to give the students a feeling of
real-life problems.

4 Kalman Filter (KF) track fit library

Searching for rare interesting physics events, most of modern high energy physics experiments have
to work under conditions of still growing input rates and regularly increasing track multiplicities and
densities.

High precision of the track parameters and their covariance matrices is a prerequisite for finding
rare signal events among hundreds of thousands of background events. Such high precision is usually
obtained by using the estimation algorithms based on the Kalman filter (KF) method. In our particular
case, the KF method is a linear recursive method for finding the optimum estimation of the track pa-
rameters, grouped as components into the so-called state vector, and their covariance matrix according
to the detector measurements.

The Kalman filter based library for track fitting includes following tracking algorithms (Fig. 3):
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Figure 3. Scalability and performance comparison of different algorithms of he Kalman Filter track fit library.

track fit based on the conventional Kalman filter;
track fit based on the square root Kalman filter;
track fit based on the UD Kalman filter;

track smoother based on the listed above approaches and

deterministic annealing filter based on the listed above track smoothers.

High speed of the reconstruction algorithms on modern many-core computer architectures can be
accomplished by:

e optimizing with respect to the computer memory, in particular declaring all variables in single

e vectorizing in order to use the SIMD instruction set and

precision;

e parallelizing between cores within a compute node.

Several formulations of the Kalman filter method, such as the square root KF and the UD KF,
increase its numerical stability in single precision. All algorithms, therefore, can be used either in
double or in single precision.
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Table 2. Track reconstruction efficiency for minimum bias and central collisions.

Efficiency, %
mbias  central
All tracks 88.5 88.3
Primary high-p tracks 97.1 96.2
Primary low-p tracks 90.4 90.7
Secondary high-p tracks 81.2 81.4
Secondary low-p tracks 51.1 50.6
Clone level 0.2 0.2
Ghost level 0.7 1.5
Reconstructed tracks/event 120 591
Time/event /core 8.2 ms 57 ms

The vectorization and parallelization of the algorithms are done by using of: header files, Vc
vector classes, Intel TBB, OpenMP, Intel ArBB and OpenCL.

The KF library has been developed and tested within the simulation and reconstruction framework
of the CBM experiment, where precision and speed of the reconstruction algorithms are extremely
important.

5 Cellular Automaton (CA) track finder

Every track finder must handle a very specific and complicated combinatorial optimization process
(see Fig. 4 with a simulated Au-Au collision), grouping together one- or two-dimensional measure-
ments into five-dimensional tracks.

In the Cellular Automaton (CA) method first (1) short track segments, so-called cells, are created.
After that the method does not work with the hits any more but instead with the created track segments.
It puts neighbor relations between the segments according to the track model here and then (2) one
estimates for each segment its possible position on a track, introducing in such a way position counters
for all segments. After this process a set of tree connections of possible track candidates appears.
Then one starts with the segments with the largest position counters (3) and follows the continuous
connection tree of neighbors to collect the track segments into track candidates. In the last step (4)
one sorts the track candidates according to their length and y2- values and then selects among them
the best tracks.

Efficiency of the track reconstruction for minimum bias Au-Au UrQMD (Ultra relativistic Quan-
tum Molecular Dynamics) simulated collisions at 25 AGeV for different sets of tracks and ratios of
clones (double found) and ghost (wrong) tracks are shown in Tab. 2. The test have been performed
on server with Intel Xeon E7-4860 CPUs.

The majority of signal tracks (decay products of D-mesons, charmonium, light vector mesons) are
particles with momentum higher than 1 GeV/c originating from the region very close to the collision
point. Their reconstruction efficiency is, therefore, similar to the efficiency of high-momentum pri-
mary tracks that is equal to 97.1%. The high-momentum secondary particles, e.g. in decays of K° and
A particles and cascade decays of E and €, are created far from the primary vertex, therefore their
reconstruction efficiency is lower — 81.2%. Significant multiple scattering of low-momentum tracks
in the material of the detector system and large curvature of their trajectories lead to lower reconstruc-
tion efficiencies of 90.4% for primary tracks and of 51.1% for secondary low momentum tracks. The
total efficiency for all tracks is 88.5% with a large fraction of low-momentum secondary tracks. The
levels of clones (double found tracks) and of ghost (wrong) tracks are 0.2% and 0.7% respectively.
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The reconstruction efficiency for central events is also given in the Table in order to show the stable
behavior of the CA track finder with respect to the track multiplicity.

Figure 4. A simulated central Au-Au collision at 25 AGeV energy with about 1000 charged particles (different
colors correspond to different types of particles).

The high track finding efficiency and the track fit quality are crucial, especially for reconstruction
of the short-lived particles, which are of the particular interest for the CBM experiment. The recon-
struction efficiency of short-lived particles depends quadratically on the daughter track reconstruction
efficiency in case of two-particle decays. The situation becomes more sensitive for decays with three
daughters and for decay chains. The level of a combinatorial background for short-lived particles
depends strongly on the track fit quality. The correct estimation of the errors on the track parameters
improves distinguishing between the signal and the background particle candidates, and thus to sup-
press the background. The ghost (wrong) tracks usually have large errors on the track parameters and
therefore are easily combined with other tracks into short-lived particle candidates, thus a low level of
ghost tracks is also important to keep the combinatorial background low. As a result, the high track
reconstruction efficiency and the low level of the combinatorial background improve significantly the
event reconstruction and selection by the FLES package.

6 Track finding at high track multiplicities

Since the CBM experiment will operate at extremely high interaction rates, different collisions may
overlap in time. Thus, the need to analyze so-called timeslices, which contain information from a
number of collisions, rather than isolated events arises. The need to work with time-slices instead of
events is triggered not only by physical circumstances, but also is encouraged by computing hardware
reasons. Not only minimum bias events, but even central events were proved to be not big enough
in order to be processed in parallel on a modern many-core computer architectures. For implement-
ing in-event level parallelism these events do not have enough sources of parallelism in order to be
reconstructed on 20 or more CPU cores simultaneously.

As a first step on a way towards the time-slice reconstruction we introduce a container of packed
minimum bias events with no time information taken into account. To create such a group we com-
bine space coordinates of hits from a number (from 1 up to 100) AuAu minimum bias events at
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Figure 5. Reconstructed tracks in a minimum bias event (left) and in a packed group of 100 minimum bias events
(right), 109 and 10 340 tracks on average, respectively.

25 AGeV ignoring such information as event number or time measurements (Fig. 5). The group was
treated by the CA track finder as a regular event and the reconstruction procedure was performed
with no changes. Varying the number of minimum bias events in a group we have studied the track
reconstruction efficiency dependence with respect to track multiplicity. As one can see in Fig. 6, high
momentum primary tracks (RefPrim), that have particular physical importance, are reconstructed with
excellent efficiency of about 96%, which varies within less than 2% up to a hundred events grouped.
If we include secondary tracks (RefSet) the efficiency is a bit lower — 93.7%, since some secondary
tracks originate far from the target. This value varies within 3% for the extreme case of 100 minimum
bias events grouped. The efficiency for low momentum tracks is 79.8% (ExtraPrim) due to multiple
scattering in detector material. It changes within 6% window in case of the largest track multiplicities.
The ghost fraction remains at acceptable level (less than 10%) up to the highest track multiplicities.
Thus, the CA track finder is proved to be stable with respect to the high track multiplicities.
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Figure 6. Track reconstruction efficiencies and ghost rate for different sets of tracks versus track multiplicity.

However, not only efficiency, but also a speed of the reconstruction algorithm is crucial for suc-
cessful performance in case of CBM. We have studied the time, that the CA track finder needs to
reconstruct a grouped event as a function of the number of Monte-Carlo tracks in a group (Fig. 7).
The results show that the dependence is perfectly described with a second order polynomial. This is a
remarkable result, if one keeps in mind the exponential growth of combinatorics with the track multi-
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plicity. This dependence can be improved further and turn into a linear one, which corresponds to the
case of event-based analysis, after introducing time measurements into the reconstruction algorithm.
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Figure 7. The CA track finder time needed to reconstruct groups of minimum bias events without time informa-
tion with respect to the track multiplicity. The dependence is fitted with a second order polynomial.

7 In-event parallelism of the CA track finder

The SIMDized, but sequential in terms of core usage, version of the CA track finder was taken as the
starting point for developing a parallel version with the use of the Open Multi-Processing (OpenMP)
technique. By default the threads are allocated to processors by the runtime environment, which takes
into account different factors, like the processor usage or the machine load. In order to prevent the
CPU from sending a thread to other cores during runtime, which can affect parallelization efficiency,
we use the Pthreads interface for setting a permanent thread to core affinity. The goal was to make
parallel implementation of the CA algorithm keeping the same efficiencies and having the stable track
reconstruction result regardless of number of executing threads.

Parallel implementation requires certain features of the algorithm. First of all, in order to get
correct results, parallel iterations should not have loop dependencies, that means that the result of
one parallel iteration should be independent from other parallel iterations, running at the same time.
Second, one has to keep in mind that the parallel section should always be thread-safe, so that the
shared data structures are used in a manner that guarantees safe simultaneous execution by multiple
threads at the same time. This can be achieved by allocating local data structures for each thread and
summing up results of their work afterwards or introducing synchronization into threads execution.

An important issue while making parallel implementation is to keep in mind a certain computer
architecture. The optimization and testing of the parallel CA track finder was performed on a server
with 4 Intel Xeon E7-4860 processors. Each processor has 10 physical cores with hyper-threading. It
is an example of so-called NUMA (Non-Uniform Memory Access) architecture, that means that the
memory access time for the server depends on the memory location relative to the processor. CPUs
can communicate and exchange data between each other, but it takes longer time. Thus, the decision
was taken in order to avoid processors communication to send one time-slice to a single CPU for
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Table 3. Track reconstruction efficiency for minimum bias and central collisions.

Algorithms step % of total time
Initialization 2.0
Triplets construction 90.4
Tracks construction 4.1
Final stage 3.4

reconstruction, not to the whole node. This way such an architecture can be filled with 4 time-slices
reconstructed in parallel.

The CA algorithm consists of several logical parts (see Tab. 3). First, a short (2% of the total
execution time) initialization, when we prepare hit information for tracking, takes place. The main
and the most time consuming part of triplet construction takes about 90% of the sequential execution
time. Out of triplets we construct tracks, that takes about 4and in addition 3.4for the next iteration.
All steps of the algorithm were parallelized inside the event, using different sources of parallelism in
each step: hits in the initialization and final stages, triplets for the major part, track candidates for the
track construction step. In order to have enough sources of parallelism to fill a whole CPU, a group
of 100 minimum bias events was processed. The resulting speed-up factors for different steps as well
as for the full algorithm within one CPU (20 hyperthreaded logical cores) are presented in Fig. 8.
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Figure 8. Speed-up factor due to parallelization for different steps and the full algorithm on Intel Xeon E7-4860
CPU with 10 physical cores and hyper-threading for the case of 100 minimum bias events grouped.

Some steps have a better speed-up for higher number of cores due to less thread synchronization
needed. The algorithm shows linear scalability. Due to hyperthreading one can expect a speed up
factor of about 13 on such a CPU in the ideal case. The achieved speed-up factor is 10.6 for the full
CA track finder reconstruction algorithm on a CPU with 10 physical cores with hyper-threading.

8 4-Dimensional time-based event building

Since resolving different events is a non-trivial task in the CBM experiment, the standard reconstruc-
tion routine will include an event building, the process of defining exact borders of events within a
time-slice and grouping tracks into even-corresponding clusters, which they originate from. For this
task an efficient time-based tracking is essential. Since the CA track finder proved to be fast and stable
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with respect to the track multiplicity, the next step towards the time-slice based reconstruction would
be the implementation of time measurements.

In order to introduce a time measurement into the reconstruction procedure to each minimum bias
event in a 100 events group an event start time was assigned during simulation phase. The start time
was obtained with the Poisson distribution, assuming the interaction rate of 10’ Hz. A time stamp
we assign to a certain hit consists of this event start time plus the time shift due to the time of flight,
which is different for all hits. In order to obtain a time measurement for a hit we then smear a time
stamp according to a Gaussian distribution with a sigma value of the detector resolution of 5 ns.

After introducing the time measurement we can use the time information in the CA track finder.
We do not allow to build triplets out of hits, which time difference is greater than 30 of the detector
time resolution. It is a very good approximation, since the time of flight between the detector planes
is negligible in comparison to the detection precision. Apart from that, we perform the reconstruction
procedure in a regular way. After the reconstruction we assign to each track a time measurement,
which is calculated as an average of its hits measurements.

Entries

10?

0 2000 4000 6000 8000 10000
Time [ns]

Figure 9. Part of a time-slice with 100 minimum bias events. With blue color the distribution of hit time
measurements in a time-slice is shown.

The initial distribution of hits measurements representing the complexity of defining event bor-
ders in a time-slice at interaction rate of 107 Hz is shown in Fig. 9 with blue color. The resulting
distribution of reconstructed track measurements (black color), as well as the distribution of initial hit
measurements (light blue color), one can see in Fig. 10. The reconstructed tracks clearly represent
groups, which correspond to events, which they originate from. Even in the area of the most severe
overlap (Fig. 11) the time-based CA track finder allows to resolve tracks from different events in time.

9 KF Particle Finder — a common package for reconstruction of short-lived
particles

Today the most interesting physics is hidden in the properties of short-lived particles, which are not
registered, but can be reconstructed only from their decay products. A fast and efficient KF Particle
Finder package, based on the Kalman filter (hence KF) method, for reconstruction and selection of
shortlived particles is developed to solve this task. A search of more than 50 decay channels has been
currently implemented. The package doesn’t require any specific information about the geometry of
an experiment, therefore it is implemented as a common package for and tested on the CBM, PANDA,
ALICE and STAR experiments.
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Figure 10. Part of a time-slice with 100 minimum bias events. With light blue color the initial distribution of hit
measurements is reproduced, black color shows time measurements of reconstructed tracks.
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Figure 11. Event building: black reconstructed track groups are well resolved on the blue background of over-
lapped initial hits.

In the package all registered particle trajectories are divided into groups of secondary and primary
tracks for further processing. Primary tracks are those, which are produced directly in the collision
point. Tracks from decays of resonances (strange, multi-strange and charmed resonances, light vector
mesons, charmonium) are also considered as primaries since they are produced directly at the point
of the primary collision. Secondary tracks are produced by the short-lived particles, which decay not
in the point of the primary collision and can be clearly separated. These particles include strange
particles (K? and A), multi-strange hyperons (2 and Q) and charmed particles (D, D*, Di and A,).
After that tracks are combined according to the block diagram in Fig. 12. The package estimates the
particle parameters, such as decay point, momentum, energy, mass, decay length and lifetime, together
with their errors. The package has a rich functionality, including particle transport, calculation of a
distance to a point or another particle, calculation of a deviation from a point or another particle,
constraints on mass, decay length and production point. All particles produced in the collision are
reconstructed at once, that makes the algorithm local with respect to the data and therefore extremely
fast. KF Particle Finder shows a high efficiency of particle reconstruction. For example, for the CBM
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experiment efficiencies of about 15% for A and 5% for =~ with AuAu collisions at 35 AGeV are
achieved together with high signal-to-background ratios (1.3 and 5.9 respectively).
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Figure 12. Block diagram of the KF Particle Finder package. The particle parameters, such as decay point,
momentum, energy, mass, decay length and lifetime, together with their errors are estimated using the Kalman
filter method.

In order to utilize all resources of modern computer architectures and to achieve the highest pos-
sible speed the KF Particle Finder is vectorized based on the SIMD instructions. Also, the package
has been parallelized at the level of cores and demonstrates a strong linear scalability on many-core
servers with respect to the number of cores. For example, the scalability of the package using 100 UU
minimum bias collisions of the STAR experiment per thread on two Intel Xeon E5-2680 CPUs with
32 logical cores and one Intel Xeon Phi accelerator with 240 threads running simultaneously is shown
in Fig. 13. For the Intel Xeon Phi the scalability has shown for running 1, 2, 3 and 4 threads per each
physical core.

The core of the KF Particle Finder package is used in the CBM experiment for processing of
simulated data and in the ALICE experiment — for real data. The package is under installation in the
PANDA and STAR experiments. Such simultaneous use of the package in the running ALICE and
STAR experiments and in the future FAIR experiments CBM and PANDA provides reach functionality
and operate reliability of the KF Particle Finder.

10 FLES - a standalone First Level Event Selection package for the CBM
experiment

The First Level Event Selection (FLES) package of the CBM experiment is intended to reconstruct
online the full event topology including tracks of charged particles and short-lived particles. The
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Figure 13. Scalability of the KF Particle Finder package on two Intel Xeon E5-2680 CPUs with 32 logical cores
and one Intel Xeon Phi accelerator with 240 logical cores with minimum bias UU collisions at 200 AGeV in the
STAR experiment.

FLES package consists of several modules (the block-diagram is shown on Fig. 14): CA track finder,
KF track fitter, KF Particle Finder and physics selection. In addition, a quality check module is
implemented, that allows to monitor and control the reconstruction process at all stages. The FLES
package is platform and operating system independent.

The FLES package is portable to different many-core CPU architectures. The package is vector-
ized using SIMD instructions and parallelized between CPU cores. All algorithms are optimized with
respect to the memory usage and the speed.

A\

| CA Track Finder |
=
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Figure 14. Block-diagram of the FLES package, which consists of several modules: track finder, track fitter,
particle finder and physics selection.
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Four servers with Intel Xeon E7-4860, L5640 and X5550 processors and with AMD 6164EH
processor have been used for the scalability tests. The AMD server has 4 processors with 12 physical
cores each, in total 48 cores. All Intel processors have the hyperthreading technology, therefore each
physical core has two logical cores. The most powerful Intel server has 4 processors with 10 physical
cores each, that gives 80 logical cores in total.

Iy
=3
S
S

2
< = H H
S 1800 : : .
& 4 Intel E7-4860 2.27 GHz il
1600~ 4  AMD 6164EH 1.70 GHz ot
lapoF-  *  Intel L5640 227 GHz e Sers
- v Intel X5550 2.67 GHz b, el
1200 o7 e
1000 " -“‘: =
- e
800f i
600 Qe ni

= v |¥' 4
400 AT~ 704

= AW v

= ) -e;“
200 v';a‘”

=l

P L. N

0 10 20 30 40 50 60 K
Number of logical cores

Figure 15. Scalability of the FLES package on many-core servers with 16, 24, 48 and 80 logical cores.

The FLES package has been parallelized with ITBB implementing the event-level parallelism by
executing one thread per one logical core. Reconstruction of 1000 minimum bias Au-Au UrQMD
events at 25 AGeV has been processed per each thread. In order to minimize the effect of the op-
erating system each thread is fixed to a certain core using the pthread functionality provided by the
C++ standard library. Fig. 15 shows a strong scalability for all manycore systems achieving the
reconstruction speed of 1700 events per second on the 80-cores server.
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Figure 16. Scalsaiability of FLES, package on 3 200 cores of the FAIR-Russia HPC cluster (ITEP, Moscow).
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The FLES package in the CBM experiment will be performed for the on-line selection and the
offline analysis on a dedicated many-core CPU/GPU farm. The farm is currently estimated to have a
compute power equivalent to 60 000 modern CPU cores. Fig. 16 shows the scalability of the FLES
package on a many-core computer farm with 3 200 cores of the FAIR-Russia HPC cluster (ITEP,
Moscow).

11 Summary

The challenges in the data reconstruction and physics analysis of the CBM experiment, discussed in
the paper, are typical not only for the FAIR experiments, but for all modern and future experiments
at LHC and other research centers in the world. One can expect a higher level of consolidation
between the experiments in the cooperative work of their expert groups in order to find an optimal
way in developing of new or restructuring of the existing reconstruction and analysis packages and
frameworks.
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