
Research Article
Modeling and Chaotic Dynamics of the Laminated Composite
Piezoelectric Rectangular Plate

Minghui Yao, Wei Zhang, and D. M. Wang

College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Minghui Yao; ymh@bjut.edu.cn

Received 12 October 2013; Accepted 27 December 2013; Published 2 March 2014

Academic Editor: Rongni Yang

Copyright © 2014 Minghui Yao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric
rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations,
Reddy’s third-order shear deformation plate theory, andHamilton’s principle, the equations of motion are derived for the laminated
composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple
scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged
equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is
used to study the Shilnikov typemultipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric
rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically
obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase
space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical
and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric
rectangular plate.

1. Introduction

The need for high-speed, light-weight, and energy-saving
structures in the aerospace and aviation industry has led
to the composite materials instead of traditional materi-
als. Additional requirements for multifunctionality, active
vibration, shape control, vibration suppression, and acoustic
control have made the development of smart and intelligent
structures. A piezoelectric composite laminate is composed
of piezoelectric layers which are embedded in laminated
composite structures or are boned on the surface of struc-
tures.The direct and converse piezoelectric effects are used to
suppress the transient vibration and to control the deforma-
tion, shape, and buckling of the structures. Such lightweight
flexible structures generate large deformations, geometrical
nonlinearity, and structural instability when piezoelectric
composite laminates are subjected to the coupling between
the mechanical and electrical loads. Therefore, it is neces-
sary to study geometrically nonlinear effects on dynamic
characteristics of structures in order to accurately design

and effectively control vibrations of piezoelectric composite
laminate structures. It is very important to investigate the
large amplitude nonlinear vibrations of smart structures with
piezoelectric materials in order to achieve and predict the
desired performance of the systems.

Recently, the studies on dynamics of composite structures
with piezoelectric materials have made some progress. Tzou
et al. [1] used spatially distributed orthogonal piezoelectric
actuators to perform the distributed structural control of
elastic shell. They utilized a gain factor and a spatially dis-
tributed mode actuator function to describe modal feedback
functions. Purekar et al. [2] presented phased array filters
with piezoelectric sensors to detect damage in isotropic
plates and adopted wave propagation to describe plate
dynamics. Ishihara and Noda [3] took into account the
effect of transverse shear to analyze the dynamic behavior
of the laminate composed of fiber-reinforced laminae and
piezoelectric layers constituting a symmetric cross-ply lam-
inate rectangular plate with simply supported edges. Oh [4]
considered snap-through thermopiezo-elastic behaviors to
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examine the buckling bifurcation and sling-shot buckling of
active piezo-laminated plates. Lee et al. [5] employed third-
order shear deformation theory and nonlinear finite element
to canvass deflection suppression characteristics of laminated
composite shell structures with smart material laminae.
Panda andRay [6] exploited the first-order shear deformation
theory and the three-dimensional finite element method to
delve into the open-loop and closed-loop nonlinear dynamics
of functionally graded plates with the piezoelectric fiber-
reinforced composite material under the thermal environ-
ment. Dumir et al. [7] used the extendedHamilton’s principle
to derive the coupled nonlinear equations of motion and the
boundary conditions for buckling and vibration of symmet-
rically laminated hybrid angle-ply piezoelectric panels under
in-plane electrothermomechanical loading. Yao and Zhang
[8] employed the third-order shear deformation plate theory
to explore the bifurcations and chaotic dynamics of the four-
edge simply supported laminated composite piezoelectric
rectangular plate in the case of the 1 : 2 internal resonances.

The global bifurcations and chaotic dynamics of high-
dimensional nonlinear systems have been at the forefront
of nonlinear dynamics for the past two decades. There are
two ways of solutions on Shilnikov type chaotic dynamics of
high-dimensional nonlinear systems. One is Shilnikov type
single-pulse chaotic dynamics and the other is Shilnikov
type multipulse chaotic dynamics. Most researchers focused
on Shilnikov type single-pulse chaotic dynamics of high-
dimensional nonlinear systems. Much research in this field
has concentrated on Shilnikov type single-pulse chaotic
dynamics of thin plate structures. Feng and Sethna [9]
utilized the global perturbation method to study the global
bifurcations and chaotic dynamics of the thin plate under
parametric excitation and obtained the conditions in which
the Shilnikov type homoclinic orbits and chaos can occur.
Tien et al. [10] applied the Melnikov method to investigate
the global bifurcation and chaos for the Smale horseshoe
sense of a two-degree-of-freedom shallow arch subjected
to simple harmonic excitation for the case of 1 : 2 internal
resonance. Malhotra and Sri Namachchivaya [11] employed
the averaging method and Melnikov technique to canvass
the local, global bifurcations and chaotic motions of a two-
degree-of-freedom shallow arch subjected to simple har-
monic excitation for the case of 1 : 1 internal resonance. The
global bifurcations and chaotic dynamics were investigated
by Zhang [12] for the simply supported rectangular thin
plates subjected to the parametrical-external excitation and
the parametrical excitation. Yeo and Lee [13] made use of
the global perturbation technique to examine the global
dynamics of an imperfect circular plate for the case of
1 : 1 internal resonance and obtained the criteria for chaotic
motions of homoclinic orbits and heteroclinic orbits. Yu and
Chen [14] adopted the global perturbationmethod to explore
the global bifurcations of a simply supported rectangular
metallic plate subjected to a transverse harmonic excitation
for the case of 1 : 1 internal resonance.

While most of studies are on the Shilnikov type
single-pulse global bifurcations and chaotic dynamics of
high-dimensional nonlinear systems, there are researchers
investigating the Shilnikov type multipulse homoclinic and

heteroclinic bifurcations and chaotic dynamics. So far, there
are two theories of the Shilnikov type multipulse chaotic
dynamics. One is the extended Melnikov method and the
other theory is the energy phase method. Much achievement
is made in the former theory of high-dimensional nonlinear
systems. In 1996, Kovačič and Wettergren [15] used a modi-
fiedMelnikovmethod to investigate the existence of the mul-
tipulse jumping of homoclinic orbits and chaotic dynamics
in resonantly forced coupled pendula. Furthermore, Kaper
and Kovačič [16] studied the existence of several classes of
the multibump orbits homoclinic to resonance bands for
completely integral Hamiltonian systems subjected to small
amplitude Hamiltonian and damped perturbations. Camassa
et al. [17] presented a new Melnikov method which is called
the extended Melnikov method to explore the multipulse
jumping of homoclinic and heteroclinic orbits in a class of
perturbed Hamiltonian systems. Until recently, Zhang and
Yao [18] introduced the extended Melnikov method to the
engineering field. They came up with a simplification of the
extended Melnikov method in the resonant case and utilized
it to analyze the Shilnikov type multipulse homoclinic bifur-
cations and chaotic dynamics for the nonlinear nonplanar
oscillations of the cantilever beam.

The study on the second theory of the Shilnikov typemul-
tipulse chaotic dynamics was stated by Haller and Wiggins
[19]. They presented the energy phase method to investigate
the existence of the multipulse jumping homoclinic and
heteroclinic orbits in perturbed Hamiltonian systems. Up
to now, few researchers have made use of the energy phase
method to study the Shilnikov type multipulse homoclinic
and heteroclinic bifurcations and chaotic dynamics of high-
dimensional nonlinear systems in engineering applications.
Malhotra et al. [20] used the energy-phase method to inves-
tigate multipulse homoclinic orbits and chaotic dynamics for
the motion of flexible spinning discs. Yu and Chen [21] made
use of the energy-phase method to examine the Shilnikov
type multipulse homoclinic orbits of a harmonically excited
circular plate.

This paper focuses on the Shilnikov typemultipulse orbits
and chaotic dynamics for a simply supported laminated
composite piezoelectric rectangular plate under combined
parametric excitations and transverse load. Based on the
von Karman type equations and Reddy’s third-order shear
deformation plate theory, Hamilton’s principle is employed
to obtain the governing nonlinear equations of the lami-
nated composite piezoelectric rectangular plate with com-
bined parametric excitation and transverse load. We apply
Galerkin’s approach and the method of multiple scales to the
partial differential governing equations to obtain the four-
dimensional averaged equation for the case of 1 : 3 internal
resonance and primary parametric resonance. From the
averaged equation, the theory of normal form is used to
find the explicit formulas of normal form. We study the
heteroclinic bifurcations of the unperturbed system and the
characteristic of the hyperbolic dynamics of the dissipative
system, respectively. Finally, we employ the extended Mel-
nikov method to analyze the Shilnikov type multipulse orbits
and chaotic dynamics in the laminated composite piezoelec-
tric plate. In this paper, the extended Melnikov function
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Figure 1: The model of a laminated composite piezoelectric rectangular plate is given.

can be simplified in the resonant case and does not depend
on the perturbation parameter. We have used the extended
Melnikovmethod to investigate heteroclinic bifurcations and
multipulse chaotic dynamics of the laminated composite
piezoelectric plate under the case of 1 : 3 internal resonances.
The analysis indicates that there exist the Shilnikov type
multipulse jumping orbits in the perturbed phase space for
the averaged equations. We present the geometric structure
of the multipulse orbits in the four-dimensional phase space.
The results from numerical simulation also show that the
chaotic motion can occur in the motion of the laminated
composite piezoelectric plate, which verifies the analytical
prediction. The Shilnikov type multipulse orbits are discov-
ered from the results of numerical simulation. In summary,
both theoretical and numerical studies demonstrate that
chaos for the Smale horseshoe sense in themotion exists.This
paper demonstrates how to employ the extended Melnikov
method to analyze the Shilnikov type multipulse heteroclinic
bifurcations and chaotic dynamics of high-dimensional non-
linear systems in engineering applications.

The laminated composite piezoelectric rectangular plates
are widely applied in space stations, satellite solar panels,
sensors, and actuators for the active control of structures
and so on. In this paper, we have investigated the multipulse
global bifurcations and chaotic dynamics of a laminated com-
posite piezoelectric rectangular plate by using an extended
Melnikov method and numerical simulations in detail. We
have understood nonlinear vibration characteristics of a
laminated composite piezoelectric rectangular plate. Our
theoretical results can be used to solve some engineering
problems. Since these smart structures are generally light
weight and relatively large structural flexibility, laminated
composite piezoelectric rectangular plates can induce large
vibration deformation during the rapid deployment. In order
to eliminate or suppress large vibration and chaotic motion,
theoretical results can help optimize the design of the
structural parameters of laminated composite piezoelectric
rectangular plates. Therefore, the theoretical studies on the
multipulse global bifurcations and chaotic dynamics of lam-
inated composite piezoelectric rectangular plates play a very

important role in applications in aerospace and mechanical
engineering.

2. Equations of Motion and
Perturbation Analysis

We consider a four-edge simply supported laminated com-
posite piezoelectric rectangular plate, where the length, the
width, and the thickness are denoted by 𝑎, 𝑏, and ℎ, respec-
tively. The laminated composite piezoelectric rectangular
plate is subjected to in-plane excitation, transverse excita-
tion, and piezoelectric excitation, as shown in Figure 1. We
consider the laminated composite piezoelectric rectangular
plate as regular symmetric cross-ply laminates with 𝑛 layers
with respect to principal material coordinates alternatively
oriented at 0∘ and 90∘ to the laminated coordinate axes. Some
of layers are made of the piezoelectric materials as actuators,
and the other layers are made of fiber-reinforced composite
materials. It is assumed that different layers of the symmetric
cross-ply composite laminated piezoelectric rectangular plate
are perfectly clung to each other, and piezoelectric actuator
layers are embedded in the plate. The fiber direction of
odd-numbered layers is the 𝑥-direction of the laminate. The
fiber direction of even-numbered layers is the 𝑦-direction
of the laminate. Simply supported plate with immovable
edges satisfies the symmetry requirement that eliminates
the coupling between bending and extension. However, the
displacement of 𝑥 is free to move at the edge of 𝑦 = 0, and
the displacement of 𝑦 is free to move at the edge of 𝑥 = 0.
Therefore, the membrane stress is smaller and there exists the
coupling between bending and extension. A Cartesian coor-
dinate system 𝑂𝑥𝑦𝑧 is located in the middle surface of the
composite laminated piezoelectric rectangular plate. Assume
that (𝑤, V, 𝑢) and (𝑤

0
, V
0
, 𝑢
0
) describe the displacements of

an arbitrary point and a point in the middle surface of the
composite laminated piezoelectric rectangular plate in the
𝑥, 𝑦, and 𝑧 directions, respectively. It is also assumed that
in-plane excitations of the composite laminated piezoelectric
rectangular plate are loaded along the 𝑦-direction at 𝑥 = 0
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and the 𝑥-direction at 𝑦 = 0 with the form of 𝑞
0
+ 𝑞
𝑥
cosΩ
1
𝑡

and 𝑞
1
+𝑞
𝑦
cosΩ
2
𝑡, respectively. Transverse excitation loaded

to the composite laminated piezoelectric rectangular plate is
expressed as 𝑞 = 𝑞

3
cosΩ
3
𝑡.The dynamic electrical loading is

represented by 𝐸
𝑧
= 𝐸
𝑧
cosΩ
4
𝑡.

Considering Reddy’s third-order shear deformation
description of the displacement field, we have

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢
0
(𝑥, 𝑦, 𝑡) + 𝑧𝜙

𝑥
(𝑥, 𝑦, 𝑡)

− 𝑧
3

4

3ℎ
2

(𝜙
𝑥
+

𝜕𝑤
0

𝜕𝑥

) ,

(1a)

V (𝑥, 𝑦, 𝑧, 𝑡) = V
0
(𝑥, 𝑦, 𝑡) + 𝑧𝜙

𝑦
(𝑥, 𝑦, 𝑡)

− 𝑧
3

4

3ℎ
2

(𝜙
𝑦
+

𝜕𝑤
0

𝜕𝑦

) ,

(1b)

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤
0
(𝑥, 𝑦, 𝑡) , (1c)

where (𝑢
0
, V
0
, 𝑤
0
) are the deflection of a point on the middle

surface, (𝑢, V, 𝑤) are the displacement components along the
(𝑥, 𝑦, 𝑧) coordinate directions, and 𝜙

𝑥
and 𝜙

𝑦
represent the

rotation components of normal to the middle surface about
the 𝑦 and 𝑥 axes, respectively.

The nonlinear strain-displacement relations are assumed
to have the following form:

𝜀
𝑥𝑥

=

𝜕𝑢

𝜕𝑥

+

1

2

(

𝜕𝑤

𝜕𝑥

)

2

, 𝜀
𝑥𝑧

=

1

2

(

𝜕𝑢

𝜕𝑧

+

𝜕𝑤

𝜕𝑥

) ,

𝜀
𝑥𝑦

=

1

2

(

𝜕𝑢

𝜕𝑦

+

𝜕V
𝜕𝑥

+

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

)
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1
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𝜕𝑤
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)

2

, 𝜀
𝑦𝑧

=

1
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(

𝜕V
𝜕𝑧

+

𝜕𝑤

𝜕𝑦

) ,

𝜀
𝑧𝑧

=

𝜕𝑤

𝜕𝑧

.

(2)

Stress constitutive relations are presented as follows:

𝜎
𝑖𝑗
= 𝜎
𝑠

𝑖𝑗𝑘𝑙

𝜀
𝑘𝑙
− 𝑒
𝑖𝑗𝑘
𝐸
𝑘
, (𝑖, 𝑗, 𝑘, 𝑙 = 𝑥, 𝑦, 𝑧) , (3)

where𝜎
𝑖𝑗
and 𝜀
𝑘𝑙
denote themechanical stresses and strains in

extended vector notation, 𝜎𝑠
𝑖𝑗𝑘𝑙

represents the elastic stiffness
tensor, 𝐸

𝑘
stands for the electric field vector, and 𝑒

𝑖𝑗
is the

piezoelectric tensor.
According to Hamilton’s principle, the nonlinear gov-

erning equations of motion in terms of generalized dis-
placements (𝑢

0
, V
0
, 𝑤
0
, 𝜙
𝑥
, 𝜙
𝑦
) for the composite laminated

piezoelectric rectangular plate are given in the previous
studies as follows [8]:
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3
𝑡)

𝜕𝑤

𝜕𝑥

+ (𝐹
55
𝑐
2

2

− 2𝐷
55
𝑐
2
+ 𝐴
55
)

𝜕𝜙
𝑥

𝜕𝑥

− 𝑞 cos (Ω
3
𝑡) + 𝑘𝑓

𝜕𝑤
0

𝜕𝑡

= 𝐼
0
�̈�
0
− 𝑐
2

1

𝐼
6
(

𝜕
2

�̈�
0

𝜕𝑥
2

+

𝜕
2

�̈�
0

𝜕𝑦
2

)

+ 𝑐
1
𝐼
3
(

𝜕�̈�
0

𝜕𝑥

+

𝜕V̈
0

𝜕𝑦

) + 𝑐
1
𝐽
4
(

𝜕
̈

𝜙
𝑥

𝜕𝑥

+

𝜕
̈

𝜙
𝑦

𝜕𝑦

) ,

(4c)

(𝐷
11

− 2𝐹
11
𝑐
1
+ 𝐻
11
𝑐
2

1

)

𝜕
2

𝜙
𝑥

𝜕𝑥
2

+ (𝐷
66

− 2𝐹
66
𝑐
1
+ 𝐻
66
𝑐
2

1

)

𝜕
2

𝜙
𝑥

𝜕𝑦
2

− 𝑐
1
(𝐹
11

− 𝐻
11
𝑐
1
)

𝜕
3

𝑤
0

𝜕𝑥
3

− (𝐹
55
𝑐
2

2

− 2𝐷
55
𝑐
2
+ 𝐴
55
)

𝜕𝑤
0

𝜕𝑥

+ (𝐷
12

+ 𝐷
66

+ 𝐻
66
𝑐
2

1

− 2𝐹
66
𝑐
1
+ 𝐻
12
𝑐
2

1

− 2𝐹
12
𝑐
1
)

×

𝜕
2

𝜙
𝑦

𝜕𝑦𝜕𝑥

− 𝑐
1
(2𝐹
66

+ 𝐹
12

− 2𝐻
66
𝑐
1
− 𝐻
12
𝑐
1
)

×

𝜕
3

𝑤
0

𝜕𝑦
2

𝜕𝑥

+ (2𝐷
55
𝑐
2
− 𝐴
55

− 𝐹
55
𝑐
2

2

) 𝜙
𝑥

= 𝐽
1
�̈�
0
+ 𝐾
2

̈
𝜙
𝑥
− 𝑐
1
𝐽
4

𝜕�̈�
0

𝜕𝑥

,

(4d)

(𝐷
66

− 2𝐹
66
𝑐
1
+ 𝐻
66
𝑐
2

1

)

𝜕
2

𝜙
𝑦

𝜕𝑥
2

− 𝑐
1
(𝐹
21

+ 2𝐹
66

− 𝐻
21
𝑐
1
− 2𝐻
66
𝑐
1
)

𝜕
3

𝑤
0

𝜕𝑦𝜕𝑥
2

+ (𝐻
21
𝑐
2

1

+ 𝐷
66

+ 𝐷
21

− 2𝐹
21
𝑐
1
+ 𝐻
66
𝑐
2

1

− 2𝐹
66
𝑐
1
)

×

𝜕
2

𝜙
𝑥

𝜕𝑦𝜕𝑥

+ (𝐻
22
𝑐
2

1

+ 𝐷
22

− 2𝐹
22
𝑐
1
)

𝜕
2

𝜙
𝑦

𝜕𝑦
2

− 𝑐
1
(𝐹
22

− 𝐻
22
𝑐
1
)

𝜕
3

𝑤
0

𝜕𝑦
3

− (𝐹
44
𝑐
2

2

− 2𝐷
44
𝑐
2
+ 𝐴
44
)

×

𝜕𝑤
0

𝜕𝑦

+ (2𝐷
44
𝑐
2
− 𝐹
44
𝑐
2

2

− 𝐴
44
) 𝜙
𝑦

= 𝐽
1
V̈
0
+ 𝐾
2

̈
𝜙
𝑦
− 𝑐
1
𝐽
4

𝜕�̈�
0

𝜕𝑦

.

(4e)

The simply supported boundary conditions of the com-
posite laminated piezoelectric rectangular plate can be repre-
sented as follows [8, 22]:

𝑥 = 0: 𝑤 = 0, 𝜙
𝑦
= 0, 𝑁

𝑥𝑦
= 0, 𝑀

𝑥𝑥
= 0,

(5a)

𝑥 = 𝑎: 𝑤 = 0, 𝜙
𝑦
= 0, 𝑁

𝑥𝑦
= 0, 𝑀

𝑥𝑥
= 0,

(5b)

𝑦 = 0: 𝑤 = 0, 𝜙
𝑥
= 0, 𝑁

𝑥𝑦
= 0, 𝑀

𝑦𝑦
= 0,

(5c)

𝑦 = 𝑏: 𝑤 = 0, 𝜙
𝑥
= 0, 𝑁

𝑥𝑦
= 0, 𝑀

𝑦𝑦
= 0,

(5d)

∫

ℎ

0

𝑁
𝑥𝑥




𝑥=0

𝑑𝑧 = −∫

ℎ

0

(𝑞
0
+ 𝑞
𝑥
cosΩ
1
𝑡) 𝑑𝑧, (5e)

∫

ℎ

0

𝑁
𝑦𝑦





𝑦=0

𝑑𝑧 = −∫

ℎ

0

(𝑞
1
+ 𝑞
𝑦
cosΩ
2
𝑡) 𝑑𝑧. (5f)

The boundary condition (5f) includes the influence of the
in-plane load. We consider complicated nonlinear dynamics
of the composite laminated piezoelectric rectangular plate in
the first two modes of 𝑢

0
, V
0
, 𝑤
0
, 𝜙
𝑥
, and 𝜙

𝑦
. It is desirable

that we select an appropriate mode function to satisfy the
boundary condition.Thus, we can rewrite 𝑢

0
, V
0
, 𝑤
0
, 𝜙
𝑥
, and

𝜙
𝑦
in the following forms:

𝑢
0
= 𝑢
01
(𝑡) cos 𝜋𝑥

2𝑎

cos
𝜋𝑦

2𝑏

+ 𝑢
02
(𝑡) cos 3𝜋𝑥

2𝑎

cos
𝜋𝑦

2𝑏

, (6a)

V
0
= V
1
(𝑡) cos

𝜋𝑦

2𝑏

cos 𝜋𝑥
2𝑎

+ V
2
(𝑡) cos

𝜋𝑦

2𝑏

cos 3𝜋𝑥
2𝑎

, (6b)

𝑤
0
= 𝑤
1
(𝑡) sin 𝜋𝑥

𝑎

sin
𝜋𝑦

𝑏

+ 𝑤
2
(𝑡) sin 3𝜋𝑥

𝑎

sin
𝜋𝑦

𝑏

, (6c)

𝜙
𝑥
= 𝜙
1
(𝑡) cos 𝜋𝑥

𝑎

sin
𝜋𝑦

𝑏

+ 𝜙
2
(𝑡) cos 3𝜋𝑥

𝑎

sin
𝜋𝑦

𝑏

, (6d)

𝜙
𝑦
= 𝜙
3
(𝑡) cos

𝜋𝑦

𝑏

sin 𝜋𝑥

𝑎

+ 𝜙
4
(𝑡) cos

𝜋𝑦

𝑏

sin 3𝜋𝑥

𝑎

. (6e)

Bymeans of the Galerkin method, substituting (6a), (6b),
(6c), (6d), (6e) into (4a), (4b), (4c), (4d), (4e), integrating,
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and neglecting all inertia terms in (4a), (4b), (4d), and (4e),
we obtain the expressions of 𝑢

01
, 𝑢
02
, V
1
, V
2
, 𝜙
1
, 𝜙
2
, 𝜙
3
, and

𝜙
4
via 𝑤
1
and 𝑤

2
as follows:

𝑢
01

= 𝑘
1
𝑤
2

1

+ 𝑘
2
𝑤
2

2

+ 𝑘
3
𝑤
1
𝑤
2
, (7a)

𝑢
02

= 𝑘
4
𝑤
2

1

+ 𝑘
5
𝑤
2

2

+ 𝑘
6
𝑤
1
𝑤
2
, (7b)

V
1
= 𝑘
7
𝑤
2

1

+ 𝑘
8
𝑤
2

2

+ 𝑘
9
𝑤
1
𝑤
2
, (7c)

V
2
= 𝑘
10
𝑤
2

1

+ 𝑘
11
𝑤
2

2

+ 𝑘
12
𝑤
1
𝑤
2
, (7d)

𝜙
1
= 𝑘
19
𝑤
1
, 𝜙

2
= 𝑘
20
𝑤
2
, (7e)

𝜙
3
= 𝑘
21
𝑤
1
, 𝜙

4
= 𝑘
22
𝑤
2
, (7f)

where the coefficients presented in (7a), (7b), (7c), (7d), (7e),
(7f) can be found in the previous studies [8].

In order to obtain the dimensionless governing equations
of motion, we introduce the transformations of the variables
and parameters

𝑢 =

𝑢
0

𝑎

, V =

V
0

𝑏

, 𝑤 =

𝑤
0

ℎ

,

𝜙
𝑥

= 𝜙
𝑥
, 𝜙

𝑦

= 𝜙
𝑦
, 𝑥 =

𝑥

𝑎

, 𝑦 =

𝑦

𝑏

,

𝑞 =

𝑏
2

𝐸ℎ
3

𝑞, 𝑞
𝑥

=

𝑏
2

𝐸ℎ
3

𝑞
𝑥
, 𝑞

𝑦

=

𝑏
2

𝐸ℎ
3

𝑞
𝑦
,

𝑡 = 𝜋
2

(

𝐸

𝑎𝑏𝜌

)

1/2

𝑡, Ω
𝑖
=

1

𝜋
2

(

𝑎𝑏𝜌

𝐸

)

1/2

Ω
𝑖

(𝑖 = 1, 2) ,

𝐴
𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ
2

𝐴
𝑖𝑗
, 𝐵

𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ
3

𝐵
𝑖𝑗
,

𝐷
𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ
4

𝐷
𝑖𝑗
, 𝐸

𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ
5

𝐸
𝑖𝑗
,

𝐹
𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ
6

𝐹
𝑖𝑗
, 𝐻

𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ
8

𝐻
𝑖𝑗
,

𝐼
𝑖
=

1

(𝑎𝑏)
(𝑖+1)/2

𝜌

𝐼
𝑖
.

(8)

For simplicity, we drop the overbar in the following
analysis. Substituting (5a), (5b), (5c), (5d), (5e), (5f)–(8) into
(4c) and applying the Galerkin procedure, we obtain the
governing equations of motion of the composite laminated
piezoelectric rectangular plate for the dimensionless as fol-
lows:

�̈�
1
+ 𝜇
1
�̇�
1
+ 𝜔
2

1

𝑤
1

+ (𝑎
2
cosΩ
1
𝑡 + 𝑎
3
cosΩ
2
𝑡 − 𝑎
4
cosΩ
4
𝑡) 𝑤
1

+ 𝑎
5
𝑤
2

1

𝑤
2
+ 𝑎
6
𝑤
2

2

𝑤
1
+ 𝑎
7
𝑤
3

1

+ 𝑎
8
𝑤
3

2

= 𝑓
1
cosΩ
3
𝑡,

(9a)

�̈�
2
+ 𝜇
2
�̇�
2
+ 𝜔
2

2

𝑤
2

+ (𝑏
2
cosΩ
1
𝑡 + 𝑏
3
cosΩ
2
𝑡 + 𝑏
4
cosΩ
4
𝑡) 𝑤
2

+ 𝑏
5
𝑤
2

2

𝑤
1
+ 𝑏
6
𝑤
2

1

𝑤
2
+ 𝑏
7
𝑤
3

2

+ 𝑏
8
𝑤
3

1

= 𝑓
2
cosΩ
3
𝑡,

(9b)

where the coefficients presented in (9a), (9b) are given in the
previous studies [8].

The above equations include the cubic terms, in-plane
excitation, transverse excitation, and piezoelectric excitation.
Equation (9a), (9b) can describe the nonlinear transverse
oscillations of the composite laminated piezoelectric rectan-
gular plate. We only study the case of primary parametric
resonance and 1 : 3 internal resonances. In this resonant case,
there are the following resonant relations:

𝜔
2

1

=

𝜔
2

9

+ 𝜀𝜎
1
, 𝜔

2

2

= 𝜔
2

+ 𝜀𝜎
2
,

Ω
3
= 𝜔, Ω

1
= Ω
2
= Ω
4
=

2𝜔

3

,

𝜔
2
≈ 3𝜔
1
,

(10)

where 𝜎
1
and 𝜎

2
are two detuning parameters.

The method of multiple scales [23] is employed to (9a),
(9b) to find the uniform solutions in the following form:

𝑤
1
(𝑡, 𝜀) = 𝑥

10
(𝑇
0
, 𝑇
1
) + 𝜀𝑥

11
(𝑇
0
, 𝑇
1
) + ⋅ ⋅ ⋅ , (11a)

𝑤
2
(𝑡, 𝜀) = 𝑥

20
(𝑇
0
, 𝑇
1
) + 𝜀𝑥

21
(𝑇
0
, 𝑇
1
) + ⋅ ⋅ ⋅ , (11b)

where 𝑇
0
= 𝑡, 𝑇
1
= 𝜀𝑡.

Substituting (10) and (11a), (11b) into (9a), (9b) and
balancing the coefficients of corresponding powers of 𝜀 on
the left-hand and right-hand sides of equations, the four-
dimensional averaged equations in the Cartesian form are
obtained as follows:

�̇�
1
= −

1

2

𝜇
1
𝑥
1
−

1

2

𝜎
1
𝑥
2
+

1

4

(𝑎
2
+ 𝑎
3
− 𝑎
4
) 𝑥
2

−

3

2

𝑎
7
𝑥
2
(𝑥
2

1

+ 𝑥
2

2

) −

1

2

𝑎
5
𝑥
4
(𝑥
2

1

− 𝑥
2

2

)

− 𝑎
6
𝑥
2
(𝑥
2

3

+ 𝑥
2

4

) + 𝑎
5
𝑥
1
𝑥
2
𝑥
3
,

(12a)

�̇�
2
= −

1

2

𝜇
1
𝑥
2
+

1

2

𝜎
1
𝑥
1
+

1

4

(𝑎
2
+ 𝑎
3
− 𝑎
4
) 𝑥
1

+

3

2

𝑎
7
𝑥
1
(𝑥
2

1

+ 𝑥
2

2

) +

1

2

𝑎
5
𝑥
3
(𝑥
2

1

− 𝑥
2

2

)

+ 𝑎
6
𝑥
1
(𝑥
2

3

+ 𝑥
2

4

) + 𝑎
5
𝑥
1
𝑥
2
𝑥
4
,

(12b)

�̇�
3
= −

1

2

𝜇
2
𝑥
3
−

1

6

𝜎
2
𝑥
4
−

1

3

𝑏
6
𝑥
4
(𝑥
2

1

+ 𝑥
2

2

)

−

1

2

𝑏
7
𝑥
4
(𝑥
2

3

+ 𝑥
2

4

) −

1

6

𝑏
8
𝑥
2
(3𝑥
2

1

− 𝑥
2

2

) ,

(12c)
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�̇�
4
= −

1

2

𝜇
2
𝑥
4
+

1

6

𝜎
2
𝑥
3
+

1

3

𝑏
6
𝑥
3
(𝑥
2

1

+ 𝑥
2

2

)

+

1

2

𝑏
7
𝑥
3
(𝑥
2

3

+ 𝑥
2

4

) +

1

6

𝑏
8
𝑥
1
(𝑥
2

1

− 3𝑥
2

2

) −

1

12

𝑓
2
.

(12d)

3. Computation of Normal Form

In order to assist the analysis of the Shilnikov type multipulse
orbits and chaotic dynamics of the laminated composite
piezoelectric rectangular plate, it is necessary to reduce the
averaged equation (12a), (12b), (12c), (12d) to a simpler
normal form. It is found that there are 𝑍

2
⊕ 𝑍
2
and 𝐷

4

symmetries in the averaged equation (12a), (12b), (12c), (12d)
without the parameters. Therefore, these symmetries are also
held in normal form.

We take into account the excitation amplitude 𝑓
2
as a

perturbation parameter. Amplitude 𝑓
2
can be considered as

an unfolding parameter when the Shilnikov type multipulse
orbits are investigated. Obviously, when we do not consider
the perturbation parameter, (12a), (12b), (12c), (12d) become

�̇�
1
= −

1

2

𝜇
1
𝑥
1
+ (𝑓
0
−

1

2

𝜎
1
)𝑥
2
−

3

2

𝑎
7
𝑥
2
(𝑥
2

1

+ 𝑥
2

2

)

−

1

2

𝑎
5
𝑥
4
(𝑥
2

1

− 𝑥
2

2

)

− 𝑎
6
𝑥
2
(𝑥
2

3

+ 𝑥
2

4

) + 𝑎
5
𝑥
1
𝑥
2
𝑥
3
,

(13a)

�̇�
2
= −

1

2

𝜇
1
𝑥
2
+ (𝑓
0
+

1

2

𝜎
1
)𝑥
1
+

3

2

𝑎
7
𝑥
1
(𝑥
2

1

+ 𝑥
2

2

)

+

1

2

𝑎
5
𝑥
3
(𝑥
2

1

− 𝑥
2

2

)

+ 𝑎
6
𝑥
1
(𝑥
2

3

+ 𝑥
2

4

) + 𝑎
5
𝑥
1
𝑥
2
𝑥
4
,

(13b)

�̇�
3
= −

1

2

𝜇
2
𝑥
3
−

1

6

𝜎
2
𝑥
4
−

1

3

𝑏
6
𝑥
4
(𝑥
2

1

+ 𝑥
2

2

)

−

1

2

𝑏
7
𝑥
4
(𝑥
2

3

+ 𝑥
2

4

) −

1

6

𝑏
8
𝑥
2
(3𝑥
2

1

− 𝑥
2

2

) ,

(13c)

�̇�
4
= −

1

2

𝜇
2
𝑥
4
+

1

6

𝜎
2
𝑥
3
+

1

3

𝑏
6
𝑥
3
(𝑥
2

1

+ 𝑥
2

2

)

+

1

2

𝑏
7
𝑥
3
(𝑥
2

3

+ 𝑥
2

4

) +

1

6

𝑏
8
𝑥
1
(𝑥
2

1

− 3𝑥
2

2

) ,

(13d)

where 𝑓
0
= (1/4)(𝑎

2
+ 𝑎
3
− 𝑎
4
).

Executing the Maple program given by Zhang et al. [24],
the nonlinear transformation used here is given as follows:

𝑥
1
= 𝑦
1
−

1

4

𝑎
7
𝑦
3

1

+

3𝑎
5
(𝜎
2
− 6)

𝜎
2

2

𝑦
2

1

𝑦
3
− 𝑎
6
𝑦
1
𝑦
2

3

− 𝑎
6
𝑦
1
𝑦
2

4

−

3𝑎
5
(𝜎
3

2

− 18𝜎
2

2

+ 216𝜎
2
− 1296)

𝜎
4

2

𝑦
2

2

𝑦
3

+

𝑎
5
(6𝜎
2

2

− 72𝜎
2
+ 432)

𝜎
3

2

𝑦
1
𝑦
2
𝑦
4
,

(14a)

𝑥
2
= 𝑦
2
+

3

2

𝑎
7
𝑦
3

2

+

3

4

𝑎
7
𝑦
2

1

𝑦
2
+

3𝑎
5

𝜎
2

𝑦
2

1

𝑦
4

−

3𝑎
5
(𝜎
2

2

− 12𝜎
2
+ 72)

𝜎
3

2

𝑦
2

2

𝑦
4
−

6𝑎
5
(𝜎
2
− 6)

𝜎
2

2

𝑦
1
𝑦
2
𝑦
3
,

(14b)

𝑥
3
= 𝑦
3
−

𝑏
8

𝜎
2

𝑦
3

1

+

3𝑏
8
(𝜎
2

2

− 12𝜎
2
+ 72)

𝜎
3

2

𝑦
1
𝑦
2

2

−

1

3

𝑏
6
𝑦
1
𝑦
2
𝑦
4
,

(14c)

𝑥
4
= 𝑦
4
+

𝑏
8
(𝜎
3

2

− 18𝜎
2

2

+ 216𝜎
2
− 1296)

𝜎
4

2

𝑦
3

2

−

3𝑏
8
(𝜎
2
− 6)

𝜎
2

2

𝑦
2

1

𝑦
2
+

1

3

𝑏
6
𝑦
1
𝑦
2
𝑦
3
.

(14d)

Substituting (14a), (14b), (14c), (14d) into (13a), (13b),
(13c), (13d) yields a simpler 3rd-order normal form with the
parameters for averaged equation (12a), (12b), (12c), (12d) as
follows:

̇𝑦
1
= −𝜇
1

𝑦
1
+ (1 − 𝜎

1
) 𝑦
2
, (15a)

̇𝑦
2
= 𝜎
1
𝑦
1
− 𝜇
1

𝑦
2
+ 𝑎
6
𝑦
1
(𝑦
2

3

+ 𝑦
2

4

) +

3

2

𝑎
7
𝑦
3

1

, (15b)

̇𝑦
3
= −𝜇
2

𝑦
3
− 𝜎
2
𝑦
4
−

1

3

𝑏
6
𝑦
2

1

𝑦
4
−

1

2

𝑏
7
𝑦
4
(𝑦
2

3

+ 𝑦
2

4

) , (15c)

̇𝑦
4
= 𝜎
2
𝑦
3
− 𝜇
2

𝑦
4
+

1

3

𝑏
6
𝑦
2

1

𝑦
3
+

1

2

𝑏
7
𝑦
3
(𝑦
2

3

+ 𝑦
2

4

) − 𝑓
2

,

(15d)

where the coefficients are 𝜇
1

= (1/2)𝜇
1
, 𝜇
2

= (1/2)𝜇
2
, 𝜎
2
=

(1/6)𝜎
2
, and 𝑓

2

= (1/12)𝑓
2
, respectively.

Further, let

𝑦
3
= 𝐼 cos 𝛾, 𝑦

4
= 𝐼 sin 𝛾. (16)

Substituting (16) into (15a), (15b), (15c), (15d) yields

̇𝑦
1
= −𝜇
1

𝑦
1
+ (1 − 𝜎

1
) 𝑦
2
, (17a)

̇𝑦
2
= 𝜎
1
𝑦
1
− 𝜇
1

𝑦
2
+ 𝑎
6
𝑦
1
𝐼
2

+

3

2

𝑎
7
𝑦
3

1

, (17b)

̇𝐼 = −𝜇
2

𝐼 − 𝑓
2

sin 𝛾, (17c)

𝐼 ̇𝛾 = 𝜎
2
𝐼 +

1

3

𝑏
6
𝑦
2

1

𝐼 +

1

2

𝑏
7
𝐼
3

− 𝑓
2

cos 𝛾. (17d)

In order to get the unfolding of (17a), (17b), (17c), (17d) a
linear transformation is introduced:

[

𝑦
1

𝑦
2

] = √3

√




𝑎
6






√




𝑏
6






[

1 − 𝜎
1

0

𝜇
1

1
] [

𝑢
1

𝑢
2

] . (18)
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Substituting (18) into (17a), (17b), (17c), (17d) and can-
celing nonlinear terms including the parameter 𝜎

1
yield the

unfolding as follows:

�̇�
1
= 𝑢
2
, (19a)

�̇�
2
= −𝜇𝑢

1
− 𝜇
3
𝑢
2
+ 𝜂
1
𝑢
3

1

+ 𝑎
6
𝑢
1
𝐼
2

, (19b)

̇𝐼 = −𝜇
2

𝐼 − 𝑓
2

sin 𝛾, (19c)

𝐼 ̇𝛾 = 𝜎
2
𝐼 + 𝑎
6
𝑢
2

1

𝐼 + 𝛼
2
𝐼
3

− 𝑓
2

cos 𝛾, (19d)

where 𝜇 = 𝜇
2

1

− 𝜎
1
(1 − 𝜎

1
), 𝜇
3
= 2𝜇
1

, 𝜂
1
= 9𝑎
6
𝑎
7
/2𝑏
6
and

𝛼
2
= (1/2)𝑏

7
.

The scale transformations to be introduced into (19a),
(19b), (19c), (19d) are

𝜇
2

→ 𝜀𝜇
2

, 𝜇
3
→ 𝜀𝜇

3
, 𝑓

2

→ 𝜀𝑓
2

,

𝜂
1
→ 𝜂
1
, 𝛼

2
→ 𝛼
2
, 𝑎

6
→ 𝑎
6
.

(20)

Then, normal form (19a), (19b), (19c), (19d) can be
rewritten in the form with the perturbations

�̇�
1
=

𝜕𝐻

𝜕𝑢
2

+ 𝜀𝑔
𝑢
1
= 𝑢
2
, (21a)

�̇�
2
= −

𝜕𝐻

𝜕𝑢
1

+ 𝜀𝑔
𝑢
2
= −𝜇𝑢

1
+ 𝜂
1
𝑢
3

1

+ 𝑎
6
𝑢
1
𝐼
2

− 𝜀𝜇
3
𝑢
2
, (21b)

̇𝐼 =

𝜕𝐻

𝜕𝛾

+ 𝜀𝑔
𝐼

= −𝜀𝜇
2

𝐼 − 𝜀𝑓
2

sin 𝛾, (21c)

𝐼 ̇𝛾 = −

𝜕𝐻

𝜕𝐼

+ 𝜀𝑔
𝛾

= 𝜎
2
𝐼 + 𝛼
2
𝐼
3

+ 𝑎
6
𝐼𝑢
2

1

− 𝜀𝑓
2

cos 𝛾, (21d)

where the Hamiltonian function𝐻 is of the form

𝐻(𝑢
1
, 𝑢
2
, 𝐼, 𝛾) =

1

2

𝑢
2

2

+

1

2

𝜇𝑢
2

1

−

1

4

𝜂
1
𝑢
4

1

−

1

2

𝑎
6
𝐼
2

𝑢
2

1

−

1

2

𝜎
2
𝐼
2

−

1

4

𝛼
2
𝐼
4

,

(22)

and 𝑔
𝑢
1 , 𝑔𝑢2 , 𝑔𝐼, and 𝑔

𝛾 are the perturbation terms induced
by the dissipative effects

𝑔
𝑢
1
= 0, 𝑔

𝑢
2
= −𝜇
3
𝑢
2
,

𝑔
𝐼

= −𝜇
2

𝐼 − 𝑓
2

sin 𝛾, 𝑔
𝛾

= −𝑓
2

cos 𝛾.
(23)

4. Heteroclinic Bifurcations of
Unperturbed System

In this section, we focus on studying the nonlinear dynamics
characteristic of the unperturbed system. When 𝜀 = 0, it
can be known that system from (21a), (21b), (21c), (21d) is
an uncoupled two-degree-of-freedom nonlinear system. The
variable 𝐼 appears in the subspace (𝑢

1
, 𝑢
2
) of (21a), (21b),

(21c), (21d) as a parameter since ̇𝐼 = 0. Consider the first two
decoupled equations of (21a), (21b), (21c), (21d),

�̇�
1
= 𝑢
2
, (24a)

�̇�
2
= −𝜇𝑢

1
+ 𝜂
1
𝑢
3

1

+ 𝑎
6
𝑢
1
𝐼
2

. (24b)

Since 𝜂
1

> 0, (24a), (24b) can exhibit the heteroclinic
bifurcations. It is obvious from (24a), (24b) that when 𝜇 −

𝑎
6
𝐼
2

< 0, the only solution to (24a), (24b) is the trivial zero
solution, (𝑢

1
, 𝑢
2
) = (0, 0), which is the saddle point. On the

curve defined by 𝜇 = 𝑎
6
𝐼
2, that is,

𝐼
1,2

= ±[

𝜇
2

1

− 𝜎
1
(1 − 𝜎

1
)

𝑎
6

]

1/2

, (25)

the trivial zero solution bifurcates into three solutions
through a pitchfork bifurcation, which are given by 𝑞

0
= (0, 0)

and 𝑞
±
(𝐼) = (𝐵, 0), respectively, where

𝐵 = ±{

1

𝜂
1

[𝜇
2

1

− 𝜎
1
(1 − 𝜎

1
) − 𝑎
6
𝐼
2

]}

1/2

. (26)

From the Jacobian matrix evaluated at the nonzero
solutions, it can be found that the singular point 𝑞

0
is the

center point and the singular points 𝑞
±
(𝐼) are saddle points. It

is observed that 𝐼 and 𝛾 actually represent the amplitude and
phase of vibrations. Therefore, we assume that 𝐼 ≥ 0 and (25)
becomes

𝐼
1
= 0, 𝐼

2
= [

𝜇
2

1

− 𝜎
1
(1 − 𝜎

1
)

𝑎
6

]

1/2

, (27)

such that for all 𝐼 ∈ [𝐼
1
, 𝐼
2
], (24a), (24b) have two hyperbolic

saddle points, 𝑞
±
(𝐼), which are connected by a pair of

heteroclinic orbits, 𝑢ℎ
±

(𝑇
1
, 𝐼); that is, lim

𝑇
1
→±∞

𝑢
ℎ

±

(𝑇
1
, 𝐼) =

𝑞
±
(𝐼). Thus, in the full four-dimensional phase space, the set

defined by

𝑀 = {(𝑢, 𝐼, 𝛾) | 𝑢 = 𝑞
±
(𝐼) , 𝐼
1
< 𝐼 < 𝐼

2
, 0 ≤ 𝛾 < 2𝜋} (28)

is a two-dimensional invariant manifold.
From the results obtained by Feng et al. [9–11], it is

known that two-dimensional invariant manifold 𝑀 is nor-
mally hyperbolic. The two-dimensional normally hyperbolic
invariant manifold 𝑀 has the three-dimensional stable and
unstable manifolds represented as 𝑊

𝑠

(𝑀) and 𝑊
𝑢

(𝑀),
respectively. The existence of the heteroclinic orbit of (24a),
(24b) to 𝑞

±
(𝐼) = (𝐵, 0) indicates that 𝑊𝑠(𝑀) and 𝑊

𝑢

(𝑀)

intersect nontransversally along a three-dimensional mani-
fold denoted by Γ, which can be written as

Γ = { (𝑢, 𝐼, 𝛾) | 𝑢 = 𝑢
ℎ

±

(𝑇
1
, 𝐼) , 𝐼
1
< 𝐼 < 𝐼

2
,

𝛾 = ∫

𝑇
1

0

𝐷
𝐼
𝐻(𝑢
ℎ

±

(𝑇
1
, 𝐼) , 𝐼) 𝑑𝑠 + 𝛾

0
} .

(29)

We analyze the dynamics of the unperturbed system of
(21a), (21b), (21c), (21d) restricted to 𝑀. Considering the
unperturbed system of (21a), (21b), (21c), (21d) restricted to
𝑀 yields

̇𝐼 = 0, (30a)

𝐼 ̇𝛾 = 𝐷
𝐼
𝐻(𝑞
±
(𝐼) , 𝐼) , 𝐼

1
< 𝐼 < 𝐼

2
, (30b)
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where

𝐷
𝐼
𝐻(𝑞
±
(𝐼) , 𝐼) = −

𝜕𝐻 (𝑞
±
(𝐼) , 𝐼)

𝜕𝐼

= 𝜎
2
𝐼 + 𝛼
2
𝐼
3

+ 𝑎
6
𝐼𝑢
2

1

.

(31)

From the results obtained by Feng et al. [9–11], it is known
that if 𝐷

𝐼
𝐻(𝑞
±
(𝐼), 𝐼) ̸= 0, 𝐼 = constant is called a periodic

orbit, and if 𝐷
𝐼
𝐻(𝑞
±
, 𝐼) = 0, 𝐼 = constant is known as a

circle of the singular points. Any value of 𝐼 ∈ [𝐼
1
, 𝐼
2
] at which

𝐷
𝐼
𝐻(𝑞
±
, 𝐼) = 0 is a resonant value 𝐼 and these singular points

are resonant singular points. We denote a resonant value by
𝐼
𝑟
such that

𝐷
𝐼
𝐻(𝑞
±
, 𝐼) = 𝜎

2
𝐼
𝑟
+ 𝛼
2
𝐼
3

𝑟

+ 𝑎
6
𝐼
𝑟
𝑢
2

1

= 0. (32)

Then, we obtain

𝐼
𝑟
= ±{

𝜎
2
𝜂
1
+ 𝑎
6
[𝜇
2

1

− 𝜎
1
(1 − 𝜎

1
)]

𝑎
2

6

− 𝛼
2
𝜂
1

}

1/2

. (33)

The geometric structure of the stable and unstable mani-
folds of 𝑀 in the full four-dimensional phase space for the
unperturbed system of (21a), (21b), (21c), (21d) is given in
Figure 2. Since 𝛾 represents the phase of the oscillations,when
𝐼 = 𝐼
𝑟
, the phase shift Δ𝛾 of oscillations is defined by

Δ𝛾 = 𝛾 (+∞, 𝐼
𝑟
) − 𝛾 (−∞, 𝐼

𝑟
) . (34)

The physical interpretation of the phase shift is the phase
difference between the two end points of the orbit. In the
subspace (𝑢

1
, 𝑢
2
), there exists a pair of heteroclinic orbits

connecting to saddle points. Therefore, the homoclinic orbit
in the subspace (𝐼, 𝛾) is, in fact, a heteroclinic connecting in
the full four-dimensional space (𝑢

1
, 𝑢
2
, 𝐼, 𝛾). The phase shift

denotes the difference of the value 𝛾 when a trajectory leaves
and returns to the basin of attraction of 𝑀. We will use the
phase shift in subsequent analysis to obtain the condition for
the existence of the Shilnikov typemultipulse orbit.Thephase
shift will be calculated later in the heteroclinic orbit analysis.

We consider the heteroclinic orbits of (24a), (24b). Let
𝜀
1
= 𝜇 − 𝑎

6
𝐼
2 and 𝜇

3
= 𝜀
2
, (24a), (24b) can be rewritten as

�̇�
1
= 𝑢
2
, (35a)

�̇�
2
= −𝜀
1
𝑢
1
+ 𝜂
1
𝑢
3

1

− 𝜀𝜀
2
𝑢
2
. (35b)

Set 𝜀 = 0; (35a), (35b) is a system with the Hamiltonian
function

𝐻(𝑢
1
, 𝑢
2
) =

1

2

𝑢
2

2

+

1

2

𝜀
1
𝑢
2

1

−

1

4

𝜂
1
𝑢
4

1

. (36)

When 𝐻 = 0, there is a heteroclinic loop Γ
0 which

consists of the two hyperbolic saddle points 𝑞
±
(𝐼) and a pair

of heteroclinic orbits 𝑢
±
(𝑇
1
). In order to calculate the phase

shift and the extended Melnikov function, it is necessary to

obtain the equations of a pair of heteroclinic orbits, which are
given as follows:

𝑢
1
(𝑇
1
) = ±√

𝜀
1

𝜂
1

tanh(

√2𝜀
1

2

𝑇
1
) , (37a)

𝑢
2
(𝑇
1
) = ±

𝜀
1

√2𝜂
1

sech2 (
√2𝜀
1

2

𝑇
1
) . (37b)

We turn our attention to the computation of the phase
shift. Substituting the first equation of (37a), (37b) into the
fourth equation of the unperturbed system of (21a), (21b),
(21c), (21d) and integrating yield

𝛾 (𝑇
1
) = 𝜔
𝑟
𝑇
1
−

𝑎
6
√2𝜀
1

𝜂
1

tanh(

√2𝜀
1

2

𝑇
1
) + 𝛾
0
, (38)

where 𝜔
𝑟
= 𝜎
2
+ 𝛼
2
𝐼
2

+ 𝑎
6
𝜀
1
/𝜂
1
.

At 𝐼 = 𝐼
𝑟
, there is 𝜔

𝑟
≡ 0. Therefore, the phase shift may

be expressed as

Δ𝛾 = [−

2𝑎
6
√2𝜀
1

𝜂
1

]

𝐼=𝐼
𝑟

= −

2𝑎
6

𝜂
1

√2 [𝜇
2

1

− 𝜎
1
(1 − 𝜎

1
) − 𝑎
6
𝐼
2

𝑟

].

(39)

5. Existence of Multipulse Orbits

After obtaining detailed information on the nonlinear
dynamic characteristics of the subspace (𝑢

1
, 𝑢
2
) for the

unperturbed system from (21a), (21b), (21c), (21d), the next
step is to examine the effects of small perturbation terms (0 <

𝜀 ≪ 1) on the unperturbed system from (21a), (21b), (21c),
(21d). The extended Melnikov method developed by Kovačič
et al. [15–17] is utilized to discover the existence of the multi-
pulse orbits and chaotic dynamics of the nonlinear vibration
for the laminated composite piezoelectric rectangular plate.
We start by studying the influence of such small perturbations
on themanifold𝑀.The objective of the research is to identify
the parameter regions where the existence of the multipulse
orbits is possible in the perturbed phase space. The main aim
is to verify whether these parameters satisfy the transversality
condition of multipulse chaotic dynamics. It will be shown
that thesemultipulse orbits can occur in theHamilton system
with dissipative perturbations if the parameters meet the
transversality condition. The existence of such multipulse
orbits provides a robust mechanism for the existence of
the complicated dynamics in the perturbed system. In this
section, the emphasis is put on the application aspects of the
extended Melnikov method to (21a), (21b), (21c), (21d).

5.1. Dissipative Perturbations of the Homoclinic Loop. We
analyze dynamics of the perturbed system and the influence
of small perturbations on 𝑀. Based on the analysis by
Kovačič et al. [15–17], we know that 𝑀 along with its stable
and unstable manifolds is invariant under small, sufficiently
differentiable perturbations. It is noticed that 𝑞

±
(𝐼) in (24a),
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M

I

𝛾

×

u2

u1

(a)

0 𝛾
2𝜋

I = I1

I = Ir

I = I2

(b)

Figure 2: The geometric structure of manifolds𝑀,𝑊𝑠(𝑀), and𝑊
𝑢

(𝑀) is given in the full four-dimensional phase space.

(24b) maintains the characteristic of the hyperbolic singular
point under small perturbations, in particular, 𝑀 → 𝑀

𝜀
.

Therefore, we obtain

𝑀 = 𝑀
𝜀
= {(𝑢, 𝐼, 𝛾) | 𝑢 = 𝑞

±
(𝐼) , 𝐼
1
< 𝐼 < 𝐼

2
, 0 ≤ 𝛾 < 2𝜋} .

(40)

Considering the last two equations of (21a), (21b), (21c),
(21d) yields

̇𝐼 = −𝜇
2

𝐼 − 𝑓
2

sin 𝛾, (41a)

̇𝛾 = 𝜎
2
+ 𝛼
2
𝐼
2

+ 𝑎
6
𝑢
2

1

−

𝑓
2

cos 𝛾
𝐼

.
(41b)

It is known from the above analysis that the last two equations
of (21a), (21b), (21c), (21d) are of a pair of pure imaginary
eigenvalues. Therefore, the resonance can occur in (41a),
(41b). Also introduce the scale transformations

𝜇
2

→ 𝜀𝜇
2

, 𝐼 = 𝐼
𝑟
+ √𝜀ℎ,

𝑓
2

→ 𝜀𝑓
2

, 𝑇
1
→

𝑇
1

√𝜀

.

(42)

Substituting the above transformations into (41a), (41b)
yields

̇
ℎ = −𝜇

2

𝐼
𝑟
− 𝑓
2

sin 𝛾 − √𝜀𝜇
2

ℎ, (43a)

̇𝛾 = −

2𝛿

𝜂
1

𝐼
𝑟
ℎ − √𝜀(

𝛿

𝜂
1

ℎ
2

+

𝑓
2

𝐼
𝑟

cos 𝛾) , (43b)

where 𝛿 = 𝑎
2

6

− 𝛼
2
𝜂
1
.

When 𝜀 = 0, (43a), (43b) become

̇
ℎ = −𝜇

2

𝐼
𝑟
− 𝑓
2

sin 𝛾, (44a)

̇𝛾 = −

2𝛿

𝜂
1

𝐼
𝑟
ℎ. (44b)

The unperturbed system from (44a), (44b) is a Hamilton
system with the function

�̂�
𝐷
(ℎ, 𝛾) = −𝜇

2

𝐼
𝑟
𝛾 + 𝑓
2

cos 𝛾 +

𝛿

𝜂
1

𝐼
𝑟
ℎ
2

. (45)

The singular points of (44a), (44b) are given as

𝑃
0
= (0, 𝛾

𝑐
) = (0, − arcsin(

𝜇
2

𝐼
𝑟

𝑓
2

)) ,

𝑄
0
= (0, 𝛾

𝑠
) = (0, 𝜋 + arcsin(

𝜇
2

𝐼
𝑟

𝑓
2

)) .

(46)

Based on the characteristic equations evaluated at the two
singular points𝑃

0
and𝑄

0
, we can know the stabilities of these

singular points. Therefore, it is known that the singular point
𝑃
0
is a center point.The singular point𝑄

0
is a saddle which is

connected to itself by a homoclinic orbit. The phase portrait
of system for (44a), (44b) is shown in Figure 3(a).

It is found that for the sufficiently small parameter 𝜀,
the singular point 𝑄

0
remains a hyperbolic singular point

𝑄
𝜀
of the saddle stability type. For small perturbations, the

singular point 𝑃
0
becomes a hyperbolic sink 𝑃

𝜀
. The phase

portrait of the perturbed system from (43a), (43b) is depicted
in Figure 3(b).

Using the function (45), at ℎ = 0, and substituting 𝛾
𝑠
in

(46) into (45), the estimate of the basin of the attractor for
𝛾min is obtained as

𝛾min −

𝑓
2

𝜇
2

𝐼
𝑟

cos 𝛾min = 𝜋 + arcsin
𝜇
2

𝐼
𝑟

𝑓
2

+

√𝑓

2

2

− 𝜇
2

2

𝐼
2

𝑟

𝜇
2

𝐼
𝑟

.
(47)

Define an annulus 𝐴
𝜀
near 𝐼 = 𝐼

𝑟
as

𝐴
𝜀
= {(𝑢
1
, 𝑢
2
, 𝐼, 𝛾) | 𝑢

1
= 𝐵, 𝑢

2
= 0,





𝐼 − 𝐼
𝑟





< √𝜀𝐶, 𝛾 ∈ 𝑇

𝐿

} ,

(48)

where 𝐶 is a constant and is sufficiently large so that the
unperturbed orbit is enclosed within the annulus.

It is noticed that the three-dimensional stable and unsta-
ble manifolds of 𝐴

𝜀
, denoted as𝑊𝑠(𝐴

𝜀
) and𝑊

𝑢

(𝐴
𝜀
), are the

subsets of the manifolds 𝑊𝑠(𝑀
𝜀
) and 𝑊

𝑢

(𝑀
𝜀
), respectively.

We will indicate that for the perturbed system, the saddle
focus 𝑃

𝜀
on 𝐴
𝜀
has the multipulse orbits which come out

of the annulus 𝐴
𝜀
and can return to the annulus in the full

four-dimensional space.These orbits, which are asymptotic to
some invariant manifolds in the slow manifold𝑀

𝜀
, leave and



Mathematical Problems in Engineering 11

h 

𝛾

P0

𝛾min 𝛾c 𝛾s

Q0

(a)

h 

𝛾
Q𝜀

P𝜀

(b)

Figure 3: Dynamics on the normally hyperbolic manifold is described; (a) the unperturbed case; (b) the perturbed case.

enter a small neighborhood of 𝑀
𝜀
multiple times and finally

return and approach an invariant set in𝑀
𝜀
asymptotically, as

shown in Figure 4. In Figure 4, this is an example of the three-
pulse jumping orbit which depicts the formation mechanism
of the multipulse orbits.

5.2. The 𝑘-Pulse Melnikov Function. Most researchers fo-
cused on Shilnikov type single-pulse chaotic dynamics of
the high-dimensional nonlinear systems from the thin plate
structures in the past. There exist multipulse chaotic dynam-
ics in the practical engineering systems. The extended Mel-
nikov method is a kind of theory which can be used to inves-
tigate the multipulse jumping orbits in the high-dimensional
nonlinear systems. Since the theory on multipulse chaotic
dynamics is very esoteric and abstract, it is difficult to be
extended to solve the engineering problems. Up to now,
few researchers have made use of the extended Melnikov
method to study the Shilnikov type multipulse homoclinic
and heteroclinic bifurcations and chaotic dynamics of high-
dimensional nonlinear systems in engineering applications.

The extended Melnikov method was first presented by
Kovačič et al. [15–17], which is an extension of the global per-
turbation method developed by Feng et al. [9–11]. Camassa
et al. [17] gave the detailed procedure of mathematical proof
on the extended Melnikov method, which unifies several
disjoint perturbation theoretical methods. This method can
be also utilized to detect the Shilnikov typemultipulse homo-
clinic or heteroclinic orbits to the slow manifolds of four-
dimensional, near-integrable Hamilton systems or higher-
dimensional, nonlinear systems. The extended Melnikov
function is different from the usual Melnikov function and
describes slow dynamics of the multipulse orbits on the
hyperbolic manifold.

The key of the extended Melnikov method is how to
calculate the extended Melnikov method.The extended Mel-
nikov function is computed by a recursion procedure from
the usual 1-pulseMelnikov function and depends on the small
perturbation parameter 𝜀 through a logarithmic function
which calculates the asymptotic in the particularly delicate
small 𝜀 limit. In this paper, the extended Melnikov function

𝛾

|u|

h

𝛾c 𝛾c + 3Δ𝛾

p𝜀
qc

Figure 4: The Shilnikov type three-pulse orbits are obtained.

can be simplified in the resonant case and does not depend
on the perturbation parameter. We have used the extended
Melnikovmethod to investigate heteroclinic bifurcations and
multipulse chaotic dynamics of the laminated composite
piezoelectric rectangular plate.

We use the extended Melnikov method described by
Kovačič et al. [15–17] to find the Shilnikov type multipulse
orbits for nonlinear vibration for the laminated composite
piezoelectric rectangular plate. We search for the multipulse
excursions to find the nondegenerate zeroes of the extended
Melnikov function𝑀

𝑘
(𝜀, 𝐼, 𝛾

0
, 𝜇
2

) with the certain combina-
tion of parameters 𝜀, 𝐼, 𝛾

0
, and 𝜇

2

, which we name the 𝑘-pulse
Melnikov function.

It is important to obtain the detailed expression of the 𝑘-
pulse Melnikov function. We compute the 1-pulse Melnikov
function based on the formula obtained by Kovačič et al.
[15–17] at the resonant case 𝐼 = 𝐼

𝑟
. The 1-pulse Melnikov

function 𝑀
1
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) coincides with the standard Mel-
nikov function 𝑀(𝐼

𝑟
, 𝛾
0
, 𝜇
2

). The 1-pulse Melnikov function
𝑀(𝐼
𝑟
, 𝛾
0
, 𝜇
2

) on both heteroclinic manifolds 𝑊
𝑠

(𝑀) and
𝑊
𝑢

(𝑀) is given as follows:

𝑀(𝐼
𝑟
, 𝛾
0
, 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
)

= ∫

+∞

−∞

⟨n (𝑝
ℎ

(𝑡)) , g (𝑝ℎ (𝑡) , 𝜇
2

, 0)⟩ 𝑑𝑇
1
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= ∫

+∞

−∞

(

𝜕𝐻

𝜕𝑢
1

𝑔
𝑢
1
+

𝜕𝐻

𝜕𝑢
2

𝑔
𝑢
2
+

𝜕𝐻

𝜕𝐼

𝑔
𝐼

+

𝜕𝐻

𝜕𝛾

𝑔
𝛾

)𝑑𝑇
1

= −

2√2𝜇
3

3𝜂
1

𝜀
3/2

1

− 2√2𝑎
6
𝜇
2

𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

− 𝑓
2

𝐼
𝑟
[cos(𝛾

0
− 𝑎
6

√2𝜀
1

𝜂
1

) − cos(𝛾
0
+ 𝑎
6

√2𝜀
1

𝜂
1

)] .

(49)

Based on the results given by Kovačič et al. [15–
17], it is known that the 𝑘-pulse Melnikov function
𝑀
𝑘
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) (𝑘 = 1, 2, . . .) is defined as

𝑀
𝑘
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

)

=

𝑘−1

∑

𝑗=0

𝑀(𝐼
𝑟
, 𝑗Δ𝛾 (𝐼

𝑟
) + Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) + 𝛾
0
, 𝜇
2

) ,

(50)

where

Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) =

Ω (𝑥
0
(𝐼
𝑟
) , 𝐼
𝑟
)

𝜆 (𝐼
𝑟
)

𝑗

∑

𝑟=1

log










𝜍 (𝐼
𝑟
)

𝜀𝑀
𝑟
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

)











,

(51)

for 𝑗 = 1, . . . , 𝑘 − 1 and Γ
0
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) = 0.
It is noticed that the angle function Γ

𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) is
the complex formula where 𝑀

𝑘
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) appears as the
argument of a logarithm. When resonance occurs, the
periodic orbit corresponding to the value 𝐼

𝑟
degenerates

into a circle of equilibria. Under this case, there exists
Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) = 0, (𝑗 = 0, 1, . . . , 𝑘 − 1). Based on the
expression obtained by Kovačič et al. [15–17], the 𝑘-pulse
Melnikov function can be written as follows:

𝑀
𝑘
(𝐼
𝑟
, 𝛾
0
, 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
)

=

𝑘−1

∑

𝑗=0

𝑀(𝐼
𝑟
, 𝛾
0
+ 𝑗Δ𝛾 (𝐼

𝑟
) , 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
)

= −𝑓
2

𝐼
𝑟
[cos(𝛾

0
−

𝑎
6
√2𝜀
1

𝜂
1

)

− cos(𝛾
0
+

𝑎
6
√2𝜀
1

𝜂
1

)]

−

2√2𝜇
3

3𝜂
1

𝜀
3/2

1

− 2√2𝑎
6
𝜇
2

𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

− 𝑓
2

𝐼
𝑟
[cos(𝛾

0
−

𝑎
6
√2𝜀
1

𝜂
1

−

2𝑎
6
√2𝜀
1

𝜂
1

)

− cos(𝛾
0
+

𝑎
6
√2𝜀
1

𝜂
1

−

2𝑎
6
√2𝜀
1

𝜂
1

)]

−

2√2𝜇
3

3𝜂
1

𝜀
3/2

1

− 2√2𝑎
6
𝜇
2

𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

+ ⋅ ⋅ ⋅

− 𝑓
2

𝐼
𝑟
[cos(𝛾

0
−

𝑎
6
√2𝜀
1

𝜂
1

− 2 (𝑘 − 1) 𝑎
6

√2𝜀
1

𝜂
1

)

− cos(𝛾
0
+

𝑎
6
√2𝜀
1

𝜂
1

− 2 (𝑘 − 1)

𝑎
6
√2𝜀
1

𝜂
1

)]

−

2√2𝜇
3

3𝜂
1

𝜀
3/2

1

− 2√2𝑎
6
𝜇
2

𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

= −𝑓
2

𝐼
𝑟
[cos(𝛾

0
−

𝑎
6
√2𝜀
1

𝜂
1

− 2 (𝑘 − 1)

𝑎
6
√2𝜀
1

𝜂
1

)

− cos(𝛾
0
+

𝑎
6
√2𝜀
1

𝜂
1

)]

−

2√2𝑘𝜇
3

3𝜂
1

𝜀
3/2

1

− 2√2𝑘𝑎
6
𝜇
2

𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

.

(52)

If we set Δ𝛾 = −2𝑎
6
(√2𝜀
1
/𝜂
1
) and 𝛾

𝑘−1
= 𝛾
0
+ (𝑘 −

1)(Δ𝛾/2), (52) can be rewritten as follows:

𝑀
𝑘
(𝐼
𝑟
, 𝛾
0
, 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
)

= 𝑀
𝑘
(𝐼
𝑟
, 𝛾
𝑘−1

− (𝑘 − 1)

Δ𝛾

2

, 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
)

= −𝑓
2

𝐼
𝑟
[cos(𝛾

𝑘−1
+

1

2

𝑘Δ𝛾)

− cos(𝛾
𝑘−1

−

1

2

𝑘Δ𝛾)]

+

𝑘𝜇
3
𝜀
1

3𝑎
6

Δ𝛾 + 𝜇
2

𝐼
2

𝑟

(𝑘Δ𝛾)

= 2𝑓
2

𝐼
𝑟
sin 𝛾
𝑘−1

sin(

1

2

𝑘Δ𝛾)

+

𝜇
3
𝜀
1

3𝑎
6

(𝑘Δ𝛾) + 𝜇
2

𝐼
2

𝑟

(𝑘Δ𝛾) .

(53)

Based on Proposition 3.1 given by Kovačič et al. [15–17],
the nonfolding condition is always satisfied in the resonant
case. We obtain the following two conditions:













(1/2) 𝑘Δ𝛾

sin ((1/2) 𝑘Δ𝛾)

(𝜇
3
𝜀
1
+ 3𝑎
6
𝜇
2

𝐼
2

𝑟

)

3𝑎
6
𝑓
2

𝐼
𝑟













< 1,

1

2

𝑘Δ𝛾 ̸= 𝑛𝜋, 𝑛 = 0, ±1, ±2, . . . .

(54)

The main aim of the following analysis focuses on
identifying simple zeroes of the 𝑘-pulse Melnikov function.
Define a set that contains all such simple zeroes to be

𝑍
𝑛

−

= {(𝐼
𝑟
, 𝛾
𝑘−1

, 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
) | 𝑀
𝑘
= 0,𝐷

𝛾
0

𝑀
𝑘

̸= 0} . (55)
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The 𝑘-pulse Melnikov function has two simple zeroes in the
interval 𝛾

𝑘−1
∈ [0, 𝜋]

𝛾
𝑘−1,1

= − arcsin
(1/2) 𝑘Δ𝛾

sin ((1/2) 𝑘Δ𝛾)

(𝜇
3
𝜀
1
+ 3𝑎
6
𝜇
2

𝐼
2

𝑟

)

(3𝑎
6
𝑓
2

𝐼
𝑟
)

,

𝛾
𝑘−1,2

= 𝜋 − 𝛾
𝑘−1,1

.

(56)

5.3. Geometric Structure of Multipulse Orbits. Based on the
aforementioned analysis, we obtain the following conclu-
sions. When the parameters of 𝑘, 𝜇

3
, 𝜀
1
, 𝜇
2

, 𝑎
6
, and 𝑓

2

satisfy condition (54), the 𝑘-pulse Melnikov function (53)
has simple zeroes at 𝛾

𝑘−1
= 𝛾
𝑘−1,1

and 𝛾
𝑘−1

= 𝛾
𝑘−1,2

=

𝜋 − 𝛾
𝑘−1,1

. For 𝑖 = 1 or 𝑖 = 2, when the 𝑗-pulse Melnikov
function 𝑀

𝑗
(𝐼
𝑟
, 𝛾
0,𝑖

, 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
) has no simple zeroes, the

stable and unstable manifolds𝑊𝑠(𝑀
𝜀
) and𝑊

𝑢

(𝑀
𝜀
) intersect

transversely along a symmetric pair of the two-dimensional,
𝑘-pulse surfaces ∑

𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

±,𝜀
(𝛾
𝑘−1,𝑖

). This signifies that the
presence of the Shilnikov type 𝑛-pulse orbits leads to chaotic
dynamics in the sense of the Smale horseshoes for the
nonlinear motion for the laminated composite piezoelectric
rectangular plate. In the phase space of the unperturbed
system from (21a), (21b), (21c), (21d), this symmetric pair of
the two-dimensional, 𝑘-pulse surfaces breaks down smoothly
onto a pair of limiting 𝑘-pulse surfaces, ∑𝜇2 ,𝜂1,𝑎6 ,𝜀1

±,0

(𝛾
𝑘−1,𝑖

),
parametrized by (37a), (37b), and (38) with 𝐼 = 𝐼

𝑟
, 𝛾
0

=

𝛾
𝑘−1,𝑖

− (𝑘 − 1)(Δ𝛾/2) + 𝑗Δ𝛾, and an arbitrary ℎ. The sign in
(49) is determined by the sign of the corresponding 𝑗-pulse
Melnikov function𝑀

𝑗
(𝐼
𝑟
, 𝛾
0,𝑖

, 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
).

From the discussion given by Kovačič et al. [15–17], it
is easily found that for 𝛾

0,𝑖

= 𝛾
𝑘−1,𝑖

− (𝑘 − 1)(Δ𝛾/2) + 𝑗Δ𝛾

(𝑖 = 1 or 𝑖 = 2), the values of the 𝑗-pulse Melnikov
functions 𝑀

𝑗
(𝐼
𝑟
, 𝛾
0,𝑖

, 𝜇
2

, 𝜂
1
, 𝑎
6
, 𝜀
1
) are not zero for all 𝑗 =

1, . . . , 𝑘 − 1, and all 𝑗 have the same sign. It is known
that this sign is negative for 𝛾

0,1

and positive for 𝛾
0,2

.
Therefore, the 𝑘-pulse heteroclinic surfaces ∑𝜇2 ,𝜂1,𝑎6 ,𝜀1

±,𝜀
(𝛾
𝑘−1,1

)

and ∑
𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

±,𝜀
(𝛾
𝑘−1,2

) indeed exist, and the limiting 𝑘-pulse
surfaces ∑

𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

±,0

(𝛾
𝑘−1,1

) and ∑
𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

±,0

(𝛾
𝑘−1,2

) also exist
when 𝜀 = 0. Since the regions enclosed by the stable and
unstable heteroclinic manifolds𝑊𝑠(𝑀) and𝑊

𝑢

(𝑀) are both
convex, and the normal vector

n = ((−𝜇𝑢
1
+ 𝜂
1
𝑢
3

1

+ 𝑎
6
𝐼
2

𝑢
1
) , −𝑢
2
, 0, 0) (57)

is known to point out of these manifolds, it demonstrates
that the orbits forming each of the surfaces ∑𝜇2 ,𝜂1,𝑎6 ,𝜀1

±,0

(𝛾
𝑘−1,1

)

are parametrized by (37a), (37b), and (38) with the alter-
nating signs, and the orbits forming each of the surfaces
∑
𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

±,0

(𝛾
𝑘−1,2

) are parametrized by (37a), (37b), and (38)
with the same signs.

For the parameter 𝜇
2

= 𝜇, there exist𝑁−1 orbit segments
𝑂
𝑖
(𝜇) (𝑖 = 2, . . . , 𝑁) on the annulus𝑀, where the end points

of the segments 𝑂
𝑖
(𝜇) are 𝑑

𝑖
(𝜇) and 𝑐

𝑖
(𝜇), respectively. The

trajectories of (44a), (44b) on the segments𝑂
𝑖
(𝜇) travel from

the end points 𝑑
𝑖
(𝜇) to 𝑐

𝑖
(𝜇) in forward time. Therefore, the

end points 𝑑
𝑖
(𝜇) and 𝑐

𝑖
(𝜇) are, respectively, referred to as

the departure and landing points of the heteroclinic jumping
Γ
𝑖
. In addition, the line 𝛾 = 𝛾

0,𝑖

(𝐼
𝑟
, 𝜇) − Δ𝛾

−

(𝐼
𝑟
) transversely

intersects the segments 𝑂
𝑖
(𝜇) at the end point 𝑐

𝑖
(𝜇) for 𝑖 =

2, . . . , 𝑁, while the line 𝛾 = 𝛾
0,𝑖

(𝐼
𝑟
, 𝜇) + Δ𝛾

+

(𝐼
𝑟
) transversely

intersects the segments𝑂
𝑖+1

(𝜇) at the end point 𝑑
𝑖+1

(𝜇)when
𝑖 = 1, . . . , 𝑁 − 1. For all 𝑖 = 2, . . . , 𝑁 − 1, the difference in
the coordinates ℎ of two end points 𝑐

𝑖
(𝜇) and 𝑑

𝑖+1
(𝜇) is zero,

namely,

ℎ (𝑐
𝑖
(𝜇)) − ℎ (𝑑

𝑖+1
(𝜇)) = 0. (58)

For each 𝑖 = 2, . . . , 𝑁 − 1, one of the heteroclinic orbits
represented by Γ

𝑖
and contained in the limiting surfaces

∑
𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

0

(𝛾
0,𝑖

) at the value 𝜇 = 𝜇, connects two intersection
points 𝑐

𝑖
(𝜇) and 𝑑

𝑖+1
(𝜇). Therefore, a heteroclinic orbit Γ

1

on the limiting surfaces ∑𝜇2 ,𝜂1,𝑎6 ,𝜀1
0

(𝛾
0,1

) connects the certain
point 𝑐

1
(𝜇) on the annulus 𝑀 to the end point 𝑑

2
(𝜇) on the

segment 𝑂
2
(𝜇). It is also known that a heteroclinic orbit Γ

𝑁

on the limiting surfaces ∑
𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

0

(𝛾
0,𝑁

) connects the end
point 𝑐

𝑁
(𝜇) on the segments 𝑂

𝑁
(𝜇) to the certain point

𝑑
𝑁+1

(𝜇) on the annulus𝑀. According to the study of Kovačič
et al. [15–17], there exists an 𝑛-bump singular transition
orbit or a modified 𝑁-bump singular transition orbit. The
3-bump jumping orbit depicted in Figure 5 consists of the
heteroclinic orbits Γ

𝑖
( 𝑖 = 1, 2, 3) on the limiting surfaces

∑
𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

0

(𝛾
0,𝑖

) (𝑖 = 1, 2, 3) at the parameter 𝜇 = 𝜇 and the
orbit segments 𝑂

1
(𝜇) and 𝑂

2
(𝜇) of (44a), (44b). It is known

from the above analysis that the orbit segments 𝑂
𝑖
(𝜇) (𝑖 =

2, . . . , 𝑁) intersect transversely with the lines 𝛾 = 𝛾
0,𝑖

(𝐼
𝑟
, 𝜇) +

Δ𝛾
+

(𝐼
𝑟
) and 𝛾 = 𝛾

0,𝑖

(𝐼
𝑟
, 𝜇) − Δ𝛾

−

(𝐼
𝑟
).

The 2-bump singular surface shown in Figure 6 is com-
posed of two single-pulse singular intersection surfaces
∑
𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

0

(𝛾
𝑘−1,1

) and∑
𝜇
2
,𝜂
1
,𝑎
6
,𝜀
1

0

(𝛾
𝑘−1,2

).This surface connects
the singular points of (44a), (44b) that lie on the line 𝛾 = 𝛾

0,1

−

Δ𝛾
− to those of (44a), (44b) that lie on the line 𝛾 = 𝛾

0,1

−Δ𝛾
+

on the annulus𝑀.
We obtain a countable infinity of the singular heteroclinic

jumping orbits as follows. Each orbit starts along one branch
of the manifold 𝑊(𝑄

0
) of the saddle 𝑄

0
on the annulus 𝑀.

Then, the singular heteroclinic jumping orbit departs from
the annulus 𝑀, goes along one of the singular 𝑘-pulse orbits
Γ
𝑘
, and lands back at a point on the separatrix that connects

the saddle𝑄
0
to itself on the annulus𝑀. After traveling along

the separatrix for a while, the singular heteroclinic jumping
orbit takes off again along the singular 𝑙-pulse orbit Γ

𝑙
and

continues such process. Eventually, the singular heteroclinic
jumping orbit lands back on the separatrix.

Therefore, it is concluded that the multipulse orbits of
(21a), (21b), (21c), (21d) consist of several portions of the slow
time scale on the hyperbolic manifold𝑀

𝜀
andmany fast time

scale heteroclinic pulses leaving from the manifold 𝑀
𝜀
, and

these multipulse heteroclinic orbits form a consecutive and
recurrence process.

6. Numerical Results of Chaotic Motions

Based on the above qualitative analysis for the multipulse
orbits and chaotic dynamics of the laminated composite
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Figure 5: The 3-bump orbit with the single-pulse is depicted.

piezoelectric rectangular plate, the conditions of the chaotic
motion under the sense of the Smale horses are obtained.The
heteroclinic bifurcations of (12a), (12b), (12c), (12d) appear
when 𝜂

1
> 0. Therefore, the above theoretical analysis

is focused on the situation which there exist heteroclinic
bifurcations in (12a), (12b), (12c), (12d). The parameter 𝜂

1

is the combination of the parameters 𝑎
6
, 𝑎
7
, and 𝑏

6
, where

𝜂
1

= (9𝑎
6
𝑎
7
)/2𝑏
6
. In this section, we have only performed

numerical simulations of the multipulse chaotic motions
of the laminated composite piezoelectric rectangular plate
under heteroclinic bifurcations in order to further verify the
theoretical analysis. Consequently, the parameters 𝑎

6
, 𝑎
7
, and

𝑏
6
are chosen to satisfy 𝜂

1
> 0.

We choose the averaged equation (12a), (12b), (12c), (12d)
to conduct numerical simulations. A numerical approach
through the computer software Matlab is utilized to explore
the existence of the Shilnikov type multipulse chaotic
motions in the laminated composite piezoelectric rectangular
plate. Based on the above qualitative analysis, it is found that
the damping coefficients 𝜇

1
, 𝜇
2
and transverse excitation 𝑓

2

play an important role in the multipulse chaotic motions
of the laminated composite piezoelectric rectangular plate.
In addition, the parameters 𝑎

2
and 𝑎

3
are related to the in-

plane excitation in the𝑥-direction and the in-plane excitation
in the 𝑦-direction, respectively. The parameter 𝑎

4
is the

piezoelectric excitation which reflects the characteristics of
the piezoelectric material. Hence, the parameters 𝜇

1
, 𝑎
2
, 𝑎
4
,

and 𝑓
2
are selected as the controlling parameters to discover

the law for complicated nonlinear dynamics of the laminated
composite piezoelectric rectangular plate.

We begin to draw bifurcation diagrams of the parameters
𝑓
2
, 𝜇
1
, 𝑎
2
, and 𝑎

4
. Bifurcation diagrams describe the vibration

law of the modal displacements 𝑥
1
and 𝑥

3
, respectively, when

the parameters 𝑓
2
, 𝜇
1
, 𝑎
2
, and 𝑎

4
change in a certain region.

We draw bifurcation diagrams according to the rules of the
Runge-Kutta algorithm and the Poincaré map theory. For the
periodic motions, Poincaré map is of several separate points.
For a chaotic motion, the Poincaré map consists of a number
of points on the limited Poincaré section.Therefore, it can be
observed that chaotic motion and periodic motion of nonlin-
ear systemappear frombifurcation diagrams.The chaotic and

𝛾

|u|
h

M

Γ
∑ (𝛾0,1 , 𝛾0,2)

𝛾0,2 + Δ𝛾+ 𝛾0,1 + Δ𝛾+

𝛾0,2 − Δ𝛾− 𝛾0,1 − Δ𝛾−

Figure 6: The 2-pulse singular surfaces ∑(𝛾
0,1

, 𝛾
0,2

) are depicted.

periodic responses can be identified by several conventional
criteria such as phase portraits and Poincaré map. Based
on the response law of bifurcation diagrams, phase portraits
and Poincaré map are utilized to further verify the existence
of the chaotic motions and the periodic motions. In order
to compare the influence of these parameters 𝑓

2
, 𝜇
1
, 𝑎
2
,

and 𝑎
4
on nonlinear vibration in the laminated composite

piezoelectric rectangular plate, we choose the same initial
conditions to carry out numerical simulation.

Figure 7 illustrates the bifurcation diagram of the lam-
inated composite piezoelectric rectangular plate when the
excitation 𝑓

2
varies in the interval 𝑓

2
= 2 ∼ 200.

Other parameters and initial conditions are chosen as 𝜎
1
=

1.83, 𝜎
2

= 1.97, 𝜇
1

= 0.2, 𝜇
2

= 0.2, 𝑎
2

= 23.0, 𝑎
3

=

12.0, 𝑎
4
= 13.0, 𝑎

5
= −1.01, 𝑎

6
= −2.03, 𝑎

7
= −2.05, 𝑏

6
=

4.07, 𝑏
7
= −3.08, 𝑏

8
= 1.09, 𝑥

10
= −0.01, 𝑥

20
= −0.05, 𝑥

30
=

−0.01, 𝑥
40

= −0.01. Figures 7(a) and 7(b) represent the
bifurcation diagram on the plane (𝑥

1
, 𝑓
2
) and (𝑥

3
, 𝑓
2
), respec-

tively. It is observed from Figure 7 that the excitation 𝑓
2

is an important parameter that influences on the nonlinear
dynamic responses of the laminated composite piezoelectric
rectangular plate. Figure 7 shows that the chaotic motion
of the laminated composite piezoelectric rectangular plate
appears first, followed by a periodic motion of that. With the
increase of excitation 𝑓

2
, Figure 7 presents the following law:

chaotic motion→multi-period motion.
We study the impact of the damping parameter on the

nonlinear dynamic responses of the laminated composite
piezoelectric rectangular plate. Figure 8 is the bifurcation
diagramof the laminated composite piezoelectric rectangular
plate with the damping coefficient 𝜇

1
. The figure demon-

strates that system is beginning to enter into the region of
the chaoticmotion then appears the periodicmotionwindow
and finally comes into the region of the chaotic motion again
as the damping coefficient 𝜇

1
varies in the interval 𝜇

1
=

0.01 ∼ 0.7. Other parameters and initial conditions are the
same as those in Figure 7 when excitation is chosen as 𝑓

2
=

82.7. Figures 8(a) and 8(b) describe the nonlinear motion of
the laminated composite piezoelectric rectangular plate on
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Figure 7: The bifurcation diagram is obtained for the excitation 𝑓
2

= 2∼200, and initial conditions 𝑥
10

= −0.01, 𝑥
20

= −0.05, 𝑥
30

=

−0.01, 𝑥
40

= −0.01; (a) the bifurcation diagram on the plane (𝑥
1
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2

); (b) the bifurcation diagram on the plane (𝑥
3

, 𝑓
2

).
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Figure 8: The bifurcation diagram is obtained for the damping coefficient 𝜇
1

= 0.01∼0.7, the excitation 𝑓
2

= 82.7, and initial conditions
𝑥
10

= −0.01, 𝑥
20

= −0.05, 𝑥
30

= −0.01, 𝑥
40

= −0.01; (a) the bifurcation diagram on the plane (𝑥
1

, 𝜇
1

); (b) the bifurcation diagram on the
plane (𝑥

3

, 𝜇
1

).

the planes (𝑥
1
, 𝜇
1
) and (𝑥

3
, 𝜇
1
), respectively, as well as the

impact of the damping coefficient 𝜇
1
on the system.

Figure 9 portraysthe bifurcation diagram for the lami-
nated composite piezoelectric rectangular plate when the in-
plane excitation 𝑎

2
in the 𝑥-direction varies in the interval

𝑎
2
= 2∼65. Other parameters and initial conditions remain

the same as those in Figure 8 when the damping coefficient
𝜇
1
is selected as 𝜇

1
= 0.2. Figures 9(a) and 9(b) display

the bifurcation diagram on the plane (𝑥
1
, 𝑎
2
) and (𝑥

3
, 𝑎
2
),

respectively. Figure 9 presents that the beginning movement
of the system is the periodic motion; then the system appears
the chaotic motion. With the increase of the excitation
𝑎
2
, Figure 9 shows the following evolution law: periodic

motion→ chaotic motion.

Figure 10 indicates the bifurcation diagram for the lam-
inated composite piezoelectric rectangular plate when the
piezoelectric excitation 𝑎

4
varies from 𝑎

4
= 2 to 𝑎

4
= 120.

Other parameters and initial conditions remain the same
as those in Figure 9 when the in-plane excitation 𝑎

2
is

chosen as 𝑎
2

= 23. Figures 10(a) and 10(b) demonstrate
the bifurcation diagram on the planes (𝑥

1
, 𝑎
4
) and (𝑥

3
, 𝑎
4
),

respectively. It is observed from Figure 10 that the piezoelec-
tric excitation 𝑎

4
has a significant influence on the compli-

cated nonlinear dynamic behaviors of the laminated com-
posite piezoelectric rectangular plate. As the piezoelectric
excitation 𝑎

4
increases, Figure 10 reveals the following

law: chaotic motion→multiperiod motion→ one-period
motion→multiperiod motion→ chaotic motion.
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Figure 9: The bifurcation diagram is obtained for the in-plane excitation 𝑎
2

= 2∼65, the damping coefficients 𝜇
1

= 0.2 and 𝜇
2

= 0.2, the
excitation 𝑓

2

= 82.7, and initial conditions 𝑥
10

= −0.01, 𝑥
20

= −0.05, 𝑥
30

= −0.01, 𝑥
40

= −0.01; (a) the bifurcation diagram on the plane
(𝑥
1

, 𝑎
2

); (b) the bifurcation diagram on the plane (𝑥
3

, 𝑎
2

).
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Figure 10: The bifurcation diagram is obtained for the piezoelectric excitation 𝑎
4

= 2∼120, the excitation 𝑓
2

= 82.7, the damping coefficients
𝜇
1

= 0.2 and 𝜇
2

= 0.2, the in-plane excitations 𝑎
2

= 23 and 𝑎
3

= 12.0, and initial conditions 𝑥
10

= −0.01, 𝑥
20

= −0.05, 𝑥
30

= −0.01, 𝑥
40

=

−0.01; (a) the bifurcation diagram on the plane (𝑥
1

, 𝑎
4

); (b) the bifurcation diagram on the plane (𝑥
3

, 𝑎
4

).

Based on the above bifurcation diagram, the excitations
𝑓
2
, 𝑎
2
, 𝑎
4
, and the damping coefficient 𝜇

1
are selected as

specific values in order to find themultipulse chaoticmotions
of the laminated composite piezoelectric rectangular plate.
Figure 11 indicates existence of themultipulse chaotic motion
of the laminated composite piezoelectric rectangular plate
when the excitation 𝑓

2
is 82.7. In this case, the chosen

parameters and initial conditions are the same as those in
Figure 7. Figures 11(a) and 11(b) are the three-dimensional
phase portrait in the space (𝑥

1
, 𝑥
2
, 𝑥
3
) and the Poincaré

map on the plane (𝑥
1
, 𝑥
2
), respectively. Figure 11 shows that

the excitation 𝑓
2
has a noticeable effect on the existence of

the multipulse chaotic motions on the laminated composite
piezoelectric rectangular plate.

Besides the excitations 𝑓
2
, 𝑎
2
, 𝑎
4
and the damping coef-

ficient 𝜇
1
, the multipulse chaotic motions of the laminated

composite piezoelectric rectangular plate also depend on
other parameters. Figure 12 is obtained when the parameters
and initial conditions are chosen as 𝜎

1
= 14.37, 𝜎

2
=

11.42, 𝜇
1
= 0.2, 𝜇

2
= 0.2, 𝑎

2
= 30.0, 𝑎

3
= 75.0, 𝑎

4
= 45.0,

𝑎
5

= −11.66, 𝑎
6

= 12.27, 𝑓
2

= 122.7, 𝑎
7

= −2.68, 𝑏
6

=

−2.2, 𝑏
7

= −9.69, 𝑏
8

= −22.32, 𝑥
10

= −1.08, 𝑥
20

= 0.5,
𝑥
30

= −0.01, 𝑥
40

= 9.16. Comparing with Figures 11
and 12, it is found that there are differences in the phase
portrait and the Poincaré map, respectively. From the
three-dimensional phase portrait in Figure 12, we can see that
there exists obvious multipulse jumping phenomenon. The
three-dimensional phase portrait is composed of the four
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Figure 11: The multipulse chaotic motion is obtained when 𝑓
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Figure 12: The multipulse chaotic motion is obtained when 𝜎
1

= 14.37, 𝜎
2

= 11.42, 𝑎
2

= 30.0, 𝑎
3

= 75.0, 𝑎
4

= 45.0, 𝑎
5

= −11.66, 𝑎
6

=

12.27, 𝑓
2

= 122.7, 𝑎
7

= −2.68, 𝑏
6

= −2.2, 𝑏
7

= −9.69, 𝑏
8

= −22.32, 𝑥
10

= −1.08, 𝑥
20

= 0.5, 𝑥
30

= −0.01, 𝑥
40

= 9.16; (a) the phase portrait in
the three-dimensional space (𝑥

1

, 𝑥
2

, 𝑥
3

); (b) Poincaré map on the plane (𝑥
1

, 𝑥
2

).

regions.The different regions are connected by themultipulse
orbits.

In the following numerical simulations, several differ-
ent sets of parameters and initial conditions are given
in order to investigate the different shapes of the multi-
pulse chaotic motion. Figure 13 demonstrates the multipulse
chaotic response in the laminated composite piezoelectric
rectangular plate for 𝑓

2
= 92.38. Some parameters and

initial conditions are chosen as 𝜎
1
= 3.61, 𝜎

2
= 3.13, 𝑎

5
=

−15.01, 𝑏
8

= 4.09, 𝑥
10

= −0.01, 𝑥
20

= −0.09, 𝑥
30

=

−0.05, 𝑥
40

= −0.05. In this case, other parameters are the
same as those in Figure 7. From Figure 13, we can see that
there is another shape for the multipulse chaotic motion. It
is found that the shapes of these two phenomena depicted in
Figures 12 and 13 are completely different. From the three-
dimensional phase portrait in Figure 13, it is found that
multipulse jumping phenomenon is more prominent.

7. Conclusions

In this paper, the nonlinear vibrations of the laminated com-
posite piezoelectric rectangular plate are studied by applying
the theories of the global bifurcations and chaotic dynamics
for high-dimensional nonlinear systems. The multipulse
heteroclinic orbits and chaotic dynamics are investigated
using the extended Melnikov method for the case where the
averaged equations have one nonsemisimple double zero and
a pair of pure imaginary eigenvalues.The extendedMelnikov
method can be applied to study the Shilnikov typemultipulse
heteroclinic bifurcations and chaotic dynamics of high-
dimensional nonlinear systems in engineering applications.
Analysis of themultipulse heteroclinic orbits in the laminated
composite piezoelectric rectangular plate demonstrates that
such an analysis is a typical singular perturbation problem
in which there are two different time scales. Dynamics on
the hyperbolic manifold 𝑀

𝜀
are of the slow time scale and
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Figure 13: The multipulse chaotic motion is obtained when 𝜎
1

= 3.61, 𝜎
2

= 3.13, 𝑎
2

= 23.0, 𝑎
3

= 12.0, 𝑎
4

= 13.0, 𝑎
5

= −15.01, 𝑎
6

=

−2.03, 𝑓
2

= 92.38, 𝑎
7

= −2.05, 𝑏
6

= 4.07, 𝑏
7

= −3.08, 𝑏
8

= 4.09, 𝑥
10

= −0.01, 𝑥
20

= −0.09, 𝑥
30

= −0.05, 𝑥
40

= −0.05; (a) the phase portrait in
the three-dimensional space (𝑥

1

, 𝑥
2

, 𝑥
3

); (b) Poincaré map on the plane (𝑥
1

, 𝑥
2

).

the multipulse jumping orbits taking off from this manifold
are of the fast time scale. It is shown that the transfer of
energy between the two different modes occurs through
the multipulse jumping orbits. The studies have led to the
following conclusions.

(1) There exist the Shilnikov type multipulse chaotic
motions in nonlinear vibration of the laminated composite
piezoelectric rectangular plate. The geometric interpretation
of the 𝑘-pulse Melnikov function is a signed distance mea-
sured along the normal to a heteroclinic manifold, which
gives the more delicate local estimates near the hyperbolic
manifold. In the resonant case, the 𝑘-pulse extended Mel-
nikov function 𝑀

𝑘
(𝜀, 𝐼, 𝛾

0
, 𝜇
2

) does not depend on the small
perturbation parameter 0 < 𝜀 ≪ 1, and the nonfolding condi-
tion is automatically satisfied, resulting in the angle function
Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2

) (𝑗 = 0, 1, . . . , 𝑘 − 1) being zero. Therefore, the
computing procedure of the extendedMelnikov function can
be simplified.

(2) In order to verify the theoretical predictions, numer-
ical simulation is used to examine the bifurcations and
chaotic motions of the laminated composite piezoelectric
rectangular plate. Several types of the bifurcation diagrams
are obtained when the transverse excitation 𝑓

2
, the in-plane

excitation 𝑎
2
, the piezoelectric excitation 𝑎

4
, and the damping

coefficient 𝜇
1
are chosen as several different kinds of control

parameters. Based on the bifurcation diagrams, the nonlinear
complicated dynamic behavior of the laminated composite
piezoelectric rectangular plate is controlled by varying the
excitations 𝑓

2
, 𝑎
2
, 𝑎
4
and the damping coefficient 𝜇

1
, respec-

tively. Therefore, the excitations 𝑓
2
, 𝑎
2
, 𝑎
4
and the damping

coefficient 𝜇
1
have important influence on the nonlinear

dynamics responses of the laminated composite piezoelectric
rectangular plate.

(3) There exist different shapes of the chaotic motions
in the nonlinear oscillations of the laminated composite
piezoelectric rectangular plate under different excitations,
parameters, and initial conditions. It is found from numerical

simulations that the shapes of the chaotic motions are com-
pletely different. From the three-dimensional phase portraits
in Figures 12 and 13, it is found that there exist obvious
multipulse jumping phenomena. Therefore, parameters and
initial conditions impact the shapes of the multipulse chaotic
motions.

(4)There existmultipulse chaoticmotions in the averaged
equations. It is well known that the multipulse chaotic
motions in the averaged equations can lead to the multi-
pulse amplitude modulated chaotic vibrations in the original
system under certain conditions. Therefore, the multipulse
amplitudemodulated chaoticmotions occur in the laminated
composite piezoelectric rectangular plate.

In summary, both theoretical and numerical studies
suggest that chaos for the Smale horseshoe sense in nonlinear
motion of the simply supported laminated composite piezo-
electric rectangular plate exists.

Conflict of Interests

The authors declare that there is no conflict of interests in this
paper.

Acknowledgments

The authors gratefully acknowledge the support of the
National Natural Science Foundation of China (NNSFC)
through Grant nos. 11172009, 11372015, 10872010, 11290152,
10732020, and 11072008; the National Science Foundation
for Distinguished Young Scholars of China (NSFDYSC)
through Grant no. 10425209; the Funding Project for Aca-
demic Human Resources Development in Institutions of
Higher Learning under the Jurisdiction of Beijing Munici-
pality (PHRIHLB); the Foundation of Beijing University of
Technology through Grant no. X4001015201301; the Ph.D.
Programs Foundation of Beijing University of Technology
(DPFBUT) through Grant no. 52001015200701.



Mathematical Problems in Engineering 19

References

[1] H. S. Tzou, J. P. Zhong, and J. J. Hollkamp, “Spatially distributed
orthogonal piezoelectric shell actuators: theory and applica-
tions,” Journal of Sound and Vibration, vol. 177, no. 3, pp. 363–
378, 1994.

[2] A. S. Purekar, D. J. Pines, S. Sundararaman, and D. E. Adams,
“Directional piezoelectric phased array filters for detecting
damage in isotropic plates,” Smart Materials and Structures, vol.
13, no. 4, pp. 838–850, 2004.

[3] M. Ishihara and N. Noda, “Control of mechanical deformation
of a laminate by piezoelectric actuator taking into account the
transverse shear,” Archive of Applied Mechanics, vol. 74, no. 1-2,
pp. 16–28, 2004.

[4] I. K. Oh, “Thermopiezoelastic nonlinear dynamics of active
piezolaminated plates,” Smart Materials and Structures, vol. 14,
no. 4, pp. 823–834, 2005.

[5] S. J. Lee, J. N. Reddy, and F. Rostam-Abadi, “Nonlinear finite
element analysis of laminated composite shells with actuating
layers,” Finite Elements in Analysis and Design, vol. 43, no. 1, pp.
1–21, 2006.

[6] S. Panda and M. C. Ray, “Active constrained layer damping
of geometrically nonlinear vibrations of functionally graded
plates using piezoelectric fiber-reinforced composites,” Smart
Materials and Structures, vol. 17, no. 2, Article ID 025012, 2008.

[7] P. C. Dumir, P. Kumari, and S. Kapuria, “Assessment of third
order smeared and zigzag theories for buckling and vibration of
flat angle-ply hybrid piezoelectric panels,”Composite Structures,
vol. 90, no. 3, pp. 346–362, 2009.

[8] M. H. Yao and W. Zhang, “Multi-Pulse chaotic motions of
high-dimension nonlinear system for a laminated composite
piezoelectric rectangular plate,”Meccanica, 2013.

[9] Z. C. Feng and P. R. Sethna, “Global bifurcations in the motion
of parametrically excited thin plates,” Nonlinear Dynamics, vol.
4, no. 4, pp. 389–408, 1993.

[10] W. M. Tien, N. S. Namachchivaya, and A. K. Bajaj, “Non-
linear dynamics of a shallow arch under periodic excitation—
I.1 : 2 internal resonance,” International Journal of Non-Linear
Mechanics, vol. 29, no. 3, pp. 349–366, 1994.

[11] N. Malhotra and N. Sri Namachchivaya, “Chaotic motion of
shallow arch structures under 1 : 1 internal resonance,” Journal
of Engineering Mechanics, vol. 123, no. 6, pp. 620–627, 1997.

[12] W. Zhang, “Global and chaotic dynamics for a parametrically
excited thin plate,” Journal of Sound and Vibration, vol. 239, no.
5, pp. 1013–1036, 2001.

[13] M. H. Yeo and W. K. Lee, “Evidences of global bifurcations of
an imperfect circular plate,” Journal of Sound and Vibration, vol.
293, no. 1-2, pp. 138–155, 2006.

[14] W. Yu and F. Chen, “Global bifurcations of a simply supported
rectangular metallic plate subjected to a transverse harmonic
excitation,” Nonlinear Dynamics, vol. 59, no. 1-2, pp. 129–141,
2010.
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