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Crude oil is the most important nonrenewable energy resource and the most key element for the world. In contrast to typical
forecasts of oil price, this study aims at forecasting the demand of imported crude oil (ICO). This study proposes different single
stage and two-stage hybrid stages of forecasting models for prediction of ICO in Taiwan. The single stage forecasting modeling
includesmultiple linear regression (MLR), support vector regression (SVR), artificial neural networks (ANN), and extreme learning
machine (ELM) approaches. While the first step of the two-stage modeling is to select the fewer but more significant explanatory
variables, the second step is to generate predictions by using these significant explanatory variables.The proposed two-stage hybrid
models consist of integration of different modeling components. Mean absolute percentage error, root mean square error, and
mean absolute difference are utilized as the performance measures. Real data set of crude oil in Taiwan for the period of 1993–2010
and twenty-three associated explanatory variables are sampled and investigated. The forecasting results reveal that the proposed
two-stage hybrid modeling is able to accurately predict the demand of crude oil in Taiwan.

1. Introduction

Natural resources are often classified into two groups: renew-
able and non-renewable resources. Renewable energy is the
one which comes from natural resources such as sunlight,
wind, and rain, and it is naturally replenished. It is reported
that about 16% of global final energy consumption comes
from renewable energy. The share of renewable energy in
global electricity generation is around 19% [1]. In the United
States, renewables provided 12.7% of total domestic electricity
in 2011, up from 10.2% in 2010, and 9.3% in 2009. In China,
wind power generation increased bymore than 48.2% in 2011.
In EuropeanUnion, renewables accounted formore than 71%
of total electric capacity additions in 2011 [2]. Non-renewable
resources form very slowly or do not naturally form in the
environment. A good example of the nonrenewable is fossil
fuels. Although many studies have reported that the renew-
able sources of energy are currently receiving considerable
attention, the fossil fuels are still the most needed element
of the world energies [3]. In particular, crude oil is the most

important nonrenewable energy resource and the most key
element for the world [4, 5].

The relationship between economic growth and oil con-
sumption was addressed [6], and the study determined that
the minimum statistical (lower-bound) annual oil consump-
tion for developed countries was 11 barrels per capita. By
using autoregressive distributed lag (ARDL) bounds testing
approach of cointegration, the study discussed a long-run
relationship among quantity of crude oil import, income,
and price of the imported crude in India [7]. The results
showed that the long-term income elasticity of imported
crude in India is 1.97 and there existed a unidirectional long-
run causality running from economic growth to crude oil
import. The demand for ICO in South Africa as a function of
real income and the price of crude oil were studied [8]. The
estimated long-run price and income elasticities revealed that
import demand for crude oil is price and income inelastic.

The study estimated the short-run and long-run elastici-
ties of demand for crude oil in Turkey for the period of 1980
to 2005 [9]. The comparative study was performed in the
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study [10]. A decision support system for forecasting fossil
fuel production in Turkey, using a regression ARIMA and
SARIMA method, was developed for the period of 1950–
2003. Also, the study applied the ARIMA and SARIMA
methods to predict primary energy demand in Turkey for the
period from 2005 to 2020 [11].

In addition to forecasting the oil demand or consump-
tion, several forecasting methods were applied to predict
different types of energies. For example, regression modeling
was employed to forecast the coal, oil, and gas electricity
requirement [12]. The MR models were also applied to pre-
dictions for electricity consumption in Taiwan, Brazil, Delhi,
and Hong-Kong, respectively [13–15]. The study [16] used
the multiple linear regression techniques to develop simple
empirical relations for the estimation of daily and monthly
evaporation in Kuwait. While the ARIMA approaches were
commonly used for predictions of energy demand [10, 11],
the ANN models were also widely used for predictions of
energy demand [11, 17–20]. Another promising forecasting
technique, SVR, was used to forecast the energy demand [21,
22]. Additionally, the various hybrid modeling approaches
were reported in forecasting energy demand in several studies
[23–26], and the hybrid modeling schemes appear to be a
promising technique. The study provided literature review in
detail about the forecasting modeling in energy issue [27].

Extreme learning machine (ELM) proposed by Huang
et al. [28, 29] is a novel learning algorithm for single-
hidden-layer feedforward neural networks (SLFN). It pro-
vides much better generalization performance with much
faster learning speed and avoids many issues faced in the
traditional algorithms such as stopping criterion, learning
rate, number of epochs and local minima, and the over-
tuned problems [29]. Moreover, the universal approximation
capability of ELM has been analyzed and proven by [30–32]
to show the effectiveness of ELM. Thus, ELM has attracted
a lot of attentions in recent years and been used for various
forecasting issues, such as sales forecasting [33–35], stock
price forecasting [36, 37], and electricity price forecasting
[38].

In June 1946, Chinese Petroleum Corp. (CPC) was
funded, and the headquarters was set up in Taipei under
the direction of the Ministry of Economic Affairs. With
service facilities covering the whole nation, its operations
today include the import, exploration, development, refining,
transport, marketing, and sale of petroleum and natural gas.
CPC’s total capital stands at NT$130.1 billion, and its total
revenues in 2011 amounted to NT$1.03 trillion.

Since crude oil is extremely important for development
of Taiwan’s economy, the predictions of the demand of
imported crude oil are a must. Accordingly, this study is
aimed at proposing single and two-stage forecasting tech-
niques to predict the demand of imported crude oil in
Taiwan. The single stage forecasting modeling includes the
support vector regression (SVR), artificial neural networks
(ANN), extreme learning machine (ELM), and multiple
linear regression (MLR) approaches. The two-stage models
combine the twomodeling components.The first component
of the model uses its own feature to capture the significant
explanatory variables.Then, the second component generates

the predictions based on these explanatory variables. In this
study, the combinations of MLR and SVR (i.e., refer to MLR-
SVR), MLR and ANN (i.e., refer to MLR-ANN), and MLE
and ELM (i.e., refer to MLR-ELM) are used as the two-stage
models.

Real data are sampled for the period of 1993–2010 for the
ICO in Taiwan. According to the suggestion [39], twenty-
three associated variables are collected for serving as the
explanatory variables.The predictions for ICO in Taiwan can
be made based on the single stage and two-stage forecasting
models. This study uses the first 14 years (1993–2006) of data
for model building, and the last four years’ data are used for
the purpose of confirmation. The mean absolute percentage
error (MAPE), the root mean square error (RMSE), and the
mean absolute difference (MAD) are used as the forecasting
accuracy measures.

The contents of this study are organized as follows.
The following section introduces the proposed forecasting
techniques. Section 3 presents the real data of ICO and the
forecasting results.The performances for all of the forecasting
models are demonstrated and discussed. The final section,
Section 4, concludes this study.

2. Research Methodologies

This study considersMLR, SVR,ANN, ELM, and their hybrid
modeling schemes as possible forecasting models for import
demand of crude oil in Taiwan. These forecasting techniques
are introduced in the subsequent sections.

2.1.Multiple Linear Regression. Themultiple linear regression
analysis is the procedure by which an algebraic equation is
formulated to estimate the value of a dependent variable
𝑌
𝑖
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Based on the least squares or maximum likelihood criterion,
the so-called normal equations and the point estimators of
𝛽
0
, 𝛽
1
, . . . , 𝛽

𝑝
can be obtained. Under the normal and some

mild assumptions, the sampling distributions and hence the
statistical inference for the estimators of 𝛽

0
, 𝛽
1
, . . . , 𝛽

𝑝
can be

derived.
To identify significant independent variables, the back-

ward elimination, forward selection, or stepwise regression
procedures can be applied. The backward elimination proce-
dure begins with themodel which includes all of the available
explanatory variables, and successively deletes one variable at
a time to themodel in such away that at each step, the variable
deleted is the variable contributing the least to the prediction
of dependent variable at that step. On the contrary, the for-
ward selection procedure begins with the constantmodel that
includes no explanatory variable, and successively adds one
variable at a time to themodel in such a way that, at each step,
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the variable added is the variable contributing themost to the
prediction at that step. The stepwise regression procedure is
an admixture of the backward elimination procedure and the
forward selection procedure. This selection procedure builds
a sequence of models and at each step deletes or adds an
explanatory variable according to some selection criterions
such as coefficient of partial correlation or error sum of
squares reduction.

2.2. Support Vector Regression. While support vector
machine (SVM) is one of the most powerful techniques in
machine learning areas [40–44], support vector regression
(SVR) is the most common application form of SVMs. Due
to its effectiveness, SVR has been used for predictions in
many fields [45–49].

Statistical learning theory and structural risk minimiza-
tion principle have provided a very effective framework for
development of support vector regression [48–51]. Based on
the computation of a linear regression function in a high
dimensional feature space, the inputs for SVR aremapped via
a nonlinear function. The modeling of SVR can be described
as follows. Suppose that

𝑓 (𝑥) = (𝑤 ⋅ Φ (𝑥)) + 𝑏, (2)

where 𝑤 is the weight vector, 𝑥 represents the model inputs,
𝑏 is a bias, and Φ(𝑥) stands for a kernel function which uses
a nonlinear function to transform the nonlinear input to be
linear mode in a high dimension feature space.

Typical regression modeling obtains the coefficients
through minimizing the square error, which can be con-
sidered as empirical risk based on loss function. The 𝜀-
insensitivity loss function was introduced [51], and it can be
described as follows:

𝐿
𝜀
(𝑓 (𝑥) , 𝑦) = {

𝑓 (𝑥) − 𝑦
 − 𝜀 if 𝑓 (𝑥) − 𝑦

 ≥ 𝜀

0 otherwise,
(3)

where 𝑦 is the target outputs and 𝜀 defines the region of 𝜀-
insensitivity; when the predicted value falls into the band
area, the loss is zero. However, when the predicted value falls
outside the band area, the loss is defined as the difference
between the predicted value and the margin.

When empirical risk and structure risk are both con-
sidered, the SVR can be setup to minimize the following
quadratic programming problem:
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where 𝑖 = 1, . . . , 𝑛 is the number of training data, (𝜉
𝑖
+

𝜉
∗
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) represents the empirical risk, (1/2)‖𝑤‖
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the structure risk preventing over-learning and lack of
applied universality, and 𝐶 is a modifying coefficient repre-
senting the trade-off between empirical risk and structure
risk. With an appropriate modifying coefficient 𝐶, band area
width 𝜀, and kernel function, the optimum value of each
parameter can be solved by Lagrange procedure.

The general form of the SVR-based regression function is
described as follows [51]:
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= 0. Additionally, since the radial basis function

(RBF) is themost widely used kernel function [49], this study
uses it for our experimental study.The RBF can be defined as
follows:
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) , (6)

where 𝜎 denotes the width of the RBF.

2.3. Artificial Neural Networks. Artificial neural networks,
originally derived from neurobiological models, are mas-
sively parallel, computer-intensive, and data-driven algorith-
mic systems composed of a multitude of highly intercon-
nected nodes, known as neurons as well. Mimicking human
neurobiological information-processing activities, each ele-
mentary node of a neural network is able to receive an
input single from external sources or other nodes and the
algorithmic procedure equipped in each node is sequentially
activated to locally transforming the corresponding input
single into an output single to other nodes or environments.

It was indicated that knowledge is not stored within
individual processing units, but is represented by the strength
between units [52].They also stated that neural networks can
be classified into two categories: the feedforward networks
and the feedback networks. The feedback networks contain
neurons that are connected to each other, enabling a neuron
to influence other neurons. The feedback networks contain
neurons that are connected to themselves, enabling a neuron
to influence other neurons and itself. Also, in recent years,
there has been a great deal of attention toward the field of
ANN [41, 43, 53, 54].

For ANN modeling, the relationship between output (𝑦)
and inputs (𝑥
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where 𝜆
𝑗
(𝑗 = 0, 1, 2, . . . , 𝑛) and 𝛿

𝑖𝑗
(𝑖 = 0, 1, 2, . . . , 𝑚; 𝑗 =

0, 1, 2, . . . , 𝑛) are model connection weights,𝑚 is the number
of input nodes, 𝑛 is the number of hidden nodes, and 𝜀 is the
error term. The transfer function in the hidden layer is often
represented by a logistic function; that is,

𝑔 (𝑧) =
1

1 + exp (−𝑧)
. (8)
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Accordingly, the ANN model in (7) accomplishes a non-
linear functional mapping from the inputs (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑎
) to

the output 𝑦; that is,

𝑦 = 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑤) + 𝜀, (9)

where𝑤 is a vector of allmodel parameters and𝑓 is a function
determined by the ANN structure and connection weights.

2.4. Extreme Learning Machine. ELM randomly selected
the input weights and analytically determined the output
weights of SLFNs. One may randomly choose and fix the
hidden node parameters which are the key principle of the
ELM.After randomly choosing the hidden nodes parameters,
SLFN becomes a linear system where the output weights
of the network can be analytically determined using simple
generalized inverse operation of the hidden layer output
matrices [28, 29].

In general, the concept of ELM is similar to that of the
random vector functional-link (RVFL) network where the
hidden neurons are randomly selected. However, the main
difference between ELM and RVFL is the characteristics of
hidden neuron parameters. In ELM, all the hidden node
parameters are randomly generated independently of the
target functions and the training patterns [55]. In RVFL, the
selection of hidden neurons is based on partial randomness
and the randomly generated hidden node parameters are not
completely independent of the training data [56]. That is, the
universal approximation capability of ELM can be linearly
extended to RVFL [55, 56].
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can approximate𝑁 samples with zero error. This means that

𝐻𝛽 = 𝑇, (10)

where

𝐻(𝑤
1
, . . . , 𝑤

�̃�
, 𝑏
1
, . . . , 𝑏

�̃�
, 𝑥
1
, . . . , 𝑥

𝑁
)

=
[
[

[

𝑔(𝑤
1
⋅ 𝑥
1
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔(𝑤

�̃�
⋅ 𝑥
1
+ 𝑏
�̃�
)

... d
...

𝑔(𝑤
1
⋅ 𝑥
𝑁
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔(𝑤

�̃�
⋅ 𝑥
𝑁
+ 𝑏
�̃�
)

]
]

]𝑁×�̃�

,

𝛽
�̃�×𝑚

= (𝛽
𝑇

1
, . . . , 𝛽

𝑇

�̃�
)
𝑡

,

𝑇
𝑁×𝑚

= (𝑇
𝑇

1
, . . . , 𝑇

𝑇

𝑁
)
𝑡

,

(11)

and 𝑤
𝑖
= [𝑤
𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑛
]
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vector connecting the 𝑖th hidden node and the input nodes,
𝛽
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denotes the inner product
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and 𝑥

𝑗
. 𝐻 is called the hidden layer output matrix of

the neural network; the 𝑖th column of 𝐻 is the 𝑖th hidden
node output with respect to inputs 𝑥

1
, 𝑥
2
, . . . 𝑥
𝑁
. Therefore,

the determination of the output weights is as simple as
finding the least-square solution to the given linear system.

The minimum norm least-square (LS) solution to the linear
system is

𝛽 = 𝐻
Ψ
𝑇, (12)

where𝐻Ψ is theMoore-Penrose generalized inverse ofmatrix
𝐻. The minimum norm LS solution is unique and has the
smallest norm among all the LS solutions.

The first step of ELM algorithm is to randomly assign
input weight 𝑤

𝑖
and bias 𝑏

𝑖
. Then, the hidden layer output

matrix 𝐻 is calculated. Finally, one can calculate the output
weight 𝛽, 𝛽 = 𝐻

Ψ
𝑇, where 𝑇 = (𝑡

1
, . . . , 𝑡

𝑁
)
𝑡.

2.5. Hybrid Models. Recent research indicates that hybrid
systems which are integrated with several standard ones can
help to achieve a better performance for some applications.
For example, the hybrid modeling applications have been
reported in forecasting [57–62], credit risk [61], andmanufac-
turing process [41–44]. As a consequence, this study proposes
a two-step hybrid data mining mechanisms to predict the
demand of ICO in Taiwan. This study proposes three hybrid
data mining models, namely, the integration of MLR and
ANN (i.e., MLR-ANN), MLR and SVR (i.e., MLR-SVR), and
MLR and ELM (i.e., MLR-ELM).The concept of those hybrid
modeling is as follows.

In the first stage of hybrid modeling, more signifi-
cant variables are selected using MLR with forward selec-
tion, backward elimination or stepwise regression, say,
𝑋
∗

𝑖1
, 𝑋
∗

𝑖2
, . . . , 𝑋

∗

𝑖𝑟
. In the second stage, the selected significant

variables𝑋∗
𝑖1
, 𝑋
∗

𝑖2
, . . . , 𝑋

∗

𝑖𝑟
obtained in the first stage are served

as the inputs of ANN, SVR, and ELM in order to establish
the two-stage hybrid forecasting models. By providing the
ANN, SVR, and ELM with good starting points, it is hoped
that more effective models can be developed on the strength
of their learning ability. Such two-stage hybrid models then
are compared with the single-stage of MLR, ANN, SVR, and
ELMmodels.

3. Results and Analysis

To show the effectiveness of the proposed hybrid modeling,
the real data, from the years 1993 to 2010, were sampled for
the ICO from Bureau of Energy in Taiwan [62]. Following
the suggestion [39] and having discussed with the ICO
practitioners, we sample 23 associated influential variables.
Table 1 lists these 23 variables. The yearly data were collected
for the period of 1993–2010 from the web sites of Bureau of
Energy in Taiwan [62]. The first 14 years’ data are used for
model building, and the last four years’ data are used for
model confirmation.

3.1. Single-Stage Modeling. Figure 1 displays the yearly data
of ICO in Taiwan for the periods of 1993–2006. For MLR
modeling, we first compute the variance inflation factors
(VIFs) to examine the existence of collinearity.

Our numerical results reveal that all the values of VIFs
of independent variables are greater than 10 except the
variables of 𝑋

4
and 𝑋

5
, indicating that there may exists
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Table 1: Meaning of the influential variables for ICO model
building.

Variable Meaning
𝑌 Imported crude oil
𝑋
1

Gross domestic product
𝑋
2

Consumer price index
𝑋
3

Personal disposable income
𝑋
4

Average temperature
𝑋
5

Average sunshine per day (hours)
𝑋
6

Average electricity households
𝑋
7

Average electricity price
𝑋
8

National income
𝑋
9

Population
𝑋
10

Foreign trade total
𝑋
11

Wholesale prices
𝑋
12

Consumer index
𝑋
13

GNP deflators
𝑋
14

Foreign exchange reserves
𝑋
15

Total primary energy supply
𝑋
16

Total final consumption
𝑋
17

Total domestic consumption
𝑋
18

Energy productivity
𝑋
19

Energy intensity
𝑋
20

Energy consumption of energy intensive industries
𝑋
21

Value-added of energy intensive industries
𝑋
22

Dependence on imported energy
𝑋
23

Electricity average load

130000

260000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (year)

IC
O

 (1
0
0
0

bb
l)

Figure 1: Historical yearly data of ICO in Taiwan.

high collinearity among the independent variables. To elim-
inate variables with high collinearity, we apply the Pearson
correlation coefficient. If the correlation coefficient between
two independent variables is greater than 0.7, we eliminate
the variable which has a lower relationship with dependent
variable 𝑌. Table 2 lists the analysis results. As shown in
Table 2, after excluding the variables with high collinearity,
there remained six independent variables, including 𝑋

4
, 𝑋
5
,

𝑋
7
, 𝑋
13
, 𝑋
19
, and 𝑋

22
. In Table 3, it can be found that all the

values of VIFs of the remaining variables are smaller than 10.
As a consequence, there is no high collinearity among these
independent variables.In addition, we apply the backward
elimination, forward selection, and stepwise regression pro-
ceduresto identify significant independent variables, and use

a 0.05 significance level to perform the MLR analysis.All the
three procedures have the same selection results. As listed in
Table 4, significant independent variables related to imported
crude oil in Taiwan include average electricity price (𝑋

7
)

and dependence on imported energy (𝑋
22
). Accordingly, the

MLR model is derived as follows:

�̂� = −11862349.62 − 75695.53𝑋
7
+ 124776.53𝑋

22
. (13)

The regression coefficients in the MLR model indicate
that the higher the average electricity price is, the lower
the imported crude oil is. On the contrary, the higher the
dependence on imported energy is, the lower the imported
crude oil is.

For ANN modeling, since the backpropagation neural
network (BPNN) structure has been widely used [43, 54], this
study employs BPNN as ANN modeling structure. In BPNN
structure, we have 23 input nodes and one output node. The
hidden nodes range from 𝑖+2 to 𝑖−2, where 𝑖 is the number of
input variables. Thus, the hidden nodes were set up as 21, 22,
23, 24, and 25, respectively.The training and testing processes
include 14 and 4 data vectors for possible parameter setting.
The learning rates are 0.01, 0.005, and 0.001, respectively,
according to the suggestions [43].

After applying ANN to ICO data, we have obtained the
{23-22-1} topology with a learning rate of 0.01 which provides
the best result. The {𝑁

𝑖
-𝑁
ℎ
-𝑁
𝑜
} represents the number of

nodes in the input layer, hidden layer, and output layer,
respectively. For SVR modeling, same as ANNmodeling, we
have 23 input variables. The two parameters, 𝐶 and gamma,
were estimated as 2−15 and 2−15, respectively.

Asmentioned earlier, themost important ELMparameter
is the number of hidden nodes and that ELM tends to be
unstable in single run forecasting [29, 33].Therefore, the ELM
models with different numbers of hidden nodes varying from
1 to 15 are constructed. For each number of nodes, an ELM
model is repeated 30 times and the average RMSE of each
node is calculated.The number of hidden nodes that gives the
smallest average RMSE value is selected as the best parameter
of ELMmodel. Inmodeling ELM, the forecastingmodel with
eight hidden nodes has the smallest average RMSE values and
is therefore the best ELMmodel.

3.2. Proposed Hybrid Modeling. A rational strategy for a
hybrid modeling is to use the fewer but more informative
variables, which were selected by the first stage of modeling
approaches, as the inputs for the second stage of classi-
fier approaches. Accordingly, in this study, the significant
variables selected, that is, average electricity price (𝑋

7
) and

dependence on imported energy (𝑋
22
), are used as the input

variables of the ANN and SVR for hybrid modeling.
After completing the first stage of hybrid modeling,

the ANN topology settings can be established. This study
has found that the {2-3-1} topology with a learning rate
of 0.01 provides the best result for the hybrid model. The
network topology with the minimum testing RMSE is also
considered as the optimal network topology. For theMR/SVR
hybrid modeling, the parameters of 𝐶 and gamma were still
estimated as 2−15 and 2−15, respectively. In the construction of
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Table 3: Collinearity diagnosis for MLR modeling.

Variable𝑋
𝑖

𝑋
4

𝑋
5

𝑋
7

𝑋
13

𝑋
19

𝑋
22

VIF 1.52 2.04 3.91 1.99 4.36 1.49

Table 4: MLR model for ICO in Taiwan.

Variables Estimated
coefficient

Standard
error 𝑃 value

Constant −11862349.62 853356.39 <0.01∗∗

Average electricity
price (𝑋

7
) −75695.53 28564.49 0.02∗∗

Dependence on
imported energy (𝑋

22
) 124776.53 8782.77 <0.01∗∗

∗∗Denotes significance at 5% level.

Table 5: Various forecasting models’ accuracy measures for ICO.

MAPE RMSE MAD
Single stage models

ANN 15.681 56190.676 52155.891
SVR 22.304 77973.147 76318.645
MRSEL 11.753 48139.849 39431.691
ELM 10.174 43189.042 33271.068

Proposed hybrid models
MRSEL-ANN 7.302 33875.635 24572.516
MRSEL-SVR 9.385 35523.521 32465.307
MRSEL-ELM 7.094 28902.330 23271.608

MR/ELM hybrid model, the model with eight hidden nodes
has the smallest average RMSE values is the best MR/ELM
hybrid model.

3.3. Experimental Results. In this study, we consider the
forecasting accuracy measures of MAPE, MSE, and MAD
to address the forecasting performance for the five dif-
ferent approaches, ANN, SVR, ELM, MRSEL, MRSEL-ANN,
MRSEL-SVR, andMRSEL-ELM, respectively.These prediction
measurements are defined as follows:

MAPE =
1

𝑛

𝑛

∑

𝑡=1

𝑒𝑡


𝑌
𝑡

× 100,

RMSE = √
1

𝑛

𝑛

∑

𝑡=1

(𝑒
𝑡
)
2
,

MAD =
1

𝑛

𝑛

∑

𝑡=1

𝑒𝑡
 ,

(14)

where 𝑒
𝑡
stands for the value of the residual at time 𝑡. A low

MAPE, MSE or MAD is associated with better forecasting
accuracy. The results are listed in Table 5. In Table 5, by
considering single stage modeling approaches, we note that
ELM model has the best performance than the MR, ANN,
and SVR models.

Table 6: Improvement of the proposed models in comparison with
the single stage models.

Models MAPE (%) RMSE (%) MAD (%)
Proposed hybrid
MRSEL-ANN model

ANN 53.43 39.71 52.89
SVR 67.26 56.55 67.80
MRSEL 37.87 29.63 37.68
ELM 28.23 21.56 26.14

Proposed hybrid
MRSEL-SVR model

ANN 40.15 36.78 37.75
SVR 57.92 54.44 57.46
MRSEL 20.15 26.21 17.67
ELM 7.76 17.75 2.42

Proposed hybrid
MRSEL-ELMmodel

ANN 54.76 48.56 55.38
SVR 68.19 62.93 69.51
MRSEL 39.64 39.96 40.98
ELM 30.27 33.08 30.05

In comparison to the single stage and our proposed
hybrid models in Table 5, one is able to apparently observe
that our proposed hybrid models provide more accurate
results than the single stage models. In terms of MAPE,
MSE, or MAD, the two hybrid models are all lower than the
three single stagemodels. For example, theMAPE percentage
improvements of the proposed MRSEL-ANN model over the
four-single-stage models, ANN, SVR, MRSEL, and ELM are
53.43%, 67.26%, 37.87%, and 28.23%, respectively. Table 6
lists a comparison with respect to the overall improvement
percentage in the single stage models. In addition, we use
independent sample t-test to test whether the hybrid models
are superior to the single ones. Let 𝜇

𝑠
and 𝜇

ℎ
be the means of

the absolute value of residuals for the single-stagemodels and
hybrid models, respectively.The independent sample t-test is
applied to test the following:

𝐻
0
: 𝜇
𝑠
− 𝜇
ℎ
≤ 0 versus 𝐻

1
: 𝜇
𝑠
− 𝜇
ℎ
> 0. (15)

The 𝑃 value is 0.0127. Obviously, the hybrid models outper-
form the single stage models.

Figure 2 shows the actual ICO values for the last four
years and the corresponding forecasts by using four-single-
stage models. It can be seen that the ELM model provides
the best predictions of ICO. Figure 3 displays the actual ICO
values and the corresponding forecasts by using three hybrid
models. It shows that the hybridMR-ANNmodel has the best
forecasting capability. Figure 4 plots the actual ICO values
and the corresponding forecasts by using the single MR
and ANN models and their hybrid technique, MR-ANN. It
apparently can be observed that the proposed hybrid model
outperforms the single models. The same conclusions can be
drawn by observing Figures 5 and 6.That is, the performance
of the hybrid models is better than the single models.
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Figure 2: Plot of actual ICO values for the last four years and the
forecasts by using four single-stage models.
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Figure 3: Plot of actual ICO values for the last four years and the
forecasts by using three hybrid models.

As shown in Figures 4, 5, and 6 and Tables 5 and 6, the
proposed hybrid models outperform all three-single-stage
models. As a consequence, the proposed two-stage hybrid
approaches are more efficient for forecasting ICO in Taiwan
than the typical single stage methods.

4. Conclusions

Oil is not only used to make gas for cars, but for heating
homes, producing electricity, making plastics, and other
commodities. Oil and its byproducts are ingrained into
almost every culture in the world. Therefore, the accurate
prediction of the demand of ICO is very important for the
economic development of a country.

Because it is difficult to fully capture the characteristics of
the real ICO data, the two hybrid prediction models are then
proposed to forecast the demand of ICO in Taiwan. Based on
our numerical results, it is found that the proposed hybrid
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Figure 4: Plot of actual ICOvalues for the last years and the forecasts
by using MR, ANN, and the hybrid MR-ANNmodel.
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Figure 5: Plot of actual ICOvalues for the last years and the forecasts
by using MR, SVR, and the hybrid MR-SVR model.

approaches are more accurate than the established single-
stage ones. The modeling procedures and results of this work
may provide a guidance to develop forecasting models for
other energies.

Besides, there are many other two-stage hybrid forecast-
ing models that have been proposed and applied in various
fields [63–70]. The proposed hybrid model in this study is
not the only hybrid forecasting scheme for the prediction of
demand of crude oil, as one can combine other artificial intel-
ligence techniques or traditional multivariate models, like
decision tree,multivariate adaptive regression splines, logistic
regression, rough set, or independent component analysis,
withANN, SVR, or ELM for further improving the prediction
accuracies. Based on our work, further research may be



Mathematical Problems in Engineering 9

250000

270000

290000

310000

330000

350000

370000

390000

410000

15 16 17 18

Actual
MR

ELM
MR-ELM

Figure 6: Plot of actual ICOvalues for the last years and the forecasts
by using MR, ELM, and the hybrid MR-ELMmodel.

expanded. For example, extensions of the proposed hybrid
prediction methods to other machine learning techniques
or statistical prediction methods or to multistage prediction
procedures are possible. Such works deserve further research
and are our future concern.
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