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Rough set theory provides an effective tool to deal with uncertain, granular, and incomplete knowledge in information systems.
Matroid theory generalizes the linear independence in vector spaces and has many applications in diverse fields, such as
combinatorial optimization and rough sets. In this paper, we construct a matroidal structure of the generalized rough set based
on a tolerance relation. First, a family of sets are constructed through the lower approximation of a tolerance relation and they are
proved to satisfy the circuit axioms of matroids. Thus we establish a matroid with the family of sets as its circuits. Second, we study
the properties of thematroid including the base and the rank function.Moreover, we investigate the relationship between the upper
approximation operator based on a tolerance relation and the closure operator of the matroid induced by the tolerance relation.
Finally, from a tolerance relation, we can get a matroid of the generalized rough set based on the tolerance relation. The matroid
can also induce a new relation. We investigate the connection between the original tolerance relation and the induced relation.

1. Introduction

Rough set theory was originally proposed by Pawlak [1,
2] in 1982 and serves as a new mathematical approach to
vague concept. It has been widely applied to many different
fields, such as knowledge discovery [3], machine learning
[4], knowledge acquisition [5], decision analysis [6, 7], and
granular computing [8]. It is well known that the classical
rough set theory is based on equivalence relations. However,
equivalence relations are restrictive for many applications.
To address this problem, classical rough set theory has been
extended from equivalence relations to some other relations,
such as tolerance relation [9, 10], similarity relation [11, 12],
and arbitrary relation [13–15].

Matroid theory [16, 17] proposed by Whitney is a gener-
alization of both linear algebra and graph theory. It has been
successfully applied to various fields, such as combinatorial
optimization, algorithm design, information coding, and
cryptology. In order to enrich the theoretical system and
extend the applications of rough sets, it is helpful to study
rough sets withmatroids.There aremanyworks [18–31] about
the connection between matroids and rough sets.

From a tolerance relation, a matroidal structure is
proposed in this paper. First, we define a family of sets
through the lower approximation based on a tolerance
relation and prove the family to satisfy the circuit axioms
of matroids. Hence, we obtain a matroid with the family of
sets as its circuits. Moreover, the family of sets are proved to
be a partition, so the matroid is a partition-circuit matroid.
Second, we obtain that the family of circuits of this matroid is
equal to the partition induced by the transitive closure of the
tolerance relation. Next we investigate some characteristics
of this matroid through the generalized rough set based on
a tolerance relation, such as the base and the rank function.
Third, we study some important relationships between the
closure operator of thismatroid and the upper approximation
operator of the tolerance relation. Finally, we know that
the matroid established by a tolerance relation can induce
a relation. We prove that the original tolerance relation is
contained in the induced relation. In particular, the induced
relation is equal to the transitive closure of the original
tolerance relation.

The rest of this paper is organized as follows. Section 2
reviews some fundamental definitions and properties of
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generalized rough sets andmatroids. In Section 3, we propose
a matroid induced by a tolerance relation and study some
characteristics of this matroid through generalized rough
sets. Then we investigate the relationship between the clo-
sure operator of this matroid and the upper approximation
operator of a tolerance relation.We also study the relationship
between a tolerance relation and the relation induced by the
matroid established by the original tolerance relation. We
conclude this paper in Section 4.

2. Basic Definitions

In this section, we recall some fundamental definitions
and important conclusions of generalized rough sets and
matroids.

2.1. Rough Set. Let 𝑈 be a universe, 𝑈 × 𝑈 the product set of
𝑈 and𝑈. Any subset 𝑅 of𝑈×𝑈 is called a binary relation on
𝑈. For any (𝑥, 𝑦) ∈ 𝑈 × 𝑈, if (𝑥, 𝑦) ∈ 𝑅, we say 𝑥 has relation
𝑅 with 𝑦 and denote this relationship as 𝑥𝑅𝑦. In the rest of
this paper, we assume 𝑈 is a finite and nonempty set unless
otherwise stated.

In rough sets, a pair of approximation operators are
used to describe an object. In the following definition, we
introduce the lower and upper approximation operators of
generalized rough sets through the neighborhood.

Definition 1 (lower and upper approximation operators [32]).
Let 𝑅 be a relation on 𝑈. A pair of operators 𝑅, 𝑅 : 2𝑈 → 2

𝑈

are defined as follows: for all𝑋 ⊆ 𝑈,

𝑅 (𝑋) = {𝑥 ∈ 𝑈 : 𝑅𝑁 (𝑥) ⊆ 𝑋} ,

𝑅 (𝑋) = {𝑥 ∈ 𝑈 : 𝑅𝑁 (𝑥) ∩ 𝑋 ̸= 0} ,

(1)

where 𝑅𝑁(𝑥) = {𝑦 ∈ 𝑈 : 𝑥𝑅𝑦} is called the neighborhood
of 𝑥 with respect to 𝑅. 𝑅, 𝑅 are called the lower and upper
approximation operators, respectively.

The following proposition presents some properties of
lower approximation operator.

Proposition 2 (see [32]). Let 𝑅 be a relation on 𝑈. 𝑅 satisfies
the following properties: for all 𝑋, 𝑌 ⊆ 𝑈,

(1) 𝑅(𝑈) = 𝑈;
(2) 𝑅(𝑋 ∩ 𝑌) = 𝑅(𝑋) ∩ 𝑅(𝑌);
(3) 𝑅(𝑋 ∪ 𝑌) ⊇ 𝑅(𝑋) ∪ 𝑅(𝑌);
(4) 𝑋 ⊆ 𝑌 ⇒ 𝑅(𝑋) ⊆ 𝑅(𝑌).

We give the definition of tolerance relation, a special type
of relation.

Definition 3 (tolerance relation [10, 33]). Let 𝑅 be a relation
on 𝑈. If, for any 𝑥 ∈ 𝑈, 𝑥 ∈ 𝑅𝑁(𝑥), 𝑅 is reflexive. If, for any
𝑥, 𝑦 ∈ 𝑈, 𝑦 ∈ 𝑅𝑁(𝑥) ⇒ 𝑥 ∈ 𝑅𝑁(𝑦), one says 𝑅 is symmetric.
If 𝑅 is both reflexive and symmetric, 𝑅 is called a tolerance
relation.

The following results hold for reflexive and symmetric
relations.

Proposition 4 (see [32]). Let 𝑅 be a relation on𝑈. For all𝑋 ⊆

𝑈,

(1) 𝑅 is reflexive⇔ 𝑅(𝑋) ⊆ 𝑋 ⇔ 𝑋 ⊆ 𝑅(𝑋);

(2) 𝑅 is symmetric⇔ 𝑋 ⊆ 𝑅(𝑅(𝑋)) ⇔ 𝑅(𝑅(𝑋)) ⊆ 𝑋.

2.2. Matroid. There are many equivalent ways to define a
matroid. The following definition of matroid is presented
from the viewpoint of independent sets.

Definition 5 (matroid [16]). Amatroid is an ordered pair𝑀 =

(𝑈,I) consisting of𝑈 and a collectionI (called independent
sets) of subsets of 𝑈 with the following three properties:

(I1) 0 ∈ I;

(I2) If 𝐼 ∈ I and 𝐼󸀠 ⊆ 𝐼, then 𝐼󸀠 ∈ I;

(I3) If 𝐼
1
, 𝐼
2
∈ I and |𝐼

1
| < |𝐼

2
|, then there exists 𝑒 ∈

𝐼
2
− 𝐼
1
such that 𝐼

1
⋃{𝑒} ∈ I, where |𝐼

1
| denotes the

cardinality of 𝐼
1
.

Example 6. Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, I = {0, {𝑎}, {𝑏}, {𝑐}, {𝑑},
{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐,
𝑑}}. Then𝑀 = (𝑈,I) is a matroid.

In order to make some expressions clear and brief, we
introduce some symbols as follows.

Definition 7 (see [16]). Let𝑈 be a universe.A ⊆ 2
𝑈 is a family

of subsets of 𝑈; then

Upp (A) = {𝑋 ⊆ 𝑈 : ∃𝐴 ∈ A s.t. 𝐴 ⊆ 𝑋} ;

Max (A) = {𝑋 ∈ A : ∀𝑌 ∈ A, 𝑋 ⊆ 𝑌 󳨐⇒ 𝑋 = 𝑌} ;

Min (A) = {𝑋 ∈ A : ∀𝑌 ∈ A, 𝑌 ⊆ 𝑋 󳨐⇒ 𝑋 = 𝑌} ;

Opp (A) = {𝑋 ⊆ 𝑈 : 𝑋 ∉ A} .

(2)

Base is an important concept of matroids. We give the
definition of base as follows.

Definition 8 (base [16]). Let𝑀 = (𝑈,I) be a matroid. Any
maximal independent set in𝑀 is called a base of𝑀 and the
family of all bases of𝑀 is denoted byB(𝑀); that is,B(𝑀) =
Max(I).

If a subset of the universe is not an independent set of a
matroid, it is called a dependent set of the matroid.

Definition 9 (circuit [16]). Let 𝑀 = (𝑈,I) be a matroid.
A minimal dependent set in 𝑀 is called a circuit of 𝑀 and
one denotes the family of all circuits of𝑀 by C(𝑀); that is,
C(𝑀) = Min(Opp(I)).

The following proposition shows that a matroid can be
defined from the viewpoint of circuits.
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Proposition 10 (circuit axioms [16]). Let C be a family of
subsets of 𝑈. Then there exists 𝑀 = (𝑈,I) such that C =

C(𝑀) if and only ifC satisfies the following conditions:

(C1) 0 ∉ C;
(C2) If 𝐶

1
, 𝐶
2
∈ C and 𝐶

1
⊆ 𝐶
2
, then 𝐶

1
= 𝐶
2
;

(C3) If 𝐶
1
, 𝐶
2
∈ C, 𝐶

1
̸= 𝐶
2
, and 𝑒 ∈ 𝐶

1
∩ 𝐶
2
, then there

exists 𝐶
3
∈ C such that 𝐶

3
⊆ 𝐶
1
∪ 𝐶
2
− {𝑒}.

In matroid theory, the rank function serves as a quanti-
tative tool. The definition of rank function is introduced as
follows.

Definition 11 (rank function [16]). Let 𝑀 = (𝑈,I) be a
matroid. Then 𝑟

𝑀
is called the rank function of 𝑀, where

𝑟
𝑀
(𝑋) = max{|𝐼| : 𝐼 ⊆ 𝑋, 𝐼 ∈ I} for all 𝑋 ⊆ 𝑈. When

there is no confusion, one omits the subscript𝑀.

The following proposition shows the connection between
the independent set and the rank function of a matroid.

Proposition 12 (see [16]). Let𝑀 = (𝑈,I) be a matroid and
𝑟
𝑀
its rank function. For all𝑋 ⊆ 𝑈, 𝑟

𝑀
(𝑋) = |𝑋| if and only if

𝑋 ∈ I.

The closure operator is one of the important characteris-
tics of a matroid.We give the definition of closure operator as
follows.

Definition 13 (closure operator [16]). Let 𝑀 = (𝑈,I) be a
matroid. For all𝑋 ⊆ 𝑈,

cl
𝑀 (𝑋)

= 𝑋 ∪ {𝑒 ∈ 𝑈 − 𝑋 : ∃𝐶 ∈ C such that 𝑒 ∈ 𝐶 ⊆ 𝑋 ∪ {𝑒}}
(3)

is called the closure of 𝑋 in𝑀 and cl
𝑀

is called the closure
operator. One can omit the subscript 𝑀 when there is no
confusion.

3. Matroidal Structure Induced by
Tolerance Relation

In this section, we establish a matroidal structure of the
generalized rough set based on a tolerance relation. Firstly,
a family of sets are defined and they are proved to satisfy the
circuit axioms of matroids.

Definition 14. Let 𝑅 be a tolerance relation on𝑈. One defines
a family of sets with respect to 𝑅 as follows:

C (𝑅) = Min ({𝑋 ⊆ 𝑈 : 𝑅 (𝑋) = 𝑋 ∧ 𝑋 ̸= 0}) . (4)

We give an example to show thatC(𝑅) is defined through
the lower approximation based on a tolerance relation.

Example 15. Let 𝑈 = {1, 2, 3, 4} and 𝑅 = {(1, 1), (2, 2), (3, 3),

(4, 4), (1, 2), (2, 1), (2, 4), (4, 2)} be a tolerance relation on 𝑈.
Then we can get 𝑅𝑁(1) = {1, 2}, 𝑅𝑁(2) = {1, 2, 4}, 𝑅𝑁(3) =

{3}, and 𝑅𝑁(4) = {2, 4}. Then 𝑅({1, 2, 4}) = {1, 2, 4}, 𝑅({3}) =
{3}, and 𝑅({1, 2, 3, 4}) = {1, 2, 3, 4}. So C(𝑅) = {{1, 2, 4},

{3}}.
In the following proposition, we will proveC(𝑅) to satisfy

the circuit axioms ofmatroids when the relation is a tolerance
relation.

Proposition 16. Let𝑅 be a tolerance relation on𝑈.ThenC(𝑅)
satisfies (C1), (C2), and (C3) of Proposition 10.

Proof. (1) From the definition of C(𝑅), it is clear that 0 ∉

C(𝑅).
(2) Let 𝐶

1
, 𝐶
2
∈ C(𝑅) and 𝐶

1
⊆ 𝐶
2
. Because the elements

ofC(𝑅) are minimal, we can get 𝐶
1
= 𝐶
2
.

(3) Let 𝐶
𝑖
, 𝐶
𝑗
∈ C(𝑅) and 𝐶

𝑖
̸= 𝐶
𝑗
. Then 𝑅(𝐶

𝑖
) = 𝐶

𝑖
,

𝑅(𝐶
𝑗
) = 𝐶
𝑗
. Suppose 𝐶

𝑖
∩𝐶
𝑗
̸= 0 and let𝑋 = 𝐶

𝑖
∩𝐶
𝑗
. 𝑅(𝑋) =

𝑅(𝐶
𝑖
∩ 𝐶
𝑗
) = 𝑅(𝐶

𝑖
) ∩ 𝑅(𝐶

𝑗
) = 𝐶
𝑖
∩ 𝐶
𝑗
= 𝑋; then 𝑋 ∈ C(𝑅).

Because𝐶
𝑖
, 𝐶
𝑗
areminimal elements, it is contradictory to the

definition ofC(𝑅). Then𝑋 = 0. So for any𝐶
𝑖
, 𝐶
𝑗
∈ C(𝑅) and

𝐶
𝑖
̸= 𝐶
𝑗
, 𝐶
𝑖
∩ 𝐶
𝑗
= 0. HenceC(𝑅) satisfies (𝐶3).

In sum, this completes the proof.

A matroid and its circuits determine each other. There-
fore, C(𝑅) can generate a matroid when the relation is a
tolerance relation.

Definition 17. Let 𝑅 be a tolerance relation on𝑈. Thematroid
with C(𝑅) as its circuit family is denoted by 𝑀(𝑅) =

(𝑈,I(𝑅)), whereI(𝑅) = Opp(Upp(C(𝑅))). One calls𝑀(𝑅)
the matroid induced by 𝑅.

Example 18 (continued from Example 15). Because C(𝑅) =
{{1, 2, 4}, {3}}, we can get a matroid𝑀(𝑅) = (𝑈,I(𝑅)), where
I(𝑅) = {0, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}}.

In order to further understand this type of matroids,
we introduce a special matroid called partition-circuit
matroid.

Definition 19 (partition-circuit matroid [34]). Let 𝑀 =

(𝑈,I) be a matroid. If C(𝑀) is a partition of 𝑈,𝑀 is called
a partition-circuit matroid.

As shown in Proposition 16, we can prove that the
matroid based on a tolerance relation is a partition-circuit
matroid.

Proposition 20. Let 𝑅 be a tolerance relation on 𝑈. The
matroid𝑀(𝑅) is a partition-circuit matroid.

Proof. According to the proof of Proposition 16, we have
known, for any 𝐶

𝑖
, 𝐶
𝑗
∈ C(𝑅), 𝐶

𝑖
∩ 𝐶
𝑗
= 0. Because ⋃𝐶

𝑖
=

⋃𝑅(𝐶
𝑖
) ⊆ 𝑅(⋃𝐶

𝑖
) ⊆ ⋃𝐶

𝑖
for all𝐶

𝑖
∈ C(𝑅),𝑅(⋃𝐶

𝑖
) = ⋃𝐶

𝑖
.

Suppose ⋃𝐶
𝑖
̸= 𝑈. Let 𝑌 = 𝑈 − ⋃𝐶

𝑖
. Namely, 𝑌 ∉ C(𝑅).

Since 𝑅(𝑌) ̸= 𝑌, there exists 𝑦 ∈ 𝑌 such that 𝑅𝑁(𝑦) ̸⊆ 𝑌.
That is to say, there exists 𝑥 ∈ 𝑈 − 𝑌 = ⋃𝐶

𝑖
such that

𝑥 ∈ 𝑅𝑁(𝑦). Because 𝑅 is a symmetric relation, 𝑦 ∈ 𝑅𝑁(𝑥).
It is contradictory to 𝑅(⋃𝐶

𝑖
) = ⋃𝐶

𝑖
. Then ⋃𝐶

𝑖
= 𝑈.

Therefore, C(𝑅) is a partition of 𝑈. This implies that 𝑀(𝑅)
is a partition-circuit matroid.
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Transitive closure of a relation is an important concept for
rough sets and matroids. We give the definition of transitive
closure of a relation as follows.

Definition 21 (transitive closure [35]). Let 𝑅 be a relation
on 𝑈. The smallest transitive relation on 𝑈 containing the
relation 𝑅 is called the transitive closure of 𝑅. One denotes
the transitive closure of 𝑅 by 𝑡(𝑅).

We give the properties of the corresponding transitive
closure 𝑡(𝑅) when 𝑅 is a tolerance relation in the following
lemma.

Lemma 22 (see [36]). Let 𝑅 be a tolerance relation on𝑈. 𝑡(𝑅)
is an equivalence relation.

In [35], we can get 𝑡(𝑅) = 𝑅 ∪ 𝑅
2
∪ ⋅ ⋅ ⋅ . We know 𝑡(𝑅)

is an equivalence relation if 𝑅 is a tolerance relation on 𝑈, so
we can get a partition 𝑈/𝑡(𝑅) = {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
} on 𝑈, where

𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑚
are the equivalence classes. Firstly, in order to

show the connection betweenC(𝑅) and the partition induced
by the transitive closure of the tolerance relation, we give a
lemma as follows.

Lemma 23 (see [36]). Let 𝑅
𝑖
(𝑖 = 1, 2, . . .) be relations on

𝑈. Then ⋃∞
𝑖=1
𝑅
𝑖
(𝑋) = ⋂

∞

𝑖=1
𝑅
𝑖
(𝑋) for any 𝑋 ⊆ 𝑈. 𝑅𝑛(𝑋) =

𝑅
(𝑛)
(𝑋) for any 𝑋 ⊆ 𝑈, 𝑛 = 1, 2, . . ., where 𝑅(𝑛) stands for

n-times composition of mapping 𝑅.

Using the above lemmas, we can obtain an important
proposition in the following.

Proposition 24. Let 𝑅 be a tolerance relation on 𝑈. Then
C(𝑅) = 𝑈/𝑡(𝑅).

Proof. For any 𝑋 ∈ C(𝑅), 𝑅(𝑋) = 𝑋, 𝑡(𝑅)(𝑋) =

⋃
∞

𝑖=1
𝑅
𝑛
(𝑋) = ⋂

∞

𝑖=1
𝑅
𝑛
(𝑋) = ⋂

∞

𝑖=1
𝑅
(𝑛)
(𝑋) = 𝑅(𝑋) ∩ 𝑅

(2)
(𝑋) ∩

⋅ ⋅ ⋅ . Since 𝑅(𝑋) = 𝑋, 𝑡(𝑅)(𝑋) = 𝑋. Because 𝑡(𝑅) is an
equivalence relation,𝑋 ∈ 𝑈/𝑡(𝑅). Therefore,C(𝑅) ⊆ 𝑈/𝑡(𝑅).
Conversely, for all 𝑋 ∈ 𝑈/𝑡(𝑅). Since 𝑡(𝑅) is an equivalence
relation, 𝑡(𝑅)(𝑋) = 𝑋. Because 𝑡(𝑅) is also a tolerance
relation, 𝑋 ∈ C(𝑅). This proves 𝑈/𝑡(𝑅) ⊆ C(𝑅). In sum, this
completes the proof.

An example can illustrate that C(𝑅) is equal to the
partition induced by the transitive closure of the tolerance
relation.

Example 25 (continued from Example 15). We know that
𝑈 = {1, 2, 3, 4}, 𝑅 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1),
(2, 4), (4, 2)}, and C(𝑅) = {{1, 2, 4}, {3}}. So the transitive
closure 𝑡(𝑅) = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 4),

(4, 2), (1, 4), (4, 1)}. Therefore, 𝑈/𝑡(𝑅) = {{1, 2, 4}, {3}}. It is
clear thatC(𝑅) = 𝑈/𝑡(𝑅).

In [34], Liu has already shown the characteristics of
independent sets about partition-circuitmatroid. Combining
the results of Liu about partition-circuit matroid, we can get

the expression of the independent sets of thematroid induced
by a tolerance relation.

Lemma 26 (see [34]). Let 𝑅 be a tolerance relation on 𝑈.
𝑀(𝑅) is the matroid induced by 𝑅. Then,

I (𝑅) = {𝑋 ⊆ 𝑈 : ∀𝐶 ∈ C (𝑅) , |𝑋 ∩ 𝐶| ≤ |𝐶| − 1} . (5)

We present the expression of the base according to the
partition induced by the transitive closure of a tolerance
relation.

Proposition 27. Let 𝑅 be a tolerance relation on 𝑈.𝑀(𝑅) is
the matroid induced by 𝑅. Then,

B (𝑅) = {𝑋 ⊆ 𝑈 : ∀𝑃 ∈
𝑈

𝑡 (𝑅)
, |𝑋 ∩ 𝑃| = |𝑃| − 1} . (6)

Proof. Because B(𝑅) = Max(I(𝑅)) and I(𝑅) = {𝑋 ⊆ 𝑈 :

for all 𝐶 ∈ C(𝑅), |𝑋 ∩ 𝐶| ≤ |𝐶| − 1}, B(𝑅) = {𝑋 ⊆ 𝑈 :

for all 𝐶 ∈ C(𝑅), |𝑋∩𝐶| = |𝐶|−1}. Based on Proposition 24,
B(𝑅) = {𝑋 ⊆ 𝑈 : for all 𝑃 ∈ 𝑈/𝑡(𝑅), |𝑋 ∩ 𝑃| = |𝑃| − 1}.

The rank function of the matroid induced by a tolerance
relation can be well expressed by the the partition induced by
the transitive closure of the tolerance relation.

Proposition 28. Let 𝑅 be a tolerance relation on 𝑈.𝑀(𝑅) is
the matroid induced by 𝑅. Then, for all𝑋 ⊆ 𝑈,

𝑟
𝑀(𝑅) (𝑋) = |𝑋| −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑃 ∈
𝑈

𝑡 (𝑅)
: 𝑃 ⊆ 𝑋}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (7)

Proof. According to Proposition 12, we need to prove
𝑟
𝑀(𝑅)

(𝑋) = |𝑋| if and only if 𝑋 ∈ I(𝑅). When
𝑟
𝑀(𝑅)

(𝑋) = |𝑋|, |{𝑃 ∈ 𝑈/𝑡(𝑅) : 𝑃 ⊆ 𝑋}| = 0; namely,
|{𝐶 ∈ C(𝑅) : 𝐶 ⊆ 𝑋}| = 0, based on Proposition 24. So
for any 𝐶 ∈ C(𝑅), |𝑋 ∩ 𝐶| ≤ |𝐶| − 1. Hence, 𝑋 ∈ I(𝑅).
Conversely,𝑋 ∈ I(𝑅) and for any𝐶 ∈ C(𝑅), |𝑋∩𝐶| ≤ |𝐶|−1.
BecauseC(𝑅) = 𝑈/𝑡(𝑅), for any𝑃 ∈ 𝑈/𝑡(𝑅), |𝑋∩𝑃| ≤ |𝑃|−1.
Therefore, 𝑋 ̸= 𝑃 and 𝑃 ̸⊆ 𝑋. So |{𝑃 ∈ 𝑈/𝑡(𝑅) : 𝑃 ⊆ 𝑋}| = 0.
Therefore 𝑟

𝑀(𝑅)
(𝑋) = |𝑋|. In sum, this completes the

proof.

In order to better illustrate the feature of the rank
function, we give the rank for all subsets of universe.

Example 29 (continued from Example 15). We have known
C(𝑅) = {{1, 2, 4}, {3}} and 𝑈/𝑡(𝑅) = {{1, 2, 4}, {3}}. Suppose
𝑋 = {1, 2}. There does not exist 𝑃 ∈ 𝑈/𝑡(𝑅) such that 𝑃 ⊆ 𝑋.
Then 𝑟

𝑀(𝑅)
(𝑋) = |𝑋| = 2. Suppose 𝑋 = {1, 3}. There exists

a 𝑃 = {3} ∈ 𝑈/𝑡(𝑅) such that 𝑃 = {3} ⊆ 𝑋. Therefore,
𝑟
𝑀(𝑅)

(𝑋) = |𝑋| − 1 = 1.

Rough set theory and matroid theory have close rela-
tionships. We study the connection between the closure of
the matroid induced by a tolerance relation and the upper
approximation of the tolerance relation whenC(𝑅) does not
contain any single-point set.

Proposition 30. Let 𝑅 be a tolerance relation on 𝑈. If C(𝑅)
does not contain any single-point set, then cl

𝑀(𝑅)
(𝑋) ⊆ 𝑅(𝑋)

for any 𝑋 ⊆ 𝑈.
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Proof. Since cl
𝑀(𝑅)

(𝑋) = 𝑋 ∪ {𝑒 ∈ 𝑈 − 𝑋 : ∃𝐶 ∈ C(𝑅) such
that 𝑒 ∈ 𝐶 ⊆ 𝑋∪{𝑒}}, we need to prove {𝑒 ∈ 𝑈−𝑋 : ∃𝐶 ∈ C(𝑅)

such that 𝑒 ∈ 𝐶 ⊆ 𝑋 ∪ {𝑒}} ⊆ 𝑅(𝑋). That is to say, for any
𝑒 ∈ 𝑈 − 𝑋, there exists 𝐶 ∈ C(𝑅) such that 𝑒 ∈ 𝐶 ⊆ 𝑋 ∪ {𝑒}.
We can get 𝑅𝑁(𝑒) ∩𝑋 ̸= 0. If 𝑅𝑁(𝑒) ∩𝑋 = 0, then there exist
two different circuits such that 𝑅𝑁(𝑒) and𝑋 are contained in
them, respectively. If there exists only one circuit 𝐶 ∈ C(𝑅)
such that 𝑅𝑁(𝑒) ⊆ 𝐶 and 𝑋 ⊆ 𝐶, then 𝑒 ∈ 𝑅𝑁(𝑒) ⊆ 𝐶 ⊆ 𝑋 ∪
{𝑒} ⊆ 𝐶∪{𝑒}. BecauseC(𝑅) does not contain any single-point
set, |𝐶| ≥ 2. It is a contradiction. So there exist two different
circuits 𝐶

1
∈ C(𝑅) and 𝐶

2
∈ C(𝑅) such that 𝑅𝑁(𝑒) ⊆ 𝐶

1

and 𝑋 ⊆ 𝐶
2
. Then 𝑒 ∈ 𝑅𝑁(𝑒) ⊆ 𝐶

1
⊆ 𝑋 ∪ {𝑒} ⊆ 𝐶

2
∪ {𝑒}.

Since 𝐶
1
∩ 𝐶
2
= 0 and |𝐶

𝑖
| ≥ 2 (𝑖 = 1, 2), 𝐶

1
⊆ 𝐶
2
∪ {𝑒} does

not hold. So 𝑅𝑁(𝑒) ∩ 𝑋 ̸= 0. That is to say, 𝑒 ∈ 𝑅(𝑋). Hence,
cl
𝑀(𝑅)

(𝑋) ⊆ 𝑅(𝑋).

But if C(𝑅) contains single-point sets, in general,
cl
𝑀(𝑅)

(𝑋) ⊆ 𝑅(𝑋) does not hold. We can use an example to
illustrate this situation.

Example 31 (continued from Example 15). We have known
C(𝑅) = {{1, 2, 4}, {3}} and the transitive closure 𝑡(𝑅) = {(1, 1),
(2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 4), (4, 2), (1, 4), (4, 1)}. If
𝑋 = {1}, we can get cl

𝑀(𝑅)
({1}) = {1, 3}, 𝑅({1}) = {1, 2}. There

is no relationship between 𝑅(𝑋) and cl
𝑀(𝑅)

(𝑋).

We do not consider single-point sets ofC(𝑅) in the above
proposition. If C(𝑅) contains single-point sets, we show
the relationship between the the upper approximation of a
tolerance relation and the closure of the matroid induced by
the tolerance relation.

Corollary 32. Let 𝑅 be a tolerance relation on𝑈. For any𝑋 ⊆

𝑈, cl
𝑀(𝑅)

(𝑋) − {𝑥 ∈ 𝑈 : {𝑥} ∈ C(𝑅)} ⊆ 𝑅(𝑋).

For any 𝑋 ∈ C(𝑅), we have the following conclusion
about 𝑡(𝑅)(𝑋), 𝑅(𝑋), and cl

𝑀(𝑅)
(𝑋).

Proposition 33. Let𝑅 be a tolerance relation on𝑈. For all𝑋 ∈

C(𝑅), 𝑡(𝑅)(𝑋) = 𝑅(𝑋) ⊆ cl
𝑀(𝑅)

(𝑋).

Proof. For any 𝑋 ∈ C(𝑅), 𝑅(𝑋) = 𝑋. Since 𝑅 is a symmetric
relation, 𝑅(𝑅(𝑋)) ⊆ 𝑋. Therefore, we can get 𝑅(𝑋) ⊆ 𝑋. 𝑅 is
also a reflexive relation, so 𝑋 ⊆ 𝑅(𝑋). Thus 𝑅(𝑋) = 𝑋. Since
𝑋 ⊆ cl

𝑀(𝑅)
(𝑋), we can get𝑅(𝑋) ⊆ cl

𝑀(𝑅)
(𝑋) for all𝑋 ∈ C(𝑅).

BecauseC(𝑅) = 𝑈/𝑡(𝑅), for any𝑋 ∈ C(𝑅),𝑋 ∈ 𝑈/𝑡(𝑅).Then
𝑡(𝑅)(𝑋) = 𝑋 = 𝑅(𝑋). So 𝑡(𝑅)(𝑋) = 𝑋 ⊆ cl

𝑀(𝑅)
(𝑋). Hence

𝑡(𝑅)(𝑋) = 𝑅(𝑋) ⊆ cl
𝑀(𝑅)

(𝑋).

We have discussed how to induce a matroid from a
relation. Then, how to induce a relation from a matroid is
presented as follows.

Definition 34 (see [17]). Let 𝑀 = (𝑈,I) be a matroid.
We define a relation 𝑅(𝑀) on 𝑈 as follows: for all 𝑥, 𝑦 ∈

𝑈,

(𝑥, 𝑦) ∈ 𝑅 (𝑀) ⇐⇒ 𝑥 = 𝑦 or ∃𝐶 ∈ C (𝑀)

such that {𝑥, 𝑦} ⊆ 𝐶.
(8)

We say 𝑅(𝑀) is a relation on 𝑈 induced by𝑀.

An example is provided to illustrate how to induce a
relation from a matroid.

Example 35. Let𝑀 = (𝑈,I) be a matroid, where 𝑈 = {1, 2,

3, 4} and I = {0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. Since
C(𝑀) = {{1, 2, 3}, {4}}, 𝑅(𝑀) = {(1, 1), (2, 2), (3, 3), (4, 4),

(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

According to the above definition, any matroid can
induce a relation. The following lemma proves that the
relation induced by a matroid is an equivalence relation.

Lemma 36 (see [17]). Let 𝑀 = (𝑈,I) be a matroid and
𝑅(𝑀) the relation induced by𝑀. Then 𝑅(𝑀) is an equivalence
relation on 𝑈.

We know a tolerance relation can induce a matroid and
the matroid can also induce a relation. In the following
proposition, we give the relationship between the original
tolerance relation and the induced relation.

Proposition 37. Let 𝑅 be a tolerance relation on 𝑈. Then 𝑅 ⊆
𝑅(𝑀(𝑅)).

Proof. Let (𝑥, 𝑦) ∈ 𝑅. Because𝑅 is a reflexive relation, (𝑥, 𝑥) ∈
𝑅 and (𝑦, 𝑦) ∈ 𝑅. 𝑅 is also a symmetric relation, so (𝑦, 𝑥) ∈ 𝑅.
Thus {𝑥, 𝑦} ⊆ 𝑅𝑁(𝑥) and {𝑥, 𝑦} ⊆ 𝑅𝑁(𝑦). So there exists 𝐶 ∈
C(𝑅) such that 𝑅𝑁(𝑥) ⊆ 𝐶 and 𝑅𝑁(𝑦) ⊆ 𝐶; that is, {𝑥, 𝑦} ⊆
𝐶. Therefore (𝑥, 𝑦) ∈ 𝑅(𝑀(𝑅)). Hence 𝑅 ⊆ 𝑅(𝑀(𝑅)).

In the above proposition, we give the connection between
the original tolerance relation and the induced relation, while
we give the relationship between the induced relation and
the transitive closure of the original tolerance relation in the
following proposition.

Proposition 38. Let 𝑅 be a tolerance relation on 𝑈. Then
𝑡(𝑅) = 𝑅(𝑀(𝑅)).

Proof. For any (𝑥, 𝑦) ∈ 𝑅(𝑀(𝑅)), 𝑥 = 𝑦 or ∃𝐶 ∈ C(𝑀) such
that {𝑥, 𝑦} ⊆ 𝐶. Suppose 𝑥 = 𝑦. Since 𝑡(𝑅) is an equivalence
relation, (𝑥, 𝑦) ∈ 𝑡(𝑅). Suppose there exists 𝐶 ∈ C(𝑀) such
that {𝑥, 𝑦} ⊆ 𝐶. That is to say, there exists 𝑃 ∈ 𝑈/𝑡(𝑅) such
that {𝑥, 𝑦} ⊆ 𝑃. So (𝑥, 𝑦) ∈ 𝑡(𝑅). Therefore, 𝑅(𝑀(𝑅)) ⊆ 𝑡(𝑅).
Because 𝑡(𝑅) is the smallest transitive relation containing
𝑅, 𝑡(𝑅) is an equivalence relation and 𝑅(𝑀(𝑅)) is also an
equivalence relation: 𝑡(𝑅) = 𝑅(𝑀(𝑅)).

4. Conclusions

In this paper, we connected matroid theory and generalized
rough set theory based on relations. We firstly defined a
family of sets induced by a tolerance relation and proved
the family to satisfy the circuit axioms of matroids. Some
characteristics of this matroid, such as the base and the rank
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function, were studied.Then, we investigated the relationship
between the upper approximation of a tolerance relation and
the closure operator of the matroid induced by the tolerance
relation. Finally, the matroid established by a tolerance
relation could induce a relation. We studied the connection
between the original tolerance relation and the induced rela-
tion. This study provides an important connection between
generalized rough sets based on relations and matroids.
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