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The first four smallest values of the spectral radius among all connected graphs with maximum clique size 𝜔 ≥ 2 are obtained.

1. Introduction

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a simple connected graph with ver-
tex set𝑉(𝐺) = {V

1
, V
2
, . . . , V

𝑛
} and edge set𝐸(𝐺). Its adjacency

matrix 𝐴(𝐺) = (𝑎
𝑖𝑗
) is defined as 𝑛 × 𝑛 matrix (𝑎

𝑖𝑗
), where

𝑎
𝑖𝑗
= 1 if V

𝑖
is adjacent to V

𝑗
and 𝑎

𝑖𝑗
= 0, otherwise. Denote

by 𝑑(V
𝑖
) or 𝑑
𝐺
(V
𝑖
) the degree of the vertex V

𝑖
. It is well known

that 𝐴(𝐺) is a real symmetric matrix. Hence, the eigenvalues
of 𝐴(𝐺) can be ordered as

𝜆
1
(𝐺) ≥ 𝜆

2
(𝐺) ≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
(𝐺) , (1)

respectively. The largest eigenvalue of 𝐴(𝐺) is called the
spectral radius of𝐺, denoted by 𝜌(𝐺). It is easy to see that if𝐺
is connected, then𝐴(𝐺) is nonnegative irreduciblematrix. By
the Perron-Frobenius theory, 𝜌(𝐺) has multiplicity one and
exists a unique positive unit eigenvector corresponding to
𝜌(𝐺). We refer to such an eigenvector corresponding to 𝜌(𝐺)
as the Perron vector of 𝐺.

Denote by 𝑃
𝑛
and 𝐶

𝑛
the path and the cycle on 𝑛 vertices,

respectively.The characteristic polynomial of𝐴(𝐺) is det(𝑥𝐼−
𝐴(𝐺)), which is denoted by Φ(𝐺) or Φ(𝐺, 𝑥). Let 𝑋 be an
eigenvector of𝐺 corresponding to 𝜌(𝐺). It will be convenient
to associate with 𝑋 a labelling of 𝐺 in which vertex V

𝑖
is

labelled 𝑥
𝑖
(or 𝑥V𝑖). Such labellings are sometimes called “val-

uation” [1].
The investigation on the spectral radius of graphs is an

important topic in the theory of graph spectra. The recent

developments on this topic also involve the problem concern-
ing graphs with maximal or minimal spectral radius, signless
Laplacian spectral radius, and Laplacian spectral radius, of
a given class of graphs, respectively. The spectral radius of a
graph plays an important role in modeling virus propagation
in networks [2]. It has been shown that the smaller the
spectral radius, the larger the robustness of a network against
the spread of viruses [3]. In [4], the first three smallest values
of the Laplacian spectral radii among all connected graphs
withmaximum clique size𝜔 are given. And, in [5], it is shown
that among all connected graphs with maximum clique size
𝜔 the minimum value of the spectral radius is attained
for a kite graph 𝑃𝐾

𝑛−𝜔,𝜔
, where 𝑃𝐾

𝑛−𝜔,𝜔
is a graph on 𝑛

vertices obtained from the path 𝑃
𝑛−𝜔

and the complete graph
𝐾
𝜔
by adding an edge between an end vertex of 𝑃

𝑛−𝜔
and

a vertex of 𝐾
𝜔
(shown in Figure 1). Furthermore, in this

paper, the first four smallest values of the spectral radius are
obtained among all connected graphs with maximum clique
size 𝜔.

LetI
𝑛,𝜔

be the set of all connected graphs of order 𝑛with
a maximum clique size 𝜔, where 2 ≤ 𝜔 ≤ 𝑛. It is easy to see
thatI

𝜔,𝜔
= {𝐾
𝜔
}. By direct calculation, we have 𝜌(𝐾

𝜔
) = 𝜔 −

1. If 𝐺 ∈ I
𝜔+1,𝜔

, then, from the Perron-Frobenius theorem,
the first 𝜔 − 1 smallest values of the spectral radius ofI

𝜔+1,𝜔

are 𝑃𝐾
1,𝜔;𝑖

(0 ≤ 𝑖 ≤ 𝜔 − 2), respectively, where 𝑃𝐾
1,𝜔;𝑖

is the
graph obtained from 𝑃𝐾

1,𝜔
by adding 𝑖 (0 ≤ 𝑖 ≤ 𝜔 − 2) edges.

So in the following, we consider that 𝑛 ≥ 𝜔 + 2.
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Figure 1: Kite graph 𝑃𝐾
𝑛−𝜔,𝜔

.

2. Preliminaries

In order to complete the proof of ourmain result, we need the
following lemmas.

Lemma 1 (see [6]). Let V be a vertex of the graph 𝐺. Then the
inequalities

𝜆
1
(𝐺) ≥ 𝜆

1
(𝐺 − V) ≥ 𝜆

2
(𝐺) ≥ 𝜆

2
(𝐺 − V)

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑛−1

(𝐺 − V) ≥ 𝜆
𝑛
(𝐺)

(2)

hold. If 𝐺 is connected, then 𝜆
1
(𝐺) > 𝜆

1
(𝐺 − V).

For the spectral radius of a graph, by the well-known
Perron-Frobenius theory, we have the following.

Lemma 2. Let 𝐺 be a connected graph and 𝐻 a proper
subgraph of 𝐺. Then 𝜌(𝐻) < 𝜌(𝐺).

Lemma 3 (see [6, 7]). Let 𝐺 be a graph on 𝑛 vertices, then

𝜌 (𝐺) ≤ max {𝑑 (V) : V ∈ 𝑉 (𝐺)} . (3)

The equality holds if and only if 𝐺 is a regular graph.

Let V be a vertex of a graph 𝐺 and suppose that two new
paths 𝑃 = V(V

𝑘+1
)V
𝑘
⋅ ⋅ ⋅ V
2
V
1
and 𝑄 = V(𝑢

𝑙+1
)𝑢
𝑙
⋅ ⋅ ⋅ 𝑢
2
𝑢
1
of

lengths 𝑘 and 𝑙 (𝑘 ≥ 𝑙 ≥ 1) are attached to 𝐺 at V(= V
𝑘+1

=

𝑢
𝑙+1
), respectively, to form a new graph 𝐺

𝑘,𝑙
(shown in Fig-

ure 2), where V
1
, V
2
, . . . , V

𝑘
and 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑙
are distinct. Let

𝐺
𝑘+1,𝑙−1

= 𝐺
𝑘,𝑙
− 𝑢
1
𝑢
2
+ V
1
𝑢
1
. (4)

We call that 𝐺
𝑘+1,𝑙−1

is obtained from 𝐺
𝑘,𝑙
by grafting an edge

(see Figure 2).

Lemma 4 (see [8, 9]). Let 𝐺 be a connected graph on 𝑛 ≥ 2

vertices and V is a vertex of 𝐺. Let 𝐺
𝑘,𝑙
and 𝐺

𝑘+1,𝑙−1
(𝑘 ≥ 𝑙 ≥ 1)

be the graphs as defined above. Then 𝜌(𝐺
𝑘,𝑙
) > 𝜌(𝐺

𝑘+1,𝑙−1
).

Let V be a vertex of the graph𝐺 and𝑁(V) the set of vertices
adjacent to V.

Lemma 5 (see [10, 11]). Let 𝐺 be a connected graph, and let
𝑢, V be two vertices of 𝐺. Suppose that V

1
, V
2
, . . . , V

𝑠
∈ 𝑁(V) \

(𝑁(𝑢)⋃{𝑢}) (1 ≤ 𝑠 ≤ 𝑑(V)) and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the

Perron vector of 𝐺, where 𝑥
𝑖
corresponds to the vertex V

𝑖
(1 ≤

𝑖 ≤ 𝑛). Let 𝐺∗ be the graph obtained from 𝐺 by deleting the
edges VV

𝑖
and adding the edges 𝑢V

𝑖
(1 ≤ 𝑖 ≤ 𝑠). If 𝑥

𝑢
≥ 𝑥V, then

𝜌(𝐺) < 𝜌(𝐺
∗
).

� �
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Figure 2: Grafting an edge.

Lemma 6 (see [12]). Let V be a vertex of 𝐺, let 𝜑(V) be the
collection of circuits containing V, and let 𝑉(𝑍) denote the set
of vertices in the circuit 𝑍. Then the characteristic polynomial
Φ(𝐺) satisfies

Φ (𝐺) = 𝑥Φ (𝐺 − V) − ∑
𝑤

Φ (𝐺 − V − 𝑤)

− 2 ∑

𝑍∈𝜑(V)
Φ (𝐺 − 𝑉 (𝑍)) ,

(5)

where the first summation extends over those vertices 𝑤

adjacent to V, and the second summation extends over all 𝑍 ∈

𝜑(V).

An internal path of a graph 𝐺 is a sequence of vertices
V
1
, V
2
, . . . , V

𝑘
with 𝑘 ≥ 2 such that

(1) the vertices in the sequence are distinct (except pos-
sibly V

1
= V
𝑘
);

(2) V
𝑖
is adjacent to V

𝑖+1
, (𝑖 = 1, 2, . . . , 𝑘 − 1);

(3) the vertex degrees 𝑑(V
𝑖
) satisfy 𝑑(V

1
) ≥ 3, 𝑑(V

2
) =

⋅ ⋅ ⋅ = 𝑑(V
𝑘−1

) = 2 (unless 𝑘 = 2) and 𝑑(V
𝑘
) ≥ 3.

Let 𝑊
𝑛
be the tree on 𝑛 vertices obtained from 𝑃

𝑛−4
by

attaching two new pendant edges to each end vertex of 𝑃
𝑛−4

,
respectively.

Lemma 7 (see [13]). Suppose that𝐺 ̸=𝑊
𝑛
is a connected graph

and 𝑢V is an edge on an internal path of𝐺. Let𝐺
𝑢V be the graph

obtained from 𝐺 by subdivision of the edge 𝑢V. Then 𝜌(𝐺
𝑢V) <

𝜌(𝐺).

3. Main Results

Let 𝐻
1
be the graph obtained from 𝐾

𝜔
and a path 𝑃

4
:

V
1
V
2
V
3
V
4
by joining a vertex of 𝐾

𝜔
and a nonpendant vertex,

say, V
2
, of 𝑃
4
by a path with length 2 and let 𝐻

2
be the graph

obtained from 𝐾
𝜔
by attaching two pendant edges at two

different vertices of𝐾
𝜔
(see Figure 3).

Lemma 8. Let𝐻
1
and𝐻

2
be the graphs defined as above (see

Figure 3). If 𝜔 ≥ 3, then 𝜌(𝐻
2
) > 𝜌(𝐻

1
).
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2
.

Proof. For 5 ≥ 𝜔 ≥ 3, by direct computations, we have
𝜌(𝐻
2
) > 𝜌(𝐻

1
). In the following, we suppose that 𝜔 ≥ 6.

From Lemma 6, we have

Φ(𝐻
1
) = (𝑥 + 1)

𝜔−2
[𝑥
7
− (𝜔 − 2) 𝑥

6
− (𝜔 + 4) 𝑥

5

+ (5𝜔 − 10) 𝑥
4
+ (4𝜔 + 1) 𝑥

3

− (5𝜔 − 10) 𝑥
2
− (2𝜔 − 1) 𝑥 + 𝜔 − 2]

= (𝑥 − 𝜔 + 2)
𝜔−2

𝑔
1
(𝑥) .

Φ (𝐻
2
) = (𝑥 + 1)

𝜔−3
[𝑥
5
− (𝜔 − 3) 𝑥

4
− (2𝜔 − 1) 𝑥

3

+ (𝜔 − 5) 𝑥
2
+ (2𝜔 − 3) 𝑥 − 𝜔 + 3]

= (𝑥 + 1)
𝜔−3

𝑔
2
(𝑥) .

(6)

By direct calculation, we have

𝑔
1
(𝜔 − 1 +

1

𝜔
2
)

= −𝜔
3
+ 2𝜔
2
+ 6𝜔 +

13

𝜔

+

26

𝜔
2
−

54

𝜔
3

+

26

𝜔
4
+

34

𝜔
5
−

54

𝜔
6
+

20

𝜔
7
+

20

𝜔
8
−

25

𝜔
9

+

5

𝜔
10
+

6

𝜔
11
−

5

𝜔
12
+

1

𝜔
14
− 20 < 0;

𝑔
1
(𝜔 − 1 +

2

𝜔
2
)

= 𝜔
4
− 6𝜔
3
+ 7𝜔
2
+ 26𝜔 +

66

𝜔

+

166

𝜔
2
−

416

𝜔
3

+

224

𝜔
4
+

432

𝜔
5
−

832

𝜔
6
+

320

𝜔
7
+

560

𝜔
8
−

800

𝜔
9

+

160

𝜔
10
+

384

𝜔
11
−

320

𝜔
12
+

128

𝜔
14
− 91 > 0;

𝑔
2
(𝜔 − 1 +

2

𝜔
2
)

= −2𝜔 +

12

𝜔

−

18

𝜔
2
−

8

𝜔
3
+

48

𝜔
4
−

48

𝜔
5

−

8

𝜔
6
+

64

𝜔
7
−

32

𝜔
8
+

32

𝜔
10
< 0.

(7)
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Figure 4: Graph 𝑃𝐾𝑖
𝑛−𝜔,𝜔

, where 𝑖 = 𝜔 + 1, . . . , 𝑛 − 1.
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Figure 5: Graph 𝑃𝐾𝑛−2
𝑛−𝜔,𝜔

.

From Lemmas 1 and 3, we have𝜔 > 𝜌(𝐻
1
) ≥ 𝜌(𝐾

𝜔
) = 𝜔−1 ≥

𝜆
2
(𝐻
1
) and 𝜔 > 𝜌(𝐻

2
) ≥ 𝜌(𝐾

𝜔
) = 𝜔 − 1. Then from (7) we

have 𝜌(𝐻
2
) > 𝜔 − 1 + (2/𝜔

2
) > 𝜌(𝐻

1
).

Let 𝑃𝐾𝑖
𝑛−𝜔,𝜔

be the graph obtained from the kite graph
𝑃𝐾
𝑛−𝜔−1,𝜔

(see Figure 1) and an isolated vertex V
𝑛
by adding

an edge V
𝑛
V
𝑖
(𝜔+ 1 ≤ 𝑖 ≤ 𝑛 − 1) (see Figure 4). It is easy to see

that 𝑃𝐾𝜔+2
5,𝜔

= 𝐻
1
and 𝑃𝐾𝑛−1

𝑛−𝜔,𝜔
= 𝑃𝐾
𝑛−𝜔,𝜔

.
Let 𝑃𝐾𝑛−2

𝑛−𝜔,𝜔
= 𝑃𝐾
𝑛−2

𝑛−𝜔,𝜔
+ V
𝑛−1

V
𝑛
(see Figure 5).

Lemma9. Let𝑃𝐾𝑖
𝑛−𝜔,𝜔

be the graphs defined as above (see Fig-
ure 4). Then

𝜌 (𝑃
𝑛
) < 𝜌 (𝑃𝐾

𝑛−2

𝑛−2,2
) < 𝜌 (𝐶

𝑛
) = 𝜌 (𝑊

𝑛
) < 𝜌 (𝑃𝐾

𝑛−3

𝑛−2,2
) ,

(𝑛 ≥ 10) .

(8)

Proof. Clearly, 𝑃
𝑛
= 𝑃
2𝑛−2,0

, 𝑃𝐾2
𝑛−2,2

= 𝑃
2𝑛−3,1

. From Lemma 4,
we have

𝜌 (𝑃
𝑛
) < 𝜌 (𝑃𝐾

𝑛−2

𝑛−2,2
) < 𝜌 (𝑊

𝑛
) = 2 = 𝜌 (𝐶

𝑛
) . (9)

For 𝑛 ≥ 10, from Lemma 2, we have 𝜌(𝑃𝐾𝑛−3
𝑛−2,2

) ≥ 𝜌(𝑃𝐾
7

8,2
) ≈

2.00659 > 𝜌(𝐶
𝑛
).

Let 𝐺
1
= 𝑃𝐾
𝑛−3

𝑛−3,3
− V
𝑛−1

V
𝑛−2

+ V
𝑛−3

V
𝑛−1

, let 𝐺
2
= 𝑃𝐾
𝑛−3

𝑛−3,3
+

V
𝑛−1

V
𝑛
, and let 𝐶

𝑛−1,1
be the graph obtained from 𝐶

𝑛−1
and

an isolated vertex by adding an edge between some vertex of
𝐶
𝑛−1

and the isolated vertex (see Figure 6).

Theorem 10. Among all connected graphs on 𝑛 vertices with
maximum clique size 𝜔 = 2 and 𝑛 ≥ 10, the first four smallest
spectral radii are exactly obtained for 𝑃

𝑛
, 𝑃𝐾𝑛−2
𝑛−2,2

, 𝐶
𝑛
,𝑊
𝑛
, and

𝑃𝐾
𝑛−3

𝑛−2,2
, respectively.

Proof. Let 𝐺 be a connected graph with maximum clique
size 𝜔 = 2 and 𝑛 ≥ 10 vertices. From Lemma 9, we have
𝜌(𝑃
𝑛
) < 𝜌(𝑃𝐾

𝑛−2

𝑛−2,2
) < 𝜌(𝑊

𝑛
) = 𝜌(𝐶

𝑛
) < 𝜌(𝑃𝐾

𝑛−3

𝑛−2,2
). Thus, we

only need to prove that 𝜌(𝐺) > 𝜌(𝑃𝐾
𝑛−3

𝑛−2,2
) if 𝐺 ̸= 𝑃

𝑛
, 𝑃𝐾𝑛−2
𝑛−2,2

,
𝑊
𝑛
, 𝐶
𝑛
, 𝑃𝐾𝑛−3
𝑛−2,2

. If 𝐺 is a tree, note that 𝐺 ̸= 𝑃
𝑛
, 𝑃𝐾𝑛−2
𝑛−2,2

, 𝑊
𝑛
,

𝑃𝐾
𝑛−3

𝑛−2,2
, then, from Lemma 4, we have 𝜌(𝐺) > 𝜌(𝑃𝐾

𝑛−3

𝑛−2,2
). If

𝐺 contains some cycle as a subgraph, then, from Lemmas 2
and 7, we have 𝜌(𝐺) ≥ 𝜌(𝐶

𝑛−1,1
) > 𝜌(𝑃𝐾

𝑛−3

𝑛−2,2
).
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Figure 6: Graphs 𝐺
1
, 𝐺
2
, 𝐶
𝑛−1,1

.

Lemma 11. Let 𝑃𝐾𝑖
𝑛−𝜔,𝜔

, 𝑃𝐾𝑛−2
𝑛−𝜔,𝜔

, 𝐺
1
and 𝐺

2
be the graphs

defined as above (see Figures 4, 5, and 6). Then

𝜌 (𝑃𝐾
𝑛−4

𝑛−3,3
) < min {𝜌 (𝑃𝐾𝑛−2

𝑛−3,3
) , 𝜌 (𝐺

1
) , 𝜌 (𝐺

2
)} ,

(𝑛 ≥ 8) .

(10)

Proof. For 8 ≤ 𝑛 ≤ 11, by direct calculation, we have
𝜌(𝑃𝐾
𝑛−4

𝑛−3,3
) < 𝜌(𝐺

1
). If 𝑛 ≥ 12, from Lemmas 2 and 7, we

have 2.23601 < 𝜌(𝑃𝐾
8,3
) < 𝜌(𝑃𝐾

𝑛−4

𝑛−3,3
) < 𝜌(𝑃𝐾

8

9,3
) < 2.23808.

From Lemma 6, we have

Φ(𝑃𝐾
𝑛−4

𝑛−3,3
)

= (𝑥
5
− 4𝑥
3
+ 3𝑥)Φ (𝑃𝐾

𝑛−8,3
)

− (𝑥
4
− 2𝑥
2
)Φ (𝑃𝐾

𝑛−8,3
− V
𝑛−5

)

= 𝑓
1
(𝑥)Φ (𝑃𝐾

𝑛−8,3
) − 𝑓
2
(𝑥)Φ (𝑃𝐾

𝑛−8,3
− V
𝑛−5

) ,

Φ (𝐺
1
) = (𝑥

5
− 4𝑥
3
)Φ (𝑃𝐾

𝑛−8,3
)

− (𝑥
4
− 3𝑥
2
)Φ (𝑃𝐾

𝑛−8,3
− V
𝑛−5

)

= 𝑓
3
(𝑥)Φ (𝑃𝐾

𝑛−8,3
) − 𝑓
4
(𝑥)Φ (𝑃𝐾

𝑛−8,3
− V
𝑛−5

) .

(11)

Then we have
𝑓
3
(𝑥)Φ (𝑃𝐾

𝑛−4

𝑛−3,3
) − 𝑓
1
(𝑥)Φ (𝐺

1
)

= (𝑓
1
(𝑥) 𝑓
4
(𝑥) − 𝑓

2
(𝑥) 𝑓
3
(𝑥))Φ (𝑃𝐾

𝑛−8,3
− V
𝑛−5

)

= (−𝑥
7
+ 7𝑥
5
− 9𝑥
3
)Φ (𝑃𝐾

𝑛−8,3
− V
𝑛−5

)

= 𝑅
1
(𝑥)Φ (𝑃𝐾

𝑛−8,3
− V
𝑛−5

) .

(12)

For 2.23601 < 𝑥 < 2.23808, we have

𝑓
1
(𝑥) > 2.23601

5
− 4 × 2.23808

3
+ 3

× 2.23601 ≈ 17 > 0;

𝑓
3
(𝑥) > 2.23601

5
− 4 × 2.23808

3
≈ 11 > 0;

𝑅
1
(𝑥) > −2.23808

7
+ 7 × 2.23601

5

− 9 × 2.23808
3
≈ 9 > 0.

(13)

Note that from Lemma 2, 𝜌(𝑃𝐾
𝑛−8,3

− V
𝑛−5

) < 𝜌(𝑃𝐾
𝑛−4

𝑛−3,3
) and

2.23601 < 𝜌(𝑃𝐾
𝑛−4

𝑛−3,3
) < 2.23808. Then, we have

𝑓
3
(𝑥)Φ (𝑃𝐾

𝑛−4

𝑛−3,3
) > 𝑓
1
(𝑥)Φ (𝐺

1
) ,

𝑥 ∈ [𝜌 (𝑃𝐾
𝑛−4

𝑛−3,3
) , 2.23808) .

(14)

...
...K𝜔 K𝜔�2
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Figure 7: Graphs𝐻
3
,𝐻
4
, and 𝐹

𝑔
.

Thus, 𝜌(𝑃𝐾𝑛−4
𝑛−3,3

) < 𝜌(𝐺
1
). By similar method, we have for

𝑛 ≥ 8

𝜌 (𝑃𝐾
𝑛−4

𝑛−3,3
) < 𝜌 (𝑃𝐾

𝑛−2

𝑛−3,3
) , 𝜌 (𝑃𝐾

𝑛−4

𝑛−3,3
) < 𝜌 (𝐺

2
) .

(15)

Let 𝐻
3
be the graph obtained from 𝐾

𝜔
by attaching two

pendant edges at some vertex of 𝐾
𝜔
; let 𝐻

4
be the graph

obtained from 𝐾
𝜔
and 𝑃

2
by adding two edges between two

vertices of𝐾
𝜔
and two end vertices of 𝑃

2
(see Figure 7).

Theorem 12. Among all connected graphs on 𝑛 vertices with
maximum clique size 𝜔 = 3 and 𝑛 ≥ 9, the first four smallest
spectral radii are exactly obtained for𝑃𝐾

𝑛−3,3
,𝑃𝐾𝑛−2
𝑛−3,3

,𝑃𝐾𝑛−3
𝑛−3,3

,
𝑃𝐾
𝑛−4

𝑛−3,3
, respectively.

Proof. Let𝐺 be a connected graph with maximum clique size
𝜔 = 3 and 𝑛 ≥ 9 vertices. From Lemmas 2 and 7, we have

𝜌 (𝑃𝐾
𝑛−4

𝑛−3,3
) > 𝜌 (𝑃𝐾

𝑛−3

𝑛−3,3
) > 𝜌 (𝑃𝐾

𝑛−2

𝑛−3,3
) > 𝜌 (𝑃𝐾

𝑛−3,3
) .

(16)

Thus, we only need to prove that 𝜌(𝐺) > 𝜌(𝑃𝐾
𝑛−4

𝑛−3,3
) if

𝐺 ̸= 𝑃𝐾
𝑛−3,3

, 𝑃𝐾𝑛−2
𝑛−3,3

, 𝑃𝐾𝑛−3
𝑛−3,3

, 𝑃𝐾𝑛−4
𝑛−3,3

.
We distinguish the following three cases.

Case 1. If there exist at least two vertices outside of𝐾
3
that are

adjacent to some vertices of𝐾
3
, then we have that 𝐺 contains

either 𝐻
2
(𝜔 = 3) or 𝐻

3
(𝜔 = 3) as a proper subgraph. If 𝐺

contains 𝐻
2
(𝜔 = 3) as a proper subgraph, from Lemmas 2

and 7, we have

𝜌 (𝐺) > 𝜌 (𝐻
2
) ≈ 2.30278 > 𝜌 (𝑃𝐾

5

6,3
)

≈ 2.26542 > 𝜌 (𝑃𝐾
𝑛−4

𝑛−3,3
) , (𝜔 = 3) .

(17)

If𝐺 contains𝐻
3
(𝜔 = 3) as a proper subgraph, from Lemmas

2 and 7, we have
𝜌 (𝐺) > 𝜌 (𝐻

3
) ≈ 2.34292

> 𝜌 (𝑃𝐾
5

6,3
) > 𝜌 (𝑃𝐾

𝑛−4

𝑛−3,3
) , (𝜔 = 3) .

(18)

Case 2. Suppose that there exists a vertex, say, 𝑢, which does
not belong to𝐾

3
, such that 𝑢 is adjacent to at least two vertices

of 𝐾
3
. Then 𝐺 contains 𝐶∗

4
as a proper subgraph, where 𝐶∗

4

is obtained from 𝐶
4
by adding an edge between two disjoint

vertices. From Lemmas 2 and 7, we have

𝜌 (𝐺) > 𝜌 (𝐶
∗

4
) ≈ 2.56155 > 𝜌 (𝑃𝐾

5

6,3
) > 𝜌 (𝑃𝐾

𝑛−4

𝑛−3,3
) . (19)
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Case 3. Suppose that there uniquely exists a vertex 𝑢 which
does not belong to 𝐾

3
such that 𝑢 is adjacent to a vertex of

𝐾
3
. We distinguish the following two cases.

Subcase 1. Suppose that 𝐺 − 𝑉(𝐾
3
) is a tree. If there exist

two vertices 𝑢, 𝑟 ∈ 𝑉(𝐺 − 𝑉(𝐾
3
)) such that 𝑑(𝑢) ≥ 3 and

𝑑(𝑟) ≥ 3, then, from Lemmas 2, 4, and 7, we have 𝜌(𝐺) >
𝜌(𝑃𝐾
𝑛−4

𝑛−3,3
). If there exists only one vertex 𝑢 ∈ 𝑉(𝐺 − 𝑉(𝐾

3
))

such that 𝑑(𝑢) ≥ 4, then, from Lemmas 2, 7, and 11, we
have 𝜌(𝐺) ≥ 𝜌(𝐺

1
) > 𝜌(𝑃𝐾

𝑛−4

𝑛−3,3
). If there exists exactly one

vertex 𝑢 ∈ 𝑉(𝐺 − 𝑉(𝐾
3
)) such that 𝑑(𝑢) = 3, note that

𝐺 ̸= 𝑃𝐾
𝑛−2

𝑛−3,3
, 𝑃𝐾𝑛−3
𝑛−3,3

, 𝑃𝐾𝑛−4
𝑛−3,3

, then from Lemmas 2 and 7 we
have 𝜌(𝐺) > 𝜌(𝑃𝐾𝑛−4

𝑛−3,3
).

Subcase 2. Suppose that 𝐺 − 𝑉(𝐾
3
) contains cycle 𝐶

𝑔
as a

subgraph. If 𝑔 = 3, 4, then, from Lemmas 2, 7 and 11, we
have 𝜌(𝐺) ≥ 𝜌(𝑃𝐾

𝑛−2

𝑛−3,3
) > 𝜌(𝑃𝐾

𝑛−4

𝑛−3,3
) or 𝜌(𝐺) ≥ 𝜌(𝐺

2
) >

𝜌(𝑃𝐾
𝑛−4

𝑛−3,3
). If 𝑔 ≥ 5, then, from Lemma 2, we can construct

a graph 𝐹
𝑔
from 𝐺 by deleting vertices such that 𝜌(𝐺) ≥

𝜌(𝐹
𝑔
), where 𝐹

𝑔
is the graph obtained from 𝐾

3
and a cycle

𝐶
𝑔
by joining a vertex of 𝐾

3
and a vertex of 𝐶

𝑔
with a path

and |𝑉(𝐹
𝑔
)| ≤ 𝑛 (see Figure 7). Suppose that 𝐶

𝑔
is labelled

V
1
, V
2
, . . . , V

𝑔
satisfying V

𝑖
V
𝑖+1

∈ 𝐸(𝐶
𝑔
), (1 ≤ 𝑖 ≤ 𝑔 − 1),

V
1
V
𝑔
∈ 𝐸(𝐶

𝑔
), and 𝑑(V

1
) = 3. Then, from Lemmas 2 and 7,

we have 𝜌(𝐹
𝑔
− V
2
V
3
) > 𝜌(𝑃𝐾

𝑛−4

𝑛−3,3
). Thus, we have 𝜌(𝐺) >

𝜌(𝑃𝐾
𝑛−4

𝑛−3,3
).

Lemma 13. Let 𝑃𝐾𝑖
𝑛−𝜔,𝜔

and 𝑃𝐾𝑛−2
𝑛−𝜔,𝜔

be the graphs defined as
above (see Figures 4 and 5). Then 𝜌(𝑃𝐾𝑛−3

𝑛−𝜔,𝜔
) > 𝜌(𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
)

(𝜔 ≥ 4).

Proof. Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 be the Perron vector of

𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
, where 𝑥

𝑖
corresponds to V

𝑖
. It is easy to prove that

𝑥
𝑛
= 𝑥
𝑛−1

. From 𝐴𝑋 = 𝜌(𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
)𝑋, we have

𝑥
𝑛−2

= (𝜌 (𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
) − 1) 𝑥

𝑛
,

𝑥
𝑛−3

= [𝜌 (𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
) (𝜌 (𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
) − 1) − 2] 𝑥

𝑛
.

(20)

From Lemma 2, for 𝜔 ≥ 4 we have 𝜌(𝑃𝐾𝑛−2
𝑛−𝜔,𝜔

) ≥ 𝜌(𝐾
𝜔
) =

𝜔 − 1 ≥ 3. Then

𝜌 (𝑃𝐾
𝑛−3

𝑛−𝜔,𝜔
) − 𝜌 (𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
)

≥ 𝑋
𝑇
𝐴(𝑃𝐾

𝑛−3

𝑛−𝜔,𝜔
)𝑋 − 𝑋

𝑇
𝐴(𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
)𝑋

= 2𝑥
𝑛
(𝑥
𝑛−3

− 𝑥
𝑛−2

− 𝑥
𝑛
)

= 2 [𝜌 (𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
) (𝜌 (𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
) − 2) − 2] 𝑥

𝑛

≥ 2𝑥
𝑛
> 0.

(21)

So, 𝜌(𝑃𝐾𝑛−3
𝑛−𝜔,𝜔

) > 𝜌(𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
).

... K𝜔

�2

�1

M2
𝜔

Figure 8: Graph𝑀2
𝜔
.

Let𝑀2
𝜔
(𝜔 ≥ 4) be the graph as shown in Figure 8.

Theorem 14. Among all connected graphs on 𝑛 vertices with
maximum clique size 𝜔 ≥ 4 and 𝑛 ≥ 𝜔 + 5, the first
four smallest spectral radii are exactly obtained for 𝑃𝐾

𝑛−𝜔,𝜔
,

𝑃𝐾
𝑛−2

𝑛−𝜔,𝜔
, 𝑃𝐾𝑛−2
𝑛−𝜔,𝜔

, 𝑃𝐾𝑛−3
𝑛−𝜔,𝜔

, respectively.

Proof. Let𝐺 be a connected graph with maximum clique size
𝜔 ≥ 4 and 𝑛 ≥ 𝜔 + 5 vertices. Suppose that𝐾

𝜔
is a maximum

clique of 𝐺. From Lemmas 2, 4, and 13, we have

𝜌 (𝑃𝐾
𝑛−3

𝑛−𝜔,𝜔
) > 𝜌 (𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
) > 𝜌 (𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
) > 𝜌 (𝑃𝐾

𝑛−𝜔,𝜔
) .

(22)

Thus, we only need to prove that 𝜌(𝐺) > 𝜌(𝑃𝐾
𝑛−3

𝑛−𝜔,𝜔
) if

𝐺 ̸= 𝑃𝐾
𝑛−𝜔,𝜔

, 𝑃𝐾𝑛−2
𝑛−𝜔,𝜔

, 𝑃𝐾𝑛−2
𝑛−𝜔,𝜔

, 𝑃𝐾𝑛−3
𝑛−𝜔,𝜔

. We distinguish the
following three cases.

Case 1. If there exist at least two vertices outside of 𝐾
𝜔
that

are adjacent to some vertices of 𝐾
𝜔
, then 𝐺 contains either

𝐻
2
or𝐻
3
as a proper subgraph. If 𝐺 contains𝐻

2
as a proper

subgraph, from Lemmas 2, 7, and 8, we have

𝜌 (𝐺) > 𝜌 (𝐻
2
) > 𝜌 (𝐻

1
) ≥ 𝜌 (𝑃𝐾

𝑛−3

𝑛−𝜔,𝜔
) . (23)

If 𝐺 contains𝐻
3
as a proper subgraph, from Lemmas 2, 5, 7,

and 8, we have

𝜌 (𝐺) > 𝜌 (𝐻
3
) > 𝜌 (𝐻

2
) > 𝜌 (𝐻

1
) ≥ 𝜌 (𝑃𝐾

𝑛−3

𝑛−𝜔,𝜔
) . (24)

Case 2. Suppose that there exists a vertex, say, 𝑢, which does
not belong to𝐾

𝜔
, such that𝑢 is adjacent to at least two vertices

of 𝐾
𝜔
. From Lemmas 2, 7, and 8, we have

𝜌 (𝐺) > 𝜌 (𝑀
2

𝜔
) > 𝜌 (𝐻

4
) > 𝜌 (𝐻

2
) > 𝜌 (𝐻

1
) ≥ 𝜌 (𝑃𝐾

𝑛−3

𝑛−𝜔,𝜔
) .

(25)

Case 3. Suppose that there uniquely exists a vertex 𝑢 which
does not belong to𝐾

𝜔
such that 𝑢 is adjacent to a vertex of𝐾

𝜔
.

If𝐺−𝑉(𝐾
𝜔
) is a tree, note that𝐺 ̸= 𝑃𝐾

𝑛−𝜔,𝜔
,𝑃𝐾𝑛−2
𝑛−𝜔,𝜔

,𝑃𝐾𝑛−3
𝑛−𝜔,𝜔

,
then, from Lemmas 2, 4, and 7, we have 𝜌(𝐺) > 𝜌(𝑃𝐾

𝑛−3

𝑛−𝜔,𝜔
).

Suppose that𝐺−𝑉(𝐾
𝜔
) contains cycle𝐶

𝑔
as a subgraph. If𝑔 =

3, note that𝐺 ̸= 𝑃𝐾

𝑛−2

𝑛−𝜔,𝜔
, then, from Lemmas 2 and 7, we have

𝜌(𝐺) > 𝜌(𝐺
∗
) > 𝜌(𝑃𝐾

𝑛−3

𝑛−𝜔,𝜔
), where 𝐺∗ = 𝑃𝐾

𝑛−3

𝑛−𝜔,𝜔
+ V
𝑛−1

V
𝑛
.

If 𝑔 ≥ 4, then by the similar reasoning as that of Subcase 2 of
Case 3 of Theorem 12, we have 𝜌(𝐺) > 𝜌(𝑃𝐾𝑛−3

𝑛−𝜔,𝜔
).

Lemma 15. Let𝐻
3
and𝐻

4
be the graphs defined as above (see

Figure 7). Then

𝜌 (𝐻
4
) > 𝜌 (𝐻

3
) (𝜔 ≥ 3) . (26)



6 The Scientific World Journal

Proof. Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 be the Perron vector of 𝐻

3
,

where 𝑥
𝑖
corresponds to V

𝑖
. From 𝐴𝑋 = 𝜌(𝐻

3
)𝑋, we have

𝜌 (𝐻
3
) 𝑥
1
= 𝑥
2
,

𝜌 (𝐻
3
) 𝑥
2
= 2𝑥
1
+ (𝜔 − 1) 𝑥

𝜔
,

𝜌 (𝐻
3
) 𝑥
𝜔
= (𝜔 − 2) 𝑥

𝜔
+ 𝑥
2
.

(27)

From above equations, we have

𝜌
3
(𝐻
3
) − (𝜔 − 2) 𝜌

2
(𝐻
3
) − (𝜔 + 1) 𝜌 (𝐻

3
) + 2𝜔 − 4 = 0.

(28)

Let

𝑟
1
(𝑥) = 𝑥

3
− (𝜔 − 2) 𝑥

2
− (𝜔 + 1) 𝑥 + 2𝜔 − 4. (29)

Then

𝑟
1
(𝜔 − 1) = −2 < 0. (30)

For 𝑥 > 𝜔 − 1 and 𝜔 ≥ 3, we have

𝑟
󸀠

1
(𝑥) = 3𝑥

2
− 2 (𝜔 − 2) 𝑥 − (𝜔 + 1) > 0. (31)

Note that 𝜌(𝐻
3
) > 𝜌(𝐾

𝜔
) = 𝜔 − 1. From (30) and (31), we

have 𝜌(𝐻
3
) which is the largest root of equation 𝑟

1
(𝑥) = 0.

Similarly, we have 𝜌(𝐻
4
) which is the largest root of equation

𝑟
2
(𝑥) = 𝑥

3
− (𝜔 − 1) 𝑥

2
− 2𝑥 + 2𝜔 − 4 = 0. (32)

Then we have, for 𝑥 > 𝜔 − 1,

𝑟
1
(𝑥) − 𝑟

2
(𝑥) = 𝑥

2
− (𝜔 − 1) 𝑥 > 0. (33)

Thus, we have 𝜌(𝐻
3
) < 𝜌(𝐻

4
).

Theorem 16. Let 𝐺 be a graph on 𝑛 vertices with maximum
clique size 𝜔 ≥ 3 and 𝑛 = 𝜔 + 2. Let 𝑃𝐾

2,𝜔
, 𝐻
2
, 𝐻
3
, and 𝐻

4

be the graphs defined as above (see Figures 1, 3 and 7). The first
four smallest spectral radii are obtained for 𝑃𝐾

2,𝜔
,𝐻
2
,𝐻
3
,𝐻
4
,

respectively.

Proof. From Lemmas 2, 5, 8, and 15, we have

𝜌 (𝐻
4
) > 𝜌 (𝐻

3
) > 𝜌 (𝐻

2
) > 𝜌 (𝐻

1
) > 𝜌 (𝑃𝐾

2,𝜔
) . (34)

Thus, we only need to prove that, for 𝐺 ̸= 𝑃𝐾
2,𝜔

,𝐻
2
,𝐻
3
, and

𝐻
4
, 𝜌(𝐺) > 𝜌(𝐻

4
). We distinguish the following two cases.

Case 1. Suppose that there exists exactly one vertex outside
of 𝐾
𝜔
that is adjacent to at least two vertices of 𝐾

𝜔
. Then 𝐺

contains 𝑀2
𝜔
(see Figure 8) as a subgraph. From Lemmas 2

and 7, we have 𝜌(𝑀2
𝜔
) > 𝜌(𝐻

4
).

Case 2. Suppose that the two vertices outside of 𝐾
𝜔
that are

all adjacent to some vertices of𝐾
𝜔
. Note that 𝐺 ̸=𝐻

2
,𝐻
3
,𝐻
4
.

Then 𝐺 contains one of graphs 𝐻
3
and 𝑀

2

𝜔
as a subgraph,

where𝐻
3
is obtained from𝐻

3
by adding an edge between two

pendant vertices. From Lemma 5, we have 𝜌(𝐺) ≥ 𝜌(𝐻
3
) >

𝜌(𝐻
4
). From Lemmas 2 and 7, 𝜌(𝐺) > 𝜌(𝑀2

𝜔
) > 𝜌(𝐻

4
).

...
...

... K𝜔K𝜔K𝜔

�2
�2
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Figure 9: Graphs 𝑃𝐾𝜔+1
3,𝜔

,𝐻
5
, and𝐻

6
.

Let 𝐻
5
be the graph obtained from 𝐻

2
and an isolated

vertex by adding an edge between a pendant vertex of𝐻
2
and

the isolated vertex; let 𝑃𝐾𝜔+1
3,𝜔

and𝐻
6
be the graphs as shown

in Figure 9.

Lemma 17. Let 𝑃𝐾𝜔+1
3,𝜔

and𝐻
5
be the graphs defined as above

(see Figure 9). Then

𝜌 (𝐻
5
) > 𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) , (𝜔 ≥ 4) . (35)

Proof. Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 be the Perron vector of

𝑃𝐾

𝜔+1

3,𝜔
, where 𝑥

𝑖
corresponds to V

𝑖
. It is easy to see that 𝑥

1
=

𝑥
5
. From 𝐴𝑋 = 𝜌(𝑃𝐾

𝜔+1

3,𝜔
)𝑋, we have

𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) 𝑥
1
= 𝑥
1
+ 𝑥
2
,

𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) 𝑥
2
= 2𝑥
1
+ 𝑥
3
,

𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) 𝑥
3
= 𝑥
2
+ (𝜔 − 1) 𝑥

4
,

𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) 𝑥
4
= 𝑥
3
+ (𝜔 − 2) 𝑥

4
.

(36)

From above equations, we have

𝑥
2
= (𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) − 1) 𝑥

1
,

𝑥
4
=

𝜌
2
(𝑃𝐾

𝜔+1

3,𝜔
) − 𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) − 2

𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) − 𝜔 + 2

𝑥
1
.

(37)

Then for 𝜔 ≥ 4, we have

𝜌 (𝐻
5
) − 𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) ≥ 𝑋

𝑇
𝐴 (𝐻
5
)𝑋 − 𝑋

𝑇
𝐴(𝑃𝐾

𝜔+1

3,𝜔
)𝑋

= 2𝑥
1
(𝑥
4
− 𝑥
2
− 𝑥
1
)

= 2

(𝜔 − 3) 𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) − 2

𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) − 𝜔 + 2

𝑥
1
> 0.

(38)

The result follows.

Lemma 18. Let𝐻
5
and𝐻

6
be the graphs defined as above (see

Figure 9). Then

𝜌 (𝐻
6
) > 𝜌 (𝐻

5
) , (𝜔 ≥ 4) . (39)
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Proof. For 𝜔 = 4, by direct calculation, we have 𝜌(𝐻
6
) >

𝜌(𝐻
5
). In the following, we suppose that 𝜔 ≥ 5. Then, from

Lemmas 2 and 3, we have 𝜔 > 𝜌(𝐻
5
) > 𝜌(𝐾

𝜔
) = 𝜔 − 1 ≥ 4.

Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 be the Perron vector of 𝐻

5
, where

𝑥
𝑖
corresponds to V

𝑖
. From 𝐴𝑋 = 𝜌(𝐻

5
)𝑋, we have

𝜌 (𝐻
5
) 𝑥
1
= 𝑥
2
,

𝜌 (𝐻
5
) 𝑥
2
= 𝑥
1
+ 𝑥
3
,

𝜌 (𝐻
5
) 𝑥
3
= 𝑥
2
+ 𝑥
4
+ (𝜔 − 2) 𝑥

6
,

𝜌 (𝐻
5
) 𝑥
4
= 𝑥
3
+ 𝑥
5
+ (𝜔 − 2) 𝑥

6
,

𝜌 (𝐻
5
) 𝑥
5
= 𝑥
4
,

𝜌 (𝐻
5
) 𝑥
6
= 𝑥
3
+ 𝑥
4
+ (𝜔 − 3) 𝑥

6
.

(40)

From above equations, we have for 𝜔 > 𝜌(𝐻
5
) > 𝜔 − 1 ≥ 4,

𝑥
6
=

𝜌
2
(𝐻
5
) − 1

𝜌 (𝐻
5
) − 𝜔 + 3

𝑥
1

+

(𝜌
2
(𝐻
5
) + 𝜌 (𝐻

5
)) (𝜌
2
(𝐻
5
) − 1) − 𝜌

2
(𝐻
5
)

(𝜌 (𝐻
5
) − 𝜔 + 3) (𝜌

2
(𝐻
5
) + 𝜌 (𝐻

5
) − 1)

𝑥
1

>

𝜌
2
(𝐻
5
) − 1

3

𝑥
1
> 𝜌 (𝐻

5
) 𝑥
1
= 𝑥
2
.

(41)

Then, from Lemma 5, we have 𝜌(𝐻
6
) = 𝜌(𝐻

5
− V
1
V
2
+ V
1
V
6
) >

𝜌(𝐻
5
).

Let 𝐻
7
be the graph obtained from 𝐻

3
and an isolated

vertex by adding an edge between V
𝜔
and the isolated vertex;

let𝐻
8
be the graph obtained from𝐻

3
and an isolated vertex

by adding an edge between V
2
and the isolated vertex; let

𝐻
9
be the graph obtained from 𝐻

3
and an isolated vertex by

adding an edge between one pendant vertex and the isolated
vertex; and let 𝐻

10
be the graph obtained from 𝑃𝐾

𝜔+1

3,𝜔
and

an isolated vertex by adding an edge between V
𝜔+1

and the
isolated vertex (see Figure 10).

Theorem 19. Let 𝑃𝐾
3,𝜔

, 𝑃𝐾𝜔+1
3,𝜔

, 𝑃𝐾𝜔+1
3,𝜔

, and𝐻
5
be the graphs

defined as above (see Figures 1, 4, 5, and 9). Among all
connected graphs on 𝑛 vertices with maximum clique size 𝜔
and 𝑛 = 𝜔 + 3 (𝜔 ≥ 4), the first four smallest spectral radii
are obtained for 𝑃𝐾

3,𝜔
, 𝑃𝐾𝜔+1
3,𝜔

, 𝑃𝐾𝜔+1
3,𝜔

, and𝐻
5
, respectively.

Proof. From Lemmas 2, 4, and 17, we have

𝜌 (𝐻
5
) > 𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) > 𝜌 (𝑃𝐾

𝜔+1

3,𝜔
) > 𝜌 (𝑃𝐾

3,𝜔
) . (42)

Thus, we only need to prove that 𝜌(𝐺) > 𝜌(𝐻
5
) if 𝐺 ̸= 𝑃𝐾

3,𝜔
,

𝑃𝐾
𝜔+1

3,𝜔
, 𝑃𝐾𝜔+1
3,𝜔

, and 𝐻
5
. We distinguish the following four

cases.

......
...

... K𝜔 K𝜔 K𝜔
K𝜔

�2 �𝜔+1
�𝜔

H7 H8 H9 H10

Figure 10: Graphs𝐻
7
,𝐻
8
,𝐻
9
,𝐻
10
.

Case 1. There exists exactly one vertex outside of 𝐾
𝜔
that is

adjacent to only one vertex of 𝐾
𝜔
. Then 𝐺 must be one of

graphs 𝑃𝐾
3,𝜔

, 𝑃𝐾𝜔+1
3,𝜔

, and 𝑃𝐾𝜔+1
3,𝜔

.

Case 2.There exists one vertex outside of 𝐾
𝜔
that is adjacent

to at least two vertices of 𝐾
𝜔
. Then 𝐺 contains 𝑀2

𝜔
(see

Figure 8) as a proper subgraph. From Lemmas 2 and 7, we
have 𝜌(𝐺) > 𝜌(𝑀2

𝜔
) > 𝜌(𝐻

5
).

Case 3. If there exactly exist two vertices outside of 𝐾
𝜔
that

are adjacent to some vertices of 𝐾
𝜔
, then 𝐺 contains 𝐻

5
or

𝐻
9
(see Figures 9 and 10) as a subgraph. If 𝐺 contains 𝐻

9

as a subgraph, then, from Lemmas 2 and 5, we have 𝜌(𝐺) ≥
𝜌(𝐻
9
) > 𝜌(𝐻

5
). If 𝐺 contains 𝐻

5
as a subgraph, note that

𝐺 ̸=𝐻
5
, then, from Lemma 2, we have 𝜌(𝐺) > 𝜌(𝐻

5
).

Case 4. If there exist three vertices outside of 𝐾
𝜔
that are

adjacent to some vertices of𝐾
𝜔
, then𝐺 contains one of graphs

𝐻
6
, 𝐻
7
, and 𝐻

8
(see Figures 9 and 10) as a subgraph. From

Lemmas 5 and 18, we have 𝜌(𝐻
8
) > 𝜌(𝐻

7
) > 𝜌(𝐻

6
) > 𝜌(𝐻

5
).

Then, from Lemma 2, we have 𝜌(𝐺) > 𝜌(𝐻
5
).

Lemma 20. Let 𝑃𝐾𝑖
𝑛−𝜔,𝜔

and 𝑃𝐾𝜔+2
4,𝜔

be the graphs defined as
above (see Figures 4 and 5). Then

𝜌 (𝑃𝐾
𝜔+1

4,𝜔
) > 𝜌 (𝑃𝐾

𝜔+2

4,𝜔
) , (𝜔 ≥ 4) . (43)

Proof. From Lemma 6, we have

Φ(𝑃𝐾

𝜔+2

4,𝜔
) = (𝑥

4
− 4𝑥
2
− 2𝑥 + 1)Φ (𝐾

𝜔
)

− (𝑥
3
− 3𝑥 − 2)Φ (𝐾

𝜔−1
)

= 𝑓
5
(𝑥)Φ (𝐾

𝜔
) − 𝑓
6
(𝑥)Φ (𝐾

𝜔−1
) ;

Φ (𝑃𝐾
𝜔+1

4,𝜔
) = (𝑥

4
− 3𝑥
2
+ 1)Φ (𝐾

𝜔
)

− (𝑥
3
− 𝑥)Φ (𝐾

𝜔−1
)

= 𝑓
7
(𝑥)Φ (𝐾

𝜔
) − 𝑓
8
(𝑥)Φ (𝐾

𝜔−1
) .

(44)

Then, we have

𝑓
7
(𝑥)Φ (𝑃𝐾

𝜔+2

4,𝜔
) − 𝑓
5
(𝑥)Φ (𝑃𝐾

𝜔+1

4,𝜔
)

= (𝑓
5
(𝑥) 𝑓
8
(𝑥) − 𝑓

6
(𝑥) 𝑓
7
(𝑥))Φ (𝐾

𝜔−1
)

= (𝑥
5
− 5𝑥
3
− 4𝑥
2
+ 2𝑥 + 2)Φ (𝐾

𝜔−1
)

= 𝑅
2
(𝑥)Φ (𝐾

𝜔−1
) .

(45)
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For 𝑥 > 𝜔 − 1 (𝜔 ≥ 4), we have

𝑓
5
(𝑥) > 0, 𝑓

7
(𝑥) > 0,

𝑅
2
(𝑥) > 0, Φ (𝐾

𝜔−1
) > 0.

(46)

From Lemma 2, we have 𝜌(𝑃𝐾𝜔+2
4,𝜔

) > 𝜌(𝐾
𝜔
) = 𝜔 − 1 and

𝜌(𝑃𝐾
𝜔+1

4,𝜔
) > 𝜌(𝐾

𝜔
) = 𝜔 − 1. Thus, for 𝑥 > 𝜔 − 1 (𝜔 ≥ 4), we

have𝑓
7
(𝑥)Φ(𝑃𝐾

𝜔+2

4,𝜔
)−𝑓
5
(𝑥)Φ(𝑃𝐾

𝜔+1

4,𝜔
) > 0.Then 𝜌(𝑃𝐾𝜔+1

4,𝜔
) >

𝜌(𝑃𝐾

𝜔+2

4,𝜔
), (𝜔 ≥ 4).

Lemma21. Let𝑃𝐾𝑖
𝑛−𝜔,𝜔

and𝐻
2
be the graphs defined as above

(see Figures 3 and 4). Then

𝜌 (𝐻
2
) > 𝜌 (𝑃𝐾

𝜔+1

4,𝜔
) , (𝜔 ≥ 3) . (47)

Proof. For 𝜔 = 3, 4, 5, by direct calculation, we have 𝜌(𝐻
2
) >

𝜌(𝑃𝐾
𝜔+1

4,𝜔
). In the following, we suppose that 𝜔 ≥ 6. From

Lemma 6, we have

Φ(𝑃𝐾
𝜔+1

4,𝜔
) = (𝑥 + 1)

𝜔−2
[𝑥
6
− (𝜔 − 2) 𝑥

5
− (𝜔 + 3) 𝑥

4

+ (4𝜔 − 8) 𝑥
3
+ (3𝜔 − 1) 𝑥

2

− (2𝜔 − 4) 𝑥 − 𝜔 + 1]

= (𝑥 + 1)
𝜔−2

𝑔
3
(𝑥) .

(48)

For 𝜔 ≥ 6, we have

𝑔
3
(𝜔 − 1 +

1

𝜔
2
)

= −𝜔
2
−

13

𝜔

+

4

𝜔
2
+

17

𝜔
3
−

24

𝜔
4
+

6

𝜔
5
+

14

𝜔
6

−

16

𝜔
7
+

2

𝜔
8
+

5

𝜔
9
−

4

𝜔
10
+

1

𝜔
12
+ 7 < 0;

𝑔
3
(𝜔 − 1 +

2

𝜔
2
)

= 𝜔
3
− 5𝜔
2
+ 2𝜔 −

58

𝜔

+

20

𝜔
2
+

108

𝜔
3
−

192

𝜔
4
+

48

𝜔
5

+

192

𝜔
6
−

256

𝜔
7
+

32

𝜔
8
+

160

𝜔
9
−

128

𝜔
10
+

64

𝜔
12
+ 24 > 0.

(49)

From Lemmas 1 and 3, we have 𝜔 > 𝜌(𝑃𝐾
𝜔+1

4,𝜔
) ≥ 𝜌(𝐾

𝜔
) =

𝜔 − 1 ≥ 𝜆
2
(𝑃𝐾
𝜔+1

4,𝜔
). Then from (49) we have 𝜔 − 1 + 2/𝜔

2
>

𝜌(𝑃𝐾
𝜔+1

4,𝜔
) > 𝜔 − 1 + 1/𝜔

2. From the proof of Lemma 8, we
have 𝜌(𝐻

2
) > 𝜔 − 1 + 2/𝜔

2 (𝜔 ≥ 6). The result follows.

Theorem 22. Among all connected graphs on 𝑛 vertices with
maximum clique size 𝜔 and 𝑛 = 𝜔 + 4 (𝜔 ≥ 4), the first four
smallest spectral radii are obtained for 𝑃𝐾

4,𝜔
, 𝑃𝐾𝜔+2
4,𝜔

, 𝑃𝐾𝜔+2
4,𝜔

,
and 𝑃𝐾𝜔+1

4,𝜔
(see Figures 1, 4, and 5), respectively.

Proof. Let𝐺 be a connected graph with maximum clique size
𝜔 ≥ 4 and 𝑛 = 𝜔 + 4 vertices. Suppose that𝐾

𝜔
is a maximum

clique of 𝐺. From Lemmas 2, 4, and 20, we have

𝜌 (𝑃𝐾
𝜔+1

4,𝜔
) > 𝜌 (𝑃𝐾

𝜔+2

4,𝜔
) > 𝜌 (𝑃𝐾

𝜔+2

4,𝜔
) > 𝜌 (𝑃𝐾

4,𝜔
) . (50)

Thus, we only need to prove that 𝜌(𝐺) > 𝜌(𝑃𝐾
𝜔+1

4,𝜔
) if 𝐺 ̸=

𝑃𝐾
4,𝜔

, 𝑃𝐾𝜔+2
4,𝜔

, 𝑃𝐾𝜔+2
4,𝜔

, 𝑃𝐾𝜔+1
4,𝜔

. We distinguish the following
three cases.

Case 1. There exists exactly one vertex outside of 𝐾
𝜔
that is

adjacent to one vertex of𝐾
𝜔
.

Subcase 1. Suppose that 𝐺 − 𝑉(𝐾
𝜔
) is a tree. If 𝐺 contains

exactly one pendant vertex, then 𝐺 = 𝑃𝐾
4,𝜔

. If 𝐺 contains
exactly two pendant vertices, then 𝐺 = 𝑃𝐾

𝜔+1

4,𝜔
or 𝐺 = 𝑃𝐾

𝜔+2

4,𝜔
.

If 𝐺 contains three pendant vertices, then 𝐺 = 𝐻
10
(see Fig-

ure 10). From Lemma 4, we have 𝜌(𝐻
10
) > 𝜌(𝑃𝐾

𝜔+1

4,𝜔
).

Subcase 2. Suppose that 𝐺 − 𝑉(𝐾
𝜔
) contains a cycle. If 𝐺 −

𝑉(𝐾
𝜔
) contains𝐶

4
, then𝐺 contains𝐻

11
as a subgraph, where

𝐻
11

is obtained from 𝑃𝐾
𝜔+1

4,𝜔
by adding an edge between

two pendant vertices. From Lemma 2, we have 𝜌(𝐻
11
) >

𝜌(𝑃𝐾
𝜔+1

4,𝜔
). If𝐺−𝑉(𝐾

𝜔
) does not contain𝐶

4
, then𝐺 = 𝑃𝐾

𝜔+2

4,𝜔

or 𝐺 contains 𝑃𝐾𝜔+1
3,𝜔

as a proper subgraph. From Lemmas 2
and 7, we have 𝜌(𝑃𝐾𝜔+1

3,𝜔
) > 𝜌(𝐻

11
) > 𝜌(𝑃𝐾

𝜔+1

4,𝜔
). Note that

𝐺 ̸= 𝑃𝐾

𝜔+2

4,𝜔
. Thus, we have 𝜌(𝐺) > 𝜌(𝑃𝐾𝜔+1

4,𝜔
).

Case 2. There exists at least one vertex outside of 𝐾
𝜔
that is

adjacent to at least two vertices of 𝐾
𝜔
. Then 𝐺 contains 𝑀2

𝜔

(see Figure 8) as a subgraph. From Lemmas 2, 7, and 21, we
have 𝜌(𝐺) > 𝜌(𝑀2

𝜔
) > 𝜌(𝐻

2
) > 𝜌(𝑃𝐾

𝜔+1

4,𝜔
).

Case 3.There exist at least two vertices outside of𝐾
𝜔
that are

adjacent to some vertices of𝐾
𝜔
. Then 𝐺 contains𝐻

2
or𝐻
3
as

a subgraph (see Figures 3 and 7). From Lemmas 2, 5, and 21,
we have 𝜌(𝐻

3
) > 𝜌(𝐻

2
) > 𝜌(𝑃𝐾

𝜔+1

4,𝜔
). Thus, from Lemma 2,

we have 𝜌(𝐺) > 𝜌(𝑃𝐾𝜔+1
4,𝜔

).

4. Conclusion

In this paper, the first four graphs, which have the smallest
values of the spectral radius among all connected graphs of
order 𝑛 with maximum clique size 𝜔 ≥ 2, are determined.
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