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We study the effect of ultrahigh energy collisions of two particles with different energies near the horizon of a 2 + 1 dimensional
BTZ black hole (BSW effect). We find that the particle with the critical angular momentum could exist inside the outer horizon of
the BTZ black hole regardless of the particle energy. Therefore, for the nonextremal BTZ black hole, the BSW process is possible
on the inner horizon with the fine tuning of parameters which are characterized by the motion of particle, while, for the extremal
BTZ black hole, the particle with the critical angular momentum could only exist on the degenerated horizon, and the BSW process

could also happen there.

1. Introduction

In the recent paper [1], Banados, Silk, and West proposed a
mechanism (BSW process) that two particles may collide on
the horizon of an extremal Kerr black hole with ultrahigh
center-of-mass (CM) energy, although it was pointed out
in [2, 3] that the collision in fact takes an infinite proper
time. Moreover, there are astrophysical limitations preventing
a Kerr black hole from being an extreme one, and the
gravitational radiation and backreaction effects should also
be included in this process. Due to the potential interest
in exploring ultrahigh energy physics, the BSW process has
been studied extensively in other kinds of black holes or
naked singularities [4-29]. To achieve ultrahigh CM energy
under the astrophysical limitation of maximal spin, the
multiple scattering was taken into account in the nonextremal
Kerr black hole [7, 15]. Another more direct application is to
consider different extreme rotating black holes, such as the
Kerr-Newman black holes and the Sen black hole [8, 11]. On
the other hand, a general explanation of this BSW process
was tried to give for a rotating black hole [19] and for other
black holes [20, 21]. Some efforts had also been made to draw
some implications concerning the effects of gravity generated
by colliding particles in [23].

However, all of the works mentioned above have been
focused on the black holes embedded in the asymptotically
flat space-time without cosmological constant. In our pre-
vious work [30], we had considered the BSW process in
the background of the Kerr- (anti-) de Sitter black hole
with nonzero cosmological constant and had found that the
cosmological constant has an important effect on the result.
For the case of the general Kerr-de Sitter black hole (with
positive cosmological constant), the collision of two particles
can take place on the outer horizon of the nonextremal
black hole and the CM energy of collision can blow up
arbitrarily if one of the colliding particles has the critical
angular momentum. In the present paper, we extend the
investigation of the BSW process to the background of a 2
+ 1 dimensional BTZ black hole [31], and our motivation is to
examine whether the BSW effect remains valid in the lower
dimensional case. Actually, in [5, 6], Lake had pointed out
the divergence of the CM energy of particle collision on the
inner horizon of the BTZ black hole, but the process was not
discussed in detail. In this paper, we study this process in the
BTZ black hole with circumstances.

This paper is organized as follows. In Section 2, we give a
brief review of the BTZ black hole. In Section 3, we study the
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CM energy of the particle collision on the horizon and derive
the critical angular momentum to blow up the CM energy.
In Section 4, we investigate the radial motion of colliding
particles with the critical angular momentum in detail. The
extremal and nonextremal cases are examined, respectively.
The conclusion is given in the last section.

2. The 2 + 1 Dimensional BTZ Black Hole

In this section we would like to study the horizon structure of
the 2 + 1 dimensional BTZ black hole. The metric of the BTZ
black hole is usually written as [31] (with units ¢ = G = 1)

ds® = -N2de* + N2dr + *(Nydt +dg)” ()

with
2 2
NZ(r) = —M+r—+]—,
r 2 4r?
; )
Ny (r)= - 372

where M and ] are the mass and spin angular momentum
of the black hole, respectively, and I* is related to the
cosmological constant A by I™> = —A.

The horizons can be solved from N, |
given by

= 0, and they are

r=r,

r, = \]é <IM YO, ) 3)

Here, r, is the outer horizon and r_ is the inner horizon. The
existence of the horizon requires

IJI < ML (4)

The horizon of the extremal black hole (corresponding to

|J| = M) is read as
r= M (5)
2

3. The Center-of-Mass Energy for
the On-Horizon Collision

To investigate the CM energy of the collision on the horizon
of the BTZ black hole, we have to derive the 2 + 1 dimensional
“4-velocity” component of the colliding particle in the back-
ground of the 2 + 1 dimensional BTZ black hole.

The generalized momentum P, is

P, = g,,X, (6)

where the dot denotes the derivative with respect to the affine
parameter A and y,v = t,r, ¢. Thus, the components P, and
P, of the momentum are turned out to be

P, = gt + gt¢¢’
, , 7)
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P, and Py are constants of motion. In fact, they correspond
to the test particle’s energy per unit mass E and the angular
momentum parallel to the symmetry axis per unit mass L,
respectively. And in the following discussion we will just
regard these two constants of motionas ~E = P, and L = Py
[24].

The affine parameter A can be related to the proper time
by T = pA, where 7 is given by the normalization condition
- = G X"'%" with @ = 1 for time-like geodesics and
#* = 0 for null geodesics. For a time-like geodesic, the affine
parameter can be identified with the proper time, and thus,
from (7), we can solve the 2 + 1 dimensional “4-velocity”
components  and ¢ (where the dot denotes a derivative with
respect to the proper time now) as

it 2E-(JL/r*)

dr N2
dp  J(=JL+2Er*) +4LN;

dr 4r*N?

For the remaining component i = dr/dt of the radial motion,
we can obtain it from the Hamilton-Jacobi equation of the
time-like geodesic:

S _ 1,08 08

- Ox* ox”

or 29 ©)

with the ansatz
1
S:ET—Et+L¢>+Sr(r), (10)

where S, (r) is a function of r. Inserting the ansatz into (9),
with the help of the metric (1), we get

<dSr(r) )2 L - 4EJL? - 4 [12N2+ (~E* + N2) 2]

dr 4Nt
(11)
On the other hand, we have
ds, (r) . 7
—_— P = = —.
dr r grrr N2 (12)

r

Thus we get the square of the 4-velocity radial component:

2 2n2 (72, .2
<£>2:K—4rNr(L +r), (13)
dr 4rt
where
K = JL - 2Er”. (14)

Here we have obtained all nonzero 2 + 1 dimensional “4-
velocity” components for the geodesic equation. Next we
would like to study the CM energy of the two-particle
collision in the background of the BTZ black hole. Here
we consider a more general case that the two colliding
particles have different energies E, and E, and different
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angular momenta per unit mass L, and L,. For simplicity, the
particles under consideration have the same rest mass m1,. We
can compute the CM energy E; of this two-particle collision
by using

Ecy = V2m, V- Gt 15> (1)

where u! andu) are the “4-velocity” vectors of the two
particles (u = (f,7, </5)). With the help of (8) and (13), we
obtain the CM energy:

EZ 1
ﬁ = N [(JL, - 2E,7*) (JL, - 2E,1*) w©
+4r’N? (-L,L, + 1) - HyH,],
where

H; = \/ (JL; - 2E?)* — 4r2N2 (L% + 12) W)

(i=1,2).

—2
For simplicity, we can rescale the CM energy as Ey,

(1/ 2m§)EéM. We would like to study EéM for the case that
the particles collide on the black hole’s horizon, which means
N, = 0. The denominator of the expression on the right hand
of (16) is zero, and the numerator of it is

K; = KlE:E,.,L:L,J

(18)
i=1,2.

When K, K, > 0, the numerator will be zero and the value of

E(,, on the horizon will be undetermined, but when KK, <

0, the numerator will be a negative finite value and EZCM on the
horizon will be negative infinity. So it should have K, K, > 0,
and, for the CM energy on the horizon, we have to compute
the limiting value of (16) as r — r;,, where ry, is the horizon

of the black hole.
After some calculations, we get the limiting value of (16):

—2
Ecy (r— 1)

(L= L) =P(B =By’ =2(L, - Ly) (Lo — Len)
2(Ly ~Ley) (L, - Lew)
1[(E,Ly - E\L,) + MP(E, - E,)*] (IM + VEM? = J?)
+

P(Ly = L) (L= Lea)

=2+

>

(19)

which can also be rewritten as

—2 A
E =2+ ,
on (r—=m) =2+ S (20)

where

A= ]2 [(Ll - L2)2 - (El - Ez)zlz

~2(Ly = L) (Lay ~ Lo) |

+21[(E,L, - E\L,)" + (E, - E,)'I' M|

(1 EAE 7).

So it can be seen that when K; = 0, the CM energy on the
horizon will blow up. Solving K; = 0, we get the critical
angular momentum:

272E,  El(IM+PM? - ?)
Ci = = >
J J

(21)

i=1,2.

(22)

It is easy to prove that when K; = 0 and K, = 0, the CM
energy is finite. So in order to obtain an arbitrarily high CM
energy, one and only one of the colliding particles should have
the critical angular momentum. For the extremal BTZ black

hole J = IM, the EéM on the extremal horizon is

—2
ECM (7’ - re)

24 M[(Ll - Ell) - (Lz - Ezl)]z + 2(Ele B E1L2)2
2M (L, - E;l) (L, - E,l) '
(23)

Obviously, when one particle has the critical angular momen-
tum L, = E;l (or L, = E,l) and the other does not, the CM
energy on the extremal horizon could be infinite.

From the above derivation, it seems that the CM energy
could blow up on the horizon. However, in order to get
arbitrarily high CM energy on the horizon of the BTZ
black hole, the colliding particle with the critical angular
momentum must be able to reach the horizon of the black
hole. We will investigate this part in the next section.

4. The Radial Motion of the
Particle with the Critical Angular
Momentum near the Horizon

In this section, we will study the radial motion of the particle
with the critical angular momentum and find the region
where it can exist. In order for a particle to reach the
horizon of the black hole, the square of the radial component
of the “4-velocity” (dr/d7)* in (13) has to be positive in
the neighborhood of the black hole’s horizon. Obviously,
R(r)| -1, = 0on the horizon of the BTZ black hole. For a
particle with arbitrary energy E and angular momentum L,
the explicit form of (dr/ dr)?, which is denoted by R(r), reads

2 2
RUE<%>=§—%+M
(24)
L (em-g i
r2 4 2
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(b)

F1GURE 1: Behaviors of R(r) for (a) L>M — EJL — (J*/4) > 0 and (b) L*M — EJL — (J*/4) < 0.

We draw R(r) in Figure 1. It can be seen that, when LM -
EJL-J?/4 > 0,R(r —» 0) > +coandR(r — +00) — —00,
so there is only one positive root for R(r) = 0 and the particle
can exist in the region inside of the root. When L>M - EJL -
J*/4<0,R(r - 0) —» —coand R(r — +00) — —0c0, and
there are two positive roots and the particle can exist in the
region between the two roots. The bigger root of R(r) = 0 is

r, = <12 (E*+M) -1

12
[PM g1+ @B [EM 41+ L+ El)z])

x(v2) .
(25)

We find that it increases with E and L, which means that the
particle can move arbitrarily far from black hole’s horizon
with its energy and angular momentum’s increase.

Next, we will study the radial motion of the particle with
the critical angular momentum:

W
ROy, = 5 = l—2+2E2+M
(26)
2E*PM? + 2E*IMNPEM? - J?
- E ,
where
B’ [2IM (PM? - J?) + (2PM? - ) PM? = 7]
W= E
]2
-
(27)
By solving W = 0 we get the critical energy E;:
2
E, = / :
2\/212M (PM? - J2) + (2BM? - J21) \JPM? - ]2
(28)

When E > E, R(r) = 0 has one root

1

=— 4P |*M +2E*
"o @{ [] "

X (]2 —IM (lM +\I2M? - 12))]
+1 [ (PM* - %)
J*+8E'PM (lM +\IPM2? - ]2)

+ 4B <lM - F4

)

X

1/2
(29)

and the particle with the critical angular momentum can exist
inside of it. When E < E,, R(r) = 0 has two roots

1

{lz [12M+252
(7= (e epare ) )
e1[ (P -7)
x (7 + sEPM (1M + P2 - 2)
#4821 (1M - E

we )|}

(30)
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FIGURE 2: The variation of R(r) versus radius r for the case of the nonextremal BTZ black hole (I = 10, M = I,and ] = 1), E > E, ((a)
E =0.003) and E < E; ((b) E = 0.002). The vertical lines denote the locations of the outer and inner horizons.

L
TV

o {lz [ J°M +2E°

X (]2 -IM <lM+ \/m»]
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+4E° T <ZM - F%l
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(31)

and the particle with the critical angular momentum can
exist between them. The above discussion only concerns the
square of the ”4-velocity” radial component. To find whether
the particle with the critical angular momentum can reach
the horizon of the BTZ black hole, we should investigate
the roots of R(r) = 0 and the horizons of the black hole.
The nonextremal and extremal cases will be considered in the
following.

4.1. Nonextremal BTZ Black Hole. For the nonextremal BTZ
black hole case, we can prove that the solution (for E > E;
case) or the bigger solution (for E < E, case) of R(r) = 0 is
just the outer horizon of black hole:

fo =71, = \]é(lM+ \/M)

That means that the particle with the critical angular momen-
tum can exist inside the outer horizon of the nonextremal
BTZ black hole.

(32)

R(r)

FIGURE 3: The variation of R(r) versus radius r for the case of the
extremal BTZ black hole (I = 1, M = 1, and J = 1). The vertical line
denotes the locations of the degenerated horizon.

4.2. Extremal BTZ Black Hole. For the extremal BTZ black
hole case, R(r) for particle with the critical angular momen-
tum becomes very simple:

2 2
Ry =M-— -1

- (33)

We solve R(r) = 0 and get

To = \/%l

It is just the degenerated horizon of the extremal black hole.

The behaviors of R(r) for the particle with the critical
angular momentum are plotted in Figure 2 for the nonex-
tremal black hole and Figure 3 for the extremal black hole.
For the nonextremal black hole, we find that the particle with
the critical angular momentum can exist inside the outer
horizon. So particle collision on the inner horizon could
produce unlimited CM energy. For the extremal black hole,
the particle with the critical angular momentum could only
exist on the degenerated horizon, so if such particle exists,
then unlimited CM energy will be approached.

(34)



5. Conclusion

In this work, we have analyzed the possibility that the 2 + 1
dimensional BTZ black holes can serve as particle acceler-
ator. We first calculate the CM energy for the two-particle
collision. In order to obtain unlimited CM energy, one of
the particles should have the critical angular momentum.
Next, we study the radial motion for the particle with the
critical angular momentum. For the extremal BTZ black hole,
particles with critical angular momentum can only exist on
the outer horizon of the BTZ black hole. So if such particle
exists, then unlimited CM energy will be approached. For
the nonextremal BTZ black hole, particles can collide on the
inner horizon with arbitrarily high CM energy.
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