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Neonates are particularly susceptible to various pathogens compared to adults, which is attributed in part to their immature innate
and adaptive immunity. Natural killer cells provide first-line innate immune reactions against virus-infected cells without prior
sensitization. This review updates phenotypic and functional deficiencies of neonatal cells compared to their adult counterparts
and their clinical implications.

1. Introduction

Natural killer (NK) cells are a distinct lineage of lymphoid
cells defined by the expression of CD56 and NKp46 and
by the absence of CD3, providing the first-line defense
by lysing tumor and virus-infected cells in a nonmajor-
histocompatibility-complex- (MHC-) restricted fashion
without the need of prior sensitization [1–4]. Receptors
commonly expressed on NK cell surface include killer
immunoglobulin-like receptors (KIR), heterodimeric C-
type lectin receptors which can be inhibitory (NKG2A) or
activating (NKG2C and NKG2D), and natural cytotoxicity
receptors (NCR) [5–8].

NK cells can perform antibody-dependent cellular cyto-
toxicity (ADCC) through CD16 [9] or directly exert their
cytotoxic ability by the release of perforin and granzyme
B [1, 3, 10]. NK cells also kill tumor and virus-infected
cells by apoptosis, mediating through TNF-related apoptosis-
inducing ligand (TRAIL) and FasL [11].

NK cells also producemany cytokines such as interleukin
(IL)-5, IL-10, IL-13, GM-CSF, TNF-𝛼, TGF-𝛽, and IFN-𝛾
[8, 12]. IFN-𝛾 can induce TH1 responses and also up-regulate
MHC-I expression on antigen presenting cells. Recent pieces
of evidence suggest the greater regulatory roles for NK cells
by bridging innate with adaptive immunity via their intimate

interactions with dendritic cells, B cells, and T cells [13–
15]. Human NK cells can be divided into two major subsets
based on CD56 expression: the CD56dim subset accounts
for the majority (>90%) of peripheral blood NK cells that
are more effective at mediating cytotoxic function, while
the CD56bright CD16dim subset, characterized by the ability
to produce immunoregulatory cytokines, constitutes only a
minority (<10%) of the total NK cells [1, 8].

2. Immunophenotype of Neonatal Natural
Killer Cells

Human neonates have comparable or higher numbers and
percentages of NK (CD56+/CD16+/CD3−) cells in their
peripheral blood compared to adults [16–18]. Gaddy and
Broxmeyer showed that the CD56−CD16+ subset NK cells
are more abundant in the neonates and are precursors of the
more mature CD56+CD16+ NK cells [19].The CD56bright and
CD56dim NK cell subsets are present in similar proportions
in neonatal blood and adult blood [20, 21]. Very few neonatal
NK cells express CD57, a marker of terminal differentiation
[21]. CD57+ NK cells are characterized by a higher cytotoxic
capacity but decreased cytokine responsiveness [22]. Neona-
tal NK cells express lower L-selectin (CD62L) compared
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to adults [20, 23], highlighting their unique lymph node
homing properties. We and others have found a lower level
of CD54 expression on neonatal NK cells [24, 25], suggesting
an impaired ability to adhere to target cells. We observed
a higher NKp46 expression in neonatal NK cells compared
to adults [26]. The level of expression of other triggering
receptors like NKp30, NKG2D, and NKG2A/CD94 decreases
with age [27, 28].

3. Neonatal Natural Killer Cytotoxic Function

We and others have shown that neonatal NK cells show less
NK cell cytotoxicity and ADCC than their adult peripheral
blood (APB) counterparts, respectively [9, 20, 29–31]. Sev-
eral possibilities contribute to the impaired cytotoxicity of
neonatal NK cells. First, neonatal NK cells form fewer NK-
target cell conjugations compared with adult NK cells [21].
Secondly, compared with adult NK cells, neonatal NK cells
express lower levels of adhesion molecules like L-selectin
and CD54 [25, 32]. In contrast, the expression of inhibitory
receptors, such as CD94/NKG2A, was higher on neonatal NK
cells than those on adult NK cells [28]. Finally, neonatal NK
cells exhibit an impaired F-actin polymerization in forming
immunologic synapses with leukemic cells, a defect that
could be reversed with IL-2 [33]. Interestingly, the level of
expression of NK cytotoxic machinery such as perforin and
granzyme B by neonatal NK cells was comparable to or even
higher thanAPBNK cells [20, 33].We observed that neonatal
NKcellswere less susceptible toK562-induced apoptosis than
adult NK cells [34].

4. Cytokine Production of Neonatal NK Cells

NK cells serve as a bridge between innate immunity and
adaptive immunity and release a variety of cytokines such as
GM-CSF, TNF-𝛼, and IFN-𝛾 and chemokines like MIP-1𝛼,
MIP-1𝛽, and RANTES thatmodulate the subsequent adaptive
immune response. Krampera et al. reported that neonatal
NK cells showed a lower percentage of TNF-𝛼 producing
cells compared to adult NK cells [35]. We and others have
shown that resting neonatal NK cells did not produce IFN-𝛾
[26, 36]. However, neonatal NK cells exhibited higher IFN-
𝛾 production and CD69 expression than APB NK cells after
stimulation with IL-12 and IL-18 [37].

5. Neonatal NK Cell Response to
Viral Infections

NKcells play a critical role of controllingmost viral infections
[38]. NK cells emerge as an effective, early defense against
viral infections by mediating cytotoxicity and cytokine pro-
duction [39, 40]. As previously stated, the CD56dim NK
subset is more cytotoxic, while the CD56bright subset mainly
produces cytokines that serve as immuneregulators [8, 41].

A series of interactions between viruses and surface
receptors on NK cells are critical in activating antiviral
NK defense. The NCRs like NKp46, NKp30 and NKp44,
and NKG2D are essential in NK cell activation, while

the inhibitory NK receptors like p58.1, p58.2, p70, NKG2A,
and LIR-1 provide negative signals that allow NK cells
to discriminate between normal cells and cells that have
lost their MHC-I molecules [42–44]. NKp46 is the major
triggering receptor involved in the natural cytotoxicity of
human NK cells and binds hemagglutinin of influenza virus
[45, 46], whileNKG2AandNKp30 are involved in interaction
with dendritic cells that shape subsequent T-cell response
[47, 48].

NK cells are activated during the initial stages of viral
infections by cytokines and chemokines, including IFN-𝛼,
IFN-𝛽, IL-12, IL-15, and IL-18, produced by infected cells
or by activated dendritic cells and macrophages [49, 50].
Activated NK cells produce TNF-𝛼, IFN-𝛾, GM-CSF, and
chemokines that are significant in the noncytolytic control of
viral infections and may help shape the subsequent adaptive
immune response.The number of NK cells in the liver during
mouse cytomegalovirus (CMV) infection was decreased in
MIP-1𝛼-deficient mice, suggesting that chemokines may play
a crucial role in NK trafficking during viral infection [51].The
chemokine-dependent recruitment of NK cells during viral
infection is mediated by IFN-𝛾 [52].

The phenotypic and functional defects of neonatal NK
cells may compromise their antiviral immune defense.
Patients with primary NK cell deficiency are particularly
susceptible to severe varicella and complicated herpes virus
infections [53, 54]. Adult NK cells expressing an inhibitory
receptor for self-MHC-I show enhanced effector function,
the so called NK licensing [55–57]. NK cell repertoires
in neonates are not yet shaped toward increased clonal
frequency of KIR for self-MHC-I [58], contributing to their
greater infection susceptibility.

Virus infection can inducemodifications of the repertoire
of NK cell receptors, notably CMV [59]. In vitro exposure
to CMV leads to increased expression of the inhibitory
receptors KIR2DL1 and KIR2DL3 only in CMV-seropositive
donors [60]. Pediatric CMV infection is associated with the
expansion of the CD94/NKG2C+ NK cell subset [61].

Increased NK cell activity has been correlated with pro-
tection from human immunodeficiency virus (HIV) infec-
tion in highly exposed seronegative subjects [62]. We and
others have shown the deficient NK and ADCC function
of NK cells in the HIV-infected subjects [63–65]. Different
KIR-HLA associations may determine susceptibility to HIV
infection and the rate of disease progression [66]. Ballan et
al. observed an increased frequency of NK cells expressing
inhibitory KIR in HIV-infected children. The increased
expression of KIR2DL3, NKG2C, and NKp46 on NK cells
correlated with decreased CD4+ T-lymphocyte count [67].
HLA-C/KIR interactions may play a role in maintaining the
immunity in HIV-infected long-term nonprogressors [68].
Increased KIR2DL3 expression of NK cells was associated
with a full immunological recovery after effective antiretro-
viral therapy in HIV-infected subjects [69].

Immune activation of HIV leads to enhanced CCR5
expression on NK cells [70]. The chemokines MIP-1𝛼, MIP-
1𝛽, and RANTES produced by NK cells bind to CCR5 and
inhibit HIV cell entry and replication [71]. Interestingly,
Bernstein et al. reported that neonatal and adult NK cells
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produce comparable amounts of chemokines [72], while
Jacobson et al. showed reduced expression of MIP-1𝛼, MIP-
1𝛽, and RANTES in neonatal NK cells upon challenge of
autologous HIV-infected CD4+ T cells [73].

Severe acute respiratory infections with influenza virus in
infants are associated with reduced level of peripheral blood
NK cells [74, 75]. We and others have shown that influenza
virus directly infects NK cells and induces their apoptosis [26,
76]. We further showed that influenza-A-induced apoptosis
in neonatal NK cells was more pronounced than in adult
NK cells [26], which may contribute to the greater morbidity
of influenza-infected infants less than 6 months of age [77,
78], despite the possible protection provided by maternal
antibodies.

6. Interleukin-15 Enhances Neonatal
NK Function

IL-15, mainly produced bymacrophages andmonocytes, uses
the common 𝛽 and 𝛾 chains with the IL-2 receptor and a
unique 𝛼 chain for binding and signal transduction [79].
IL-15 plays a pivotal role in NK differentiation and survival
[80, 81]. The interaction of IL-15 with its receptor complex
on NK cells leads to a series of signaling including activation
of Janus kinase (Jak)/signal transducer and activator of
transcription (STAT) pathways, similar to that of IL-2 [82, 83].
IL-15 expression is significantly decreased at the gene and
protein levels in neonatal mononuclear cells compared to
APB mononuclear cells [84]. We and others have shown that
neonatal NK cells rapidly acquire cytotoxic activity after IL-
15 stimulation, although this activity was still lower than
correspondingly IL-15-treated adult NK cells [29, 31].

IL-15 is also capable of inducing antigen-independent
expansion and differentiation of human naive and memory
CD8+ T cells and enhances their replicative potential [85, 86].
Administration of IL-15 results in increased antimicrobial
activity in mice against herpes simplex virus (HSV) infection
[87, 88] and enhances HIV-specific CD8+ T-cell responses in
HIV-infected subjects [89]. IL-15 may be used as an adjunct
to antiretroviral therapy to bolster immune reconstitution in
HIV-infected subjects [90]. The ability of IL-15 to activate
both NK and CD8+ T cells makes it a potential effective
immunotherapy for neonates with severe life-threatening
viral infections.

7. Conclusion

Phenotypic and functional differences between neonatal and
adult NK cells were highlighted in this paper. It is now known
that different KIR-HLA combinations may modulate NK
function and influence the progression of infectious diseases.
NK cell repertoires of the neonates are not yet shaped toward
increased clonal frequencies of KIR for self-HLA class I like
that of the adults. The frequency of NK cells expressing
cognate KIR for self-HLA class I may gradually increase from
neonatal period to adulthood through certain viral infec-
tions. Further work will be needed to explore what triggers
the transition from an unbiased neonatal KIR repertoire to

a biased adult KIR repertoire and to elucidate how different
KIR-HLA combinations contribute to the control of neonatal
infections. Immunotherapy using NK-enhancing cytokines
like IL-15 may benefit neonates with severe viral infections.
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