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Multilevel current reinjection (MLCR) concept provides self-commutation capability to thyristors, enabling thyristor based current
source converters (CSC) to operate under negative firing angle. It also lowers the input current harmonic distortion.This is achieved
by using an auxiliary reinjection bridge. Extensive experimental results are presented in this paper to analyse the performance of
the 3-level MLCR CSC for different snubber components across the reinjection bridge. The trade-off in the choice of the snubber
circuit is illustrated, with its influence on the AC side line current and DC side output voltage of the 3-level MLCR CSC.

1. Introduction

In order to reduce the harmonic content in the line current
caused by High Voltage Direct Current (HVDC) converters,
different strategies have been proposed. These are (i) multi-
pulse methods, (ii) multilevel methods, and (iii) pulse-width
modulation (PWM) methods.

Different methods for increasing the number of pulses
using multipulse converters have been investigated [1]. The
simplest method is by increasing the pulse number by using
phase-shifting transformers. Multipulse converters such as
12-, 18-, 24-, and 36-pulse converter are used nowadays
and the total harmonic distortion (THD) of the input line
current of these converters has been reduced to around
15.2%, 10.1%, 7.5%, and 5.3%, respectively. Many modelling
techniques for phase-shifting converter transformers have
been also proposed in [2–4] to meet the IEEE 519 standards.
However, the weakness of these methods is the increase in
size and complexity of the transformer and the high costs
involved due to multiple 6-pulse bridges. A DC side current
injection method [5] improves the quality of the AC side line
currents by using a three-phase current-controlled inverter
which injects compensation currents in the AC side of the
converter. However, this method uses a complex 18-pulse
phase-shifting transformer.

Multilevel converters give significantly lower switching
losses and better harmonic performance [6–8] than equiva-
lent series-connected converters operating at the same rating
and carrier frequency but advantages of multilevel con-
verter are counterbalanced by the need for self-commutated
switches instead of thyristors, balancing of capacitors, and
so forth. Modular current source converters (MCSC) utilise
PWM techniques just like the PWM-voltage source con-
verters (VSC). Two-level PWM-VSC or Modular Multilevel
Converter (MMC) [9] has been used by the industry, for
example, HVDC-light and HVDC-plus, respectively. How-
ever, they are only being used for medium voltage HVDC
transmission. MCSC utilise selective harmonic elimination
[10] as the PWM strategy but the use of thyristors in the main
bridge is still not possible. Ongoing research in the field of
MMC converters includes direct power control [11], neural
network based sliding mode control [12], and fuzzy logic
based control [13].

It is now established that PWM-VSC/MMC/MCSC tech-
nology is well suited for the medium voltage levels but will
not be able to catch up with the thyristor based technology in
terms of high power handling capacity in the very near future.
Thus, there is a clear incentive for research in the thyristor
based HVDC technology to achieve the following:
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Figure 1: Three-level thyristor based MLCR CSC with Linear Reinjection.

(i) Achieve force commutation with thyristors.
(ii) Operate at negative firing angles enabling reactive

power export.
(iii) Operate the thyristors under zero-current switching

lowering the switching losses, voltage stress, and
costs.

(iv) Reduce harmonic distortion caused by thyristor based
systems.

The new concept of multilevel current reinjection
(MLCR) [14] combines the advantages of DC-ripple rein-
jection [15, 16] and multilevel conversion and soft switching
technique. Thyristor based MLCR current source converter
(CSC) was proposed in [17] where the magnitude and
duration of the reinjection current, used to minimize the
harmonic content, were adjusted to ensure that the currents
through the main bridge thyristors are forced to zero during
the main bridge commutations instants. This possibility had
the important implication that the thyristors do not need
to rely on the line voltage to commutate and are capable of
operatingwith firing angles that provide leading power-factor
just like self-commutating switches. Based on this, the self-
commutated HVDCMLCR CSC was introduced in [18].

However, questions have been raised about the ability to
force the main thyristors off using the reinjection bridge. In a
real world implementation, there are inevitable stray capac-
itance and inductances which may influence the thyristor
turn-off and simulation switching model may not fully rep-
resent the switching characteristics accurately. The question
that needed answering was whether these would hinder the
self-commutation ability with thyristors. For this proof of
concept, a small-scale prototype of a 3-level MLCR CSC has

been built in the laboratory. The experimental investigation
(under steady-state conditions), presented here, shows that
the line currents in AC side ofMLCRCSC follow the theoret-
ical current wave-shape well. This has clearly demonstrated
that self-commutation ability is achievable in a practical
system by the use of an auxiliary reinjection bridge.

RCD snubber is necessary across the reinjection bridge
switches to limit the sharp rise in voltage across it due to
the sudden interruption of current flowing through it. This
paper presents the experimental investigation of the influence
of the RCD snubber across the reinjection switches in a 3-
level thyristor based MLCR CSC performance. This paper
is divided into the following sections: Section 2 provides
the brief introduction to the 3-level thyristor based MLCR
CSC; Section 3 provides the PSCAD/EMTDC simulation
results, with and without the RCD snubber circuit, of the
performance of the 3-level MLCR CSC. Section 4 presents
some of the main hardware modules while Section 5 presents
the experimental results obtained. The trade-off in choice of
the snubber circuit is explained clearlywith respect toAC side
line current and DC side voltage waveforms.

2. Three-Level Thyristor Based MLCR CSC

Figure 1 shows the 3-level thyristor based MLCR CSC along
with the reinjection circuit. The reinjection transformer
is a single-phase two-winding transformer with 1 : 1 turns
ratio. The primaries of the two single-phase transformers
are connected across the DC bus through DC blocking
capacitors (𝐶). The DC current (𝐼DC) flows through the
reinjection IGBTs and load inductance (𝐿DC) and the load.
It is chopped into AC waveforms in the secondary windings
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Figure 2: Current waveforms for 3-level thyristor based MLCR CSC with Linear Reinjection.
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Figure 3: Theoretical DC voltage waveforms for 3-level thyristor based MLCR CSC for 𝛼 = −45∘.

of the reinjection transformer with the help of reinjection
switches (𝑆

𝑝
1

/𝑆
𝑛
1

, etc.). These currents are coupled to the
reinjection transformer primary winding to form multilevel
currents 𝐼

𝑗
1

and 𝐼
𝑗
2

which combine with 𝐼DC to shape the
DC bus currents 𝐼

1
and 𝐼
2
into multilevel waveforms. This

reinjection circuit generates three current steps in 𝐼
1
and 𝐼
2
.

Two levels are generated due to reverse connected switches
(𝑆
𝑝
1

/𝑆
𝑛
1

and 𝑆
𝑝
2

/𝑆
𝑛
2

) and one additional level is obtained by
firing 𝑆

𝑝
0

/𝑆
𝑛
0

when 𝐼
𝑗
1

and 𝐼
𝑗
2

are both zero.

2.1. AC Side Current Waveforms. The theoretical analysis of
the circuit shown in Figure 1 allows 𝐼

𝑎
(𝜔𝑡) to be determined

from the time domain components of the AC side secondary
currents 𝐼

𝑎𝑌
(𝜔𝑡) and 𝐼

𝑐𝑎𝐷
(𝜔𝑡). This gives

𝐼
𝑎
(𝜔𝑡) =
1

𝑘
𝑛

[𝐼
𝑎𝑌
(𝜔𝑡) + √3𝐼

𝑐𝑎𝐷
(𝜔𝑡)] , (1)

where 𝑘
𝑛
is interface transformer turns ratio. The corre-

sponding current waveforms are shown in Figure 2 where the
resulting current (𝐼

𝑎
) THD3 level of 7.77% is obtained.

2.2. DC Side Voltage Waveforms. The DC side voltage wave-
forms (Figure 3) are time referenced with respect to the AC
side current waveform 𝐼

𝑎
(Figure 2). The DC side voltages

across the individual bridges (𝑉
𝑦
(𝜔𝑡) and 𝑉

𝑑
(𝜔𝑡)) are plotted

in Figure 3with respect to the peak phase source voltage (𝑉
𝑝
𝑘

)
and can be expressed as for the first 𝜋/6 interval as

𝑉
𝑦
(𝜔𝑡) =
√3

𝑘
𝑛

𝑉
𝑝
𝑘

cos (𝜔𝑡 + 𝛼) ,

𝑉
𝑑
(𝜔𝑡) =
√3

𝑘
𝑛

𝑉
𝑝
𝑘

cos(𝜔𝑡 + 𝛼 − 𝜋
6
) ,

𝑉
𝑥
(𝜔𝑡) = 𝑉

𝑦
(𝜔𝑡) + 𝑉

𝑑
(𝜔𝑡) ,

(2)
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where 𝛼 is firing angle. The DC load voltage (𝑉DC) is
calculated as

𝑉DC (𝜔𝑡) = 𝑉𝑥 (𝜔𝑡) + 𝑉𝑧 (𝜔𝑡) ≈ 3.39
𝑉
𝑝
𝑘

𝑘
𝑛

cos𝛼. (3)

The harmonic spectrum of 𝑉DC is shown in Figure 4.
It can be clearly seen that the dominant harmonics are
24th, 48th, 72nd, 96th, and 120th which represents 24-pulse
operation. A small amount of 12-pulse related harmonics
such as 12th, 36th, and 60th can also be seen but the
magnitude is negligible.

2.3. Reinjection Current Waveforms. Figure 5 labels the vari-
ous current waveforms in the reinjection circuit. The “chop-
ping” of load current 𝐼DC occurs with the help of the reinjec-
tion IGBTs. The injection current 𝐼inj is a 3-level waveform
composed of the following:

(i) When reinjection IGBT pair 𝑆
𝑝
1

− 𝑆
𝑛
1

conducts, 𝐼
𝑗
1

=

(𝑛
1
/𝑛
0
)𝐼DC = 𝐼DC.

(ii) When reinjection IGBT pair 𝑆
𝑝
0

− 𝑆
𝑛
0

conducts, 𝐼
𝑗
1

=

0.

(iii) When reinjection IGBT pair 𝑆
𝑝
2

− 𝑆
𝑛
2

conducts, 𝐼
𝑗
1

=

−(𝑛
1
/𝑛
0
)𝐼DC = −𝐼DC.

Reinjection currents 𝐼
𝑗
1

and 𝐼
𝑗
2

add up to form 𝐼inj which
is injected back to themidpoint of the 12-pulse converter.The
theoretical current waveforms in the reinjection circuit are
shown in Figure 6.

3. PSCAD/EMTDC Verification

This section presents the PSCAD/EMTDC simulation results
of the thyristor based 3-level MLCR CSC. The converter
is directly connected to a balanced 3-phase voltage source
with series resistance and series inductance. The simu-
lation is carried out under the conditions listed in the
Appendix.

3.1. Waveforms without RCD Snubber. The voltage waveform
across the reinjection IGBT 𝑆

𝑝
1

as well as the current flowing
through it, without the RCD snubber, is shown in Figure 7.
It can be clearly seen that there is a sharp rise in voltage
across 𝑉

𝑆
𝑝1

whenever there is a current transition through
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Figure 6: Theoretical waveforms in the reinjection circuit.
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it, that is, current transition from 0 to −𝐼DC or 0 to 𝐼DC.
This effect was not considered while deriving the theoretical
waveforms. As seen from Figure 8, these voltage spikes occur
across the individual DC voltage waveform of the two 6-
pulse bridges which in turn affect the voltages 𝑉

𝑚
and 𝑉

𝑧
.

The spikes occur exactly 7.5∘ before and after the theoretical
main bridge switching instant. Thus there is a need to limit
the voltage 𝑑V/𝑑𝑡 using RCD snubber to an acceptable value
so that the voltage across the main bridge switches and DC

blocking capacitor and the reinjection transformer are within
their rated values.

The simulated AC side current waveforms are shown in
Figure 9.The simulated line current THDof 7.8% is very close
to the calculated theoretical value.

3.2. Waveforms with RCD Snubbers. As illustrated in
Figure 10(b), the snubber capacitor size is a trade-off
between 𝑑V/𝑑𝑡 across the reinjection switches and switching
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time. A “normal” snubber is defined as the one which allows
the current to reach the rated level at the same time the
voltage reaches zero. A small snubber allows the current to
rise faster while a large snubber slows the current rise rate.
However, large capacitor values will provide overclamping.
When the RCD snubber is used to control the rate of voltage
rise at the IGBT, the capacitor must be completely charged
and discharged during each cycle to be able to control the
rate-of-rise of the drain voltage. The RC time constant of the
snubber should be much smaller than the switching period.
Usually, the time constant (𝜏RC) should be (1/10)th of the
switching period. The value of snubber capacitor 𝐶sn is given
by the following equation [19]:

𝐶sn =
𝐼𝑡
𝑠

2𝐸
, (4)

where 𝐼 is maximum IGBT current (assumed) = 2A, 𝑡
𝑠
:

≈1.65 𝜇s (3 times the value given in the datasheet of the
IGBT), and 𝐸 is the maximum expected voltage across
IGBT: ≈0.9(𝑉

𝑝
𝑘

/𝑘
𝑛
) ≈ 36.72V for the present application.

Substituting these values in (4) gives 𝐶sn = 0.045 𝜇F. The
value of 𝑅sn is determined by allowing the switching time
constant (𝜏RC) to be less than 166.66 𝜇s ((1/10)th of 600Hz).
With 𝐶sn = 0.05 𝜇F and 𝑅sn = 1 kΩ, 𝜏RC = 50 𝜇s.

Three different cases are considered in this study, small
𝐶sn = 0.01 𝜇F, large 𝐶sn = 0.1 𝜇F, and very large 𝐶sn =
1 𝜇F. The PSCAD/EMTDC results are presented in Figures
11–15. From Figure 11, with 𝐶sn = 1 𝜇F the voltage across
𝑉
𝑆
𝑝1

is closest to its calculated value; however the rate of
current rise for the switch 𝑆

𝑝
1

is slowest. 𝐶sn = 0.01 𝜇F
provides higher rate of current rise in 𝑆

𝑝
1

and the current
reinjection current resembles the theoretical current more
closely. THD for line current 𝐼

𝑎
is obtained as 7.9%, 8.1%,

and 8.7%, respectively, with 𝐶sn = 0.01 𝜇F, 0.1 𝜇F, and
1 𝜇F (Figures 12–14). The effectiveness of the MLCR scheme
depends on the modification of the constant DC bus current
into a 3-level DC bus current using reinjection current
𝐼inj. The use of small 𝐶sn is found to be the best even
though it requires overrated reinjection switches as shown in
Figure 11.
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4. Hardware Modules

The major components of the experimental set-up consist of
voltage sensing, thyristor driver circuit, IGBT driver circuit,
and so forth. Each will be discussed in the following sections.

4.1. Voltage Transducer Circuit. Voltage sensors LEM LV25-P
[20] are used to convert power level voltage into low voltage
signals by scaling down the measured voltage to 5 𝑉RMS
The Hall effect transducers provide the isolation between
the high power system and the control electronic circuit.
For a 12-pulse converter, six voltage sensors are used. The
line voltages sensed are 𝑉

𝑎𝑛
, 𝑉
𝑏𝑛
, 𝑉
𝑐𝑛
, 𝑉
𝑎𝑏
, 𝑉
𝑏𝑐
, and 𝑉

𝑐𝑎
. The

triggering signals for the 𝑌-𝑌 and 𝑌-𝐷 connected converters
are derived from the low voltage sensed signals 𝑉

𝑐𝑎
𝑌

and
−𝑉
𝑎𝑛
𝑌

, respectively.
The LV25-P scales down the power level voltage into low

level signal when a current proportional to the measured
voltage is passed through the resistor 𝑅in (Figure 16(a)). For
the best accuracy of LV25-P,𝑅in should be so selected that the
voltagemeasured corresponds to a primary current (𝐼inRMS

) of
10mA.The current conversion ratio is 2.5; hence, the nominal
secondary current is 25mA. This secondary current flows
through an output series resistance 𝑅out to give the scaled
down voltage. The fabricated PCB for this purpose is shown
in Figure 16(b). The maximum and minimum value of the
series resistance 𝑅out with a ±15 V supply are between 100Ω
and 350Ω.

The 12-pulse interface transformer rating is (𝑉LLRMS
)

400V : 50V. The primary side input resistance is calculated
as

𝑅in =
400V
10mA
≈ 40 kΩ. (5)

A fixed value resistor of 40 kΩ/5W is used.

Theoutput voltage is fixed at 5𝑉RMS.Therefore, the output
resistance 𝑅out is calculated as

𝑅out =
5

25mA
≈ 200Ω. (6)

A variable 500Ω/0.6W resistor is used.

4.2. Forward Converter Based Thyristor Driver Circuit. The
thyristor driver circuit is based on the forward converter
topology with isolation between the control and power
circuit being provided by the 77205C pulse transformer [21]
(Figure 17(a)).

When the MOSFET is on, diode 𝐷
2
conducts and 𝑉sec =

5V is available across the secondary winding of the pulse
transformer. 𝑉sec drives gate current 𝐼

𝑔
in the gate-cathode

junction of the thyristor to turn it on. For 𝐼
𝑔
≈ 200mA, the

gate drive resistor 𝑅
𝑔
= 12.5Ω. When the MOSFET is off,

diode 𝐷
1
returns the energy stored in the pulse transformer

back to the supply. The 6-pulse thyristor PCB is shown in
Figure 17(b) which uses BT152800R thyristors [22].

4.3. Generating of Reinjection Pulses for 3-Level MLCR. In
order to produce the firing sequence needed to generate the
3-level 𝐼inj, the firing sequences of the reinjection IGBTs are
synchronised with the main bridge switching. In Figure 18
it is shown that each reinjection turn-on pulse is delayed
from the main bridge switching pulse by 52.5∘ and the width
of the turn-on pulse is 15∘. Based on the six main bridge
switching pulses, six reinjection turn-on pulses are derived
and these are added together from the reinjection pulse for
reinjection IGBT pair 𝑆

𝑝
1

/𝑆
𝑛
1

. Following a similar procedure,
the reinjection pulse for reinjection IGBT pair 𝑆

𝑝
2

/𝑆
𝑛
2

is also
derived as shown in Figure 19. Aminimumdead time of 10𝜇s
is selected between 𝑆

𝑝
1

/𝑆
𝑛
1

and 𝑆
𝑝
0

/𝑆
𝑛
0

and 𝑆
𝑝
2

/𝑆
𝑛
2

and the
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Figure 11: Voltage across reinjection IGBT 𝑆
𝑝1
for different 𝐶sn.

derivation of the reinjection pulse for 𝑆
𝑝
0

/𝑆
𝑛
0

is shown in
Figure 20.

4.4. Optocoupler Based IGBTDriver Circuit. The isolated gate
driver ACPL-312T [23] is used for this purpose.The response
of optocoupler depends on the value of gate resistance (𝑅

𝑔
).

𝑅
𝑔
is calculated from the peak gate current (𝐼

𝐺peak
) of 2.5 A

(from ACPL-312T datasheet). 𝑉OL is obtained from Figure 6
in the ACPL-312T datasheet, assuming temperature = 25∘.
Consider

𝑅
𝑔
≥
𝑉cc − 𝑉OL
𝐼
𝐺peak

=
15 − 3.5

2.5
= 4.6Ω. (7)

The value of the gate resistance has a significant impact
on the dynamic performance of IGBTs. A smaller gate resistor
charges and discharges the power transistor input capacitance
faster, reducing switching times and switching losses. The
trade-off is that this could lead to higher voltage oscillations.

At lower 𝑅
𝑔
values, the voltage supplied by the ACPL-312T

is not an ideal voltage step. Since the maximum peak gate
current of the driver must be equal to or lower than 𝐼

𝐺peak
,

choosing 𝑅
𝑔
= 10Ω is a good trade-off.

Once the logical signals (reinjection pulses for reinjection
switches) are available, these are fed to the IGBT driver
circuit.Thedriver circuit is shown in Figure 21. Since there are
six reinjection switches (IXGP20N [24]) for a 3-level MLCR
CSC, six isolated DC-DC converters are required for the
ACPL-312T. The isolated DC-DC converter 0515S [25] from
Tracopower is used here. 𝑉cc = 15V is chosen because the
output voltage (𝑉

𝑜
) of ACPL-312T goes high when𝑉cc −𝑉ee is

between 13.5 V and 30V. Input resistance for ACPL-312T, 𝑅in,
is calculated as follows (input current 𝐼in of ACPL-312T needs
to be limited between 7mA and 16mA):

𝑅in =
15 − 1.5

10mA
≈ 1.5 kΩ. (8)



Journal of Engineering 9

60

−2
0
2

−1
0
1

−0.4
−0.2

0
0.2

180 330 360270210 240 30090300 120 150

THD = 7.9%

I a
Y

(A
)

I c
a
D

(A
)

I a
(A

)

(∘)

(a) 𝐼
𝑎𝑦
, 𝐼
𝑐𝑎𝐷

, and 𝐼
𝑎
for 𝐶sn = 0.01 𝜇F

(∘)
30 12090 2100 180 240 330 36060 300270150

−2
0
2

−2

0

2

−0.5

0

0.5

I a
Y

(A
)

I c
a
D

(A
)

I a
(A

)

THD = 8.1%

(b) 𝐼
𝑎𝑦
, 𝐼
𝑐𝑎𝐷

, and 𝐼
𝑎
for 𝐶sn = 0.1 𝜇F

THD = 8.7%

0 90 12030 210180 240 330 36060 300270150
(∘)

I a
Y

(A
)

I c
a
D

(A
)

I a
(A

)

−2
0
2

−2

0

2

−0.4
−0.2

0
0.2

(c) 𝐼
𝑎𝑦
, 𝐼
𝑐𝑎𝐷

, and 𝐼
𝑎
for 𝐶sn = 1 𝜇F

Figure 12: Simulated AC side current and DC bus waveforms for the 3-level thyristor based MLCR CSC.
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Figure 13: Simulated AC side current and DC bus waveforms for the 3-level thyristor based MLCR CSC.
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Figure 17: Forward converter based thyristor driver circuit and PCB detail.

A decoupling capacitor of 0.1 𝜇F is placed across 𝑉cc and
𝑉ee, very close to the optocoupler itself to filter out any noise
coming from the isolated DC-DC converter.

4.5. DC Blocking Capacitor. A 400V/1mF (PEH200 Series,
±20%) electrolytic capacitor is used as the DC blocking
capacitor. This unit is rated for a total of 5.9 A based on an
equivalent series resistance (ESR) of 76mΩ at a frequency of
100Hz and equivalent series inductance (ESL) of 16 nHwhich
gives 𝑍

100Hz = 1.59Ω. The maximum average steady-state
DC voltage for this 3-level MLCR CSC prototype is ≈138V,
𝐼DC = 1.38A. The RMS value of reinjection currents 𝐼

𝑗
1

and
𝐼
𝑗
2

= 0.707 × 1.38 = 0.975A ≈ 1 A which is well under
the rating of PEH200 capacitor. Figure 22 shows the set-up
for the reinjection transformer along with the DC blocking
capacitors.

5. Experimental Results

Real world capacitors often have ±1%–±20% variation in
the capacitance values while resistors also have ±1%–±5%

variation; thus exact DC bus currents (𝐼
1
and 𝐼

2
) may

not be possible in hardware implementation. However, for
comparisonwith the theoretical waveforms, the experimental
and theoretical waveforms are overlapped together. Two
different types of PCBs with 𝐶sn: 0.01𝜇F and 1 𝜇F (Figure 23)
are fabricated and the results are summarized in this section.
The experimental 𝑉DC obtained from the prototype is 96.3 V
and 𝐼DC = 0.97A with 𝛼 = −45∘.

5.1. Current through Reinjection IGBTs. Figure 24 shows the
current flowing through reinjection IGBTs 𝑆

𝑝
1

, 𝑆
𝑝
0

, and 𝑆
𝑝
2

.
For 𝐶sn = 0.01 𝜇F (Figure 24(a)), these waveforms follow
the theoretical waveform closely with 𝐼

𝑆
𝑝1

≈ 𝐼DC for almost
the entire theoretical duration of 15∘. As observed from
Figure 24(b), with 𝐶sn = 1 𝜇F, 𝐼𝑆

𝑝1

≈ 𝐼DC for less than half
of the theoretical duration. These waveforms constitute the
“chopping” of 𝐼DC and formation of the reinjection currents.

5.2. Reinjection Currents Waveforms. Figure 25 shows the
reinjection currents 𝐼

𝑗
1

, 𝐼
𝑗
2

, and 𝐼inj on the primary side of the
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reinjection transformer. 𝐼inj is composed of 𝐼
𝑗
1

and 𝐼
𝑗
2

. Again,
with 𝐶sn = 1 𝜇F reinjection current 𝐼inj is not following the
theoretical 𝐼inj “perfectly” whereas, with 𝐶sn = 0.01 𝜇F, 𝐼inj
follows the theoretical wave-shape.

5.3. DC Bus Currents Waveforms. The injected current wave-
form 𝐼inj modifies the DC bus currents as shown in Figure 26.
This DC bus current is a 3-level waveform with 𝐼

1,2
= 0,

𝐼
1,2
= 𝐼DC, and 𝐼1,2 = 2𝐼DC as the three different levels of

DC bus current waveform.

5.4. AC Side Secondary Line Current Waveforms. The modi-
fied AC side secondary line currents 𝐼

𝑎𝑌
and 𝐼
𝑎𝐷

are shown
in Figure 27. With 𝐶sn = 0.01 𝜇F, experimental 𝐼

𝑎𝑌
and 𝐼
𝑎𝐷

follow the theoretical current wave-shape. Current spikes are
observed in 𝐼

𝑎𝑌
and 𝐼
𝑎𝐷

with 𝐶sn = 1 𝜇F. These spikes are
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Figure 24: Experimental currents 𝐼
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, 𝐼
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, and 𝐼
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through reinjection IGBTs.

observed at the same instants when themain bridge thyristors
are triggered. However, these spikes are not observed with
𝐶sn = 0.01 𝜇F.

5.5. AC Side Primary Line Current Waveform. The mod-
ified primary side line current 𝐼

𝑎
is shown in Figure 28.

The effect of using a “very large” 𝐶sn is clearly observed
(Figure 28(b)). 𝐼

𝑎
with 𝐶sn = 1 𝜇F is highly distorted

although a multistep waveform can be observed. With 𝐶sn =
0.01 𝜇F, 𝐼

𝑎
follows the theoretical waveform closely and a

24-step 𝐼
𝑎
is obtained.

5.6. 𝑌-𝑌 and 𝑌-𝐷 Connected DC Voltage Waveform. The
DC voltage waveforms for both 𝑌-𝑌 and 𝑌-𝐷 connected 6-
pulse bridges are shown in Figure 29. With 𝐶sn = 0.01 𝜇F,
the experimental waveform follows the theoretical one while,
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with 𝐶sn = 1 𝜇F, the transitions are delayed by about
7.5∘ which is also observed in PSCAD/EMTDC simulation
result. However, very large voltage 𝑑V/𝑑𝑡, as predicted by
PSCAD/EMTDC, is absent.

5.7. 12-Pulse DC Voltage Waveform. The 12-pulse DC voltage
obtained for both the values of 𝐶sn is shown in Figure 30.

5.8. Reinjection Transformer Secondary Side Voltage Wave-
form. The reinjection transformer secondary side voltage𝑉

𝑚

obtained is shown in Figure 31. 𝑉
𝑚
with 𝐶sn = 1 𝜇F follows

the theoretical 𝑉
𝑚
more closely but is delayed by about 7.5∘.

𝑉
𝑚
with 𝐶sn = 0.01 𝜇F has higher 𝑑V/𝑑𝑡 during transitions

(Figure 31(a)).

5.9. Three-Level MLCR CSC DC Voltage Waveform. The DC
voltage waveform 𝑉DC is shown in Figure 32. Voltage 𝑑V/𝑑𝑡
observed in 𝑉

𝑚
with 𝐶sn = 0.01 𝜇F is clearly reflected across

𝑉DC whereas the voltage 𝑑V/𝑑𝑡 transitions are not observed in
𝑉DC with 𝐶sn = 1 𝜇F. Nevertheless, 𝑉DC has 24 pulses in both
the cases which implies that ripple voltage is getting added to
𝑉
𝑥
giving it 24-pulse characteristics.
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Figure 32: Three-level MLCR CSC DC voltage waveform 𝑉DC.

6. Conclusion

The theory, PSCAD/EMTDC simulation results, hardware
prototype, and experimental results of a 3-level thyristor
basedMLCRCSC have been presented in detail in this paper.
The reinjection current forces the main bridge thyristor to
commutate under zero current thereby allowing it to be
switched at negative firing angles. It is possible to achieve
self-commutation for thyristors using an auxiliary reinjection
bridge.

From experimental investigation, it is observed that
the deviation of the actual waveforms from the theoretical
waveforms is mainly due to the use of a “very large”
snubber capacitor. With a “very large” snubber capacitor
value, interface transformer secondary side current showed
current 𝑑𝑖/𝑑𝑡 which happened exactly 7.5∘ before the cur-
rent passed through that particular thyristor. This is when
the thyristor is switched on. The voltage transitions were
also delayed by 7.5∘ with a “very large” snubber capacitor.
With a “small” snubber capacitor value, current waveform
follows the theoretical waveforms very closely; however
voltage 𝑑V/𝑑𝑡 can be observed in the output DC voltage
waveform.

The use of “small” snubber capacitor value is recom-
mended to reduce line current distortion, as the modifi-
cation of DC bus current is the key to achieve both self-
commutation for thyristors and lower harmonic distortion.

Appendix

Experimental/Simulation Parameters

Source specification is as follows:

(i) Voltage rating: 415V @ 50Hz.
(ii) Source impedance: 0.1Ω + 5mH.

Interface transformer is as follows:

(i) Type: 3-phase, 3-winding @ 50Hz.
(ii) Power rating: 2 kVA.
(iii) Voltage rating: 415V : 50V (1 : 1 for 𝑌-𝑌 and

1 :√3 for 𝑌-𝐷).

Reinjection transformer is as follows:

(i) Type: 1 phase and 2 windings @ 300Hz.
(ii) Nominal impedance: 5%.
(iii) Power rating: 1 kVA.
(iv) Voltage rating: 400V : 400V.

Load specification is as follows:

(i) Load resistance: 100Ω.
(ii) Load inductance: 400mH.

Firing angle (𝛼) = −45∘.
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