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A new recursive algorithm is developed for solving the algebraic Sylvester equation that defines the cross Grammian of singularly
perturbed linear systems. The cross Grammian matrix provides aggregate information about controllability and observability of
a linear system. The solution is obtained in terms of reduced-order algebraic Sylvester equations that correspond to slow and fast
subsystems of a singularly perturbed system.The rate of convergence of the proposed algorithm is 𝑂(𝜀), where 𝜀 is a small singular
perturbation parameter that indicates separation of slow and fast state variables. Several real physical system examples are solved
to demonstrate efficiency of the proposed algorithm.

1. Introduction

Singularly perturbed systems have multiple time scales cor-
responding to fast and slow state space variables. For a
system with two time scales, the slow time scale is related
to the eigenvalues that are close to the imaginary axis and
that represent the slow state space variables (slow modes)
of the system, while the fast time scale is related to those
that are far from the imaginary axis and that represent the
fast state space variables (fast modes) of the system. Many
algorithms exist in the literature for solving diverse problems
related to analysis and control of singularly perturbed linear
systems. Fixed point recursive numerical methods were first
proposed in [1] and used in [2–4] to solve the closed
and open loop optimal control problems. Those methods
led thereafter to the Hamiltonian approach, which solves
the linear-quadratic optimal control and filtering problem
by decomposing the algebraic Riccati equations into pure-
slow and pure-fast reduced-order algebraic Riccati equations
[5]. The exact decomposition into pure-slow and pure-fast
subsystems led to the use of parallel algorithms [6, 7] to
solve the algebraic Riccati equation of the linear-quadratic
optimal control problem. Moreover, some iterative methods

were also used to solve this problem (see, e.g., [8] and the
references therein). Most of the previous studies consider
solving the algebraic Riccati equation, as it represents the
most important equation of the optimal control and filtering
problems.

The system under investigation in this paper must be
asymptotically stable, controllable, and observable. The test
for controllability and observability of the system is usually
done separately using the controllability and observability
Grammians. In many applications, the reduced-order system
is welcome to lower computational complexity. Model order
reduction retains only state space variables that are both
strongly controllable and strongly observable. This requires
investigating the behavior of state space variables and bal-
ancing the controllability and observability Grammians, such
that they are diagonal and identical. It has been shown in
[9] that studying the controllability and observability of the
system, separately, can be misleading; a method that directly
assesses the combination of the two properties is preferred.
Therefore, the cross Grammian matrix was defined in [10]
as an alternative approach to the existing controllability and
observability Grammian matrices. Unlike the controllability
and observability Grammians, the cross Grammian contains
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information about both controllability and observability of
the system.

In this paper, a new recursive algorithm is proposed to
solve the algebraic Sylvester equation of linear singularly
perturbed systems whose solution defines the cross Gram-
mian matrix. The algorithm is obtained in terms of reduced-
order algebraic Sylvester equations corresponding to slow
and fast subsystems. The solutions of full-order algebraic
Sylvester equations for finding the cross Grammian matrix
were considered in [11, 12].

The remainder of the paper is organized as follows.
Section 2 reviews the controllability, observability, and the
cross Grammian matrices. The proposed recursive algorithm
is then described in Section 3. In Section 4, several case
studies are considered to demonstrate the performance of
the proposed algorithm. Then, the conclusions follow in
Section 5.

2. The Cross Grammian Matrix

Consider a linear dynamic system

𝑑𝑥𝑑𝑡 = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 are state variables, 𝑢(𝑡) ∈ R𝑚 are control
inputs, and 𝑦(𝑡) ∈ R𝑝 are measured outputs. Assume that
system (1) is asymptotically stable, controllable, and observ-
able. Controllability and observability of the system can
be measured using the controllability and the observability
Grammians defined, respectively, as

𝑊𝐶 = ∫∞
0

𝑒𝐴𝑡𝐵𝐵𝑇𝑒𝐴𝑇𝑡, (2)

𝑊𝑂 = ∫∞
0

𝑒𝐴𝑇𝑡𝐶𝑇𝐶𝑒𝐴𝑡. (3)

For asymptotically stable, controllable, and observable
systems, Grammians (2) and (3) are positive definite and
represented the solutions of the algebraic Lyapunov equations

𝐴𝑊𝐶 + 𝑊𝐶𝐴𝑇 = −𝐵𝐵𝑇,
𝐴𝑇𝑊𝑂 + 𝑊𝑂𝐴 = −𝐶𝑇𝐶. (4)

Assuming system (1) is square, that is, the number of
inputs equals the number of outputs 𝑚 = 𝑝, the cross
Grammian matrix was defined in [10] for single-input single-
output (SISO) systems as

𝑊𝑋 = ∫∞
0

𝑒𝐴𝑡𝐵𝐶𝑒𝐴𝑡 (5)

and represented by the solution to the algebraic Sylvester
equation

𝐴𝑊𝑋 + 𝑊𝑋𝐴 + 𝐵𝐶 = 0. (6)

In this context, the Sylvester algebraic equation (6) has
a unique solution if and only if 𝐴 and −𝐴 have distinct
eigenvalues [13]. Several numerical solutions for the Sylvester
equation were proposed in the literature; see, for example,
[14–16] and the references therein. The definition in (5)
was extended in [17–19] to include multi-input multioutput
(MIMO) systems.

Furthermore, for MIMO symmetric systems, the relation
between controllability and observability, on the one hand,
and the cross Grammian, on the other hand, is given by [20]

𝑊2𝑋 = 𝑊𝐶𝑊𝑂. (7)

3. A Recursive Algorithm for Finding
Cross Grammians for Singularly Perturbed
Linear Systems

The singularly perturbed structure can be obtained by parti-
tioning the system matrices in (1) as follows [6, 21]:

𝐴 = [
[

𝐴1 𝐴2𝐴3𝜀
𝐴4𝜀

]
]

,

𝐵 = [
[

𝐵1𝐵2𝜀
]
]

,
𝐶 = [𝐶1 𝐶2] ,

(8)

where 𝜀 is a small positive singular perturbation parameter.𝐴, 𝐵, and 𝐶 are constant matrices of appropriate dimensions.
Based on the singular perturbation theory [6, 21], a singularly
perturbed linear system in the explicit state variable standard
form is given by

𝑑𝑥1 (𝑡)𝑑𝑡 = 𝐴1𝑥1 (𝑡) + 𝐴2𝑥2 (𝑡) + 𝐵1𝑢 (𝑡) ,
𝜀𝑑𝑥2 (𝑡)𝑑𝑡 = 𝐴3𝑥1 (𝑡) + 𝐴4𝑥2 (𝑡) + 𝐵2𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶1𝑥1 (𝑡) + 𝐶2𝑥2 (𝑡) + 𝐷𝑢 (𝑡) ,
(9)

where 𝑥1(𝑡) ∈ R𝑛1 are the slow state variables and 𝑥2(𝑡) ∈ R𝑛2

are the fast state variables. Assuming that 𝐴4 is nonsingular,
the eigenvalues of matrix 𝐴 consist of two disjoint groups:
one corresponds to the slow subsystem 𝜆𝑠(𝐴) and the other
corresponds to the fast subsystem 𝜆𝑓(𝐴). If the two sub-
systems have a mixture of slow and fast eigenvalues, then a
technique has to be applied to convert the system into its
standard singularly perturbed form defined in (9). We will
give examples on this case in Sections 4.2 and 4.3.

The nature of the cross Grammian matrix 𝑊𝑋 defined in
(6) corresponding to the system singularly perturbed form
defined in (9) is

𝑊𝑋 = [𝑊1 𝜀𝑊2
𝑊3 𝑊4 ] . (10)
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Using (8) and (10) in (6), we get the partitioned form of the
algebraic Sylvester equation as follows:

𝐴1𝑊1 + 𝐴2𝑊3 + 𝑊1𝐴1 + 𝑊2𝐴3 + 𝐵1𝐶1 = 0,
𝜀𝐴1𝑊2 + 𝐴2𝑊4 + 𝑊1𝐴2 + 𝑊2𝐴4 + 𝐵1𝐶2 = 0,
𝐴3𝑊1 + 𝐴4𝑊3 + 𝜀𝑊3𝐴1 + 𝑊4𝐴3 + 𝐵2𝐶1 = 0,

𝜀𝐴3𝑊2 + 𝐴4𝑊4 + 𝜀𝑊3𝐴2 + 𝑊4𝐴4 + 𝐵2𝐶2 = 0.
(11)

Setting 𝜀 = 0, we get the following approximate algebraic
equations:

𝐴1𝑊(0)1 + 𝐴2𝑊(0)3 + 𝑊(0)1 𝐴1 + 𝑊(0)2 𝐴3 + 𝐵1𝐶1 = 0,
𝐴2𝑊(0)4 + 𝑊(0)1 𝐴2 + 𝑊(0)2 𝐴4 + 𝐵1𝐶2 = 0,
𝐴3𝑊(0)1 + 𝐴4𝑊(0)3 + 𝑊(0)4 𝐴3 + 𝐵2𝐶1 = 0,

𝐴4𝑊(0)4 + 𝑊(0)4 𝐴4 + 𝐵2𝐶2 = 0.
(12)

The solution of equations (12) is given in terms of
the following reduced-order algebraic Sylvester equations
corresponding to the slow and fast subsystems:

𝐴4𝑊(0)4 + 𝑊(0)4 𝐴4 + 𝐵2𝐶2 = 0,
𝐴0𝑊(0)1 + 𝑊(0)1 𝐴0 + 𝐺0 = 0. (13)

In addition, we have from (12)

𝑊(0)2 = − (𝐵1𝐶2 + 𝐴2𝑊(0)4 + 𝑊(0)1 𝐴2) 𝐴−14 ,
𝑊(0)3 = −𝐴−14 (𝐵2𝐶1 + 𝐴3𝑊(0)1 + 𝑊(0)4 𝐴3) , (14)

where

𝐴0 = 𝐴1 − 𝐴2𝐴−14 𝐴3, (15)

𝐺0 = −𝐴2𝐴−14 (𝐵2𝐶1 + 𝑊(0)4 𝐴3)
− (𝐴2𝑊(0)4 + 𝐵1𝐶2) 𝐴−14 𝐴3 + 𝐵1𝐶1.

(16)

To find a unique solution of (13), we impose the following
assumption.

Assumption 1. Matrices 𝐴0 and 𝐴4 are asymptotically stable.
In consequence, unique solutions of (13)-(14) exist.

Defining the approximation error as

𝑊1 = 𝑊(0)1 + 𝜀𝐸1,
𝑊2 = 𝑊(0)2 + 𝜀𝐸2,
𝑊3 = 𝑊(0)3 + 𝜀𝐸3,
𝑊4 = 𝑊(0)4 + 𝜀𝐸4

(17)

and subtracting (12) from (11), we get the following error
equations, after some algebra:

𝐴4𝐸4 + 𝐸4𝐴4
= −𝐴3 (𝑊(0)2 + 𝜀𝐸2) − (𝑊(0)3 + 𝜀𝐸3) 𝐴2,

𝐴3𝐸1 + 𝐴4𝐸3 + 𝐸4𝐴3 = − (𝑊(0)3 + 𝜀𝐸3) 𝐴1,
𝐴2𝐸4 + 𝐸1𝐴2 + 𝐸2𝐴4 = −𝐴1 (𝑊(0)2 + 𝜀𝐸2) ,
𝐴1𝐸1 + 𝐴2𝐸3 + 𝐸1𝐴1 + 𝐸2𝐴3 = 0.

(18)

From the first equation in (18), we can observe that
the unknown errors 𝐸2 and 𝐸3 are multiplied by a small
parameter 𝜀. A similar situation is in the second and the
third equations of (18). Therefore, we propose the following
algorithm for solving error equations (18).

3.1. The Proposed Algorithm. Start with 𝐸(0)2 = 0 and 𝐸(0)3 = 0
and recursively evaluate

𝐴4𝐸(𝑖+1)4 + 𝐸(𝑖+1)4 𝐴4
= −𝐴3 (𝑊(0)2 + 𝜀𝐸(𝑖)2 ) − (𝑊(0)3 + 𝜀𝐸(𝑖)3 ) 𝐴2,

𝐴0𝐸(𝑖+1)1 + 𝐸(𝑖+1)1 𝐴0
= 𝐴2𝐴−14 (𝑊(0)3 + 𝜀𝐸(𝑖)3 ) 𝐴1

+ 𝐴1 (𝑊(0)2 + 𝜀𝐸(𝑖)2 ) 𝐴−14 𝐴3 + 𝐴2𝐴−14 𝐸(𝑖+1)4 𝐴3
+ 𝐴2𝐸(𝑖+1)4 𝐴−14 𝐴3,

𝐸(𝑖+1)2
= − (𝐴1 (𝑊(0)2 + 𝜀𝐸(𝑖)2 ) + 𝐴2𝐸(𝑖+1)4 + 𝐸(𝑖+1)1 𝐴2) 𝐴−14 ,

𝐸(𝑖+1)3
= −𝐴−14 ((𝑊(0)3 + 𝜀𝐸(𝑖)3 ) 𝐴1 + 𝐴3𝐸(𝑖+1)1 + 𝐸(𝑖+1)4 𝐴3) ,

for 𝑖 = 0, 1, 2, . . . .

(19)

Theorem 2. Assuming that matrices 𝐴0 and 𝐴4 are asymp-
totically stable, algorithm (19) converges to the exact solution
of (18) with a rate of convergence 𝑂(𝜀); that is,

𝐸(𝑖+1)𝑗 − 𝐸(𝑖)𝑗  = 𝑂 (𝜀) ,
𝐸(𝑖)𝑗 − 𝐸𝑗 = 𝑂 (𝜀𝑖) , (20)

for 𝑗 = 1, 2, 3, 4 and 𝑖 = 1, 2, . . ..
Therefore, the exact solution 𝑊𝑋 can be obtained with

an accuracy of 𝑂(𝜀𝑖) after performing 𝑖 iterations on the
proposed algorithm (19) as follows:

𝑊(𝑖)𝑗 = 𝑊𝑗 + 𝜀𝐸(𝑖)𝑗 , for 𝑗 = 1, 2, 3, 4, 𝑖 = 1, 2, . . . . (21)
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Proof. Using Assumption 1, that is, 𝐴0 and 𝐴4 are asymptoti-
cally stable, it can be shown that (19) represents a contraction
mapping [22]; that is,

𝐸(𝑖)𝑗 − 𝐸𝑗 = 𝑂 (𝜀𝑖) , for 𝑗 = 1, 2, 3, 4, 𝑖 = 1, 2, . . . . (22)

Formula (22) will be also valid if

𝐸(𝑖+1)2 = − (𝐴1 (𝑊(0)2 + 𝜀𝐸(𝑖)2 ) + 𝐴2𝐸(𝑖)4 + 𝐸(𝑖)1 𝐴2) 𝐴−14 ,
𝐸(𝑖+1)3 = −𝐴−14 ((𝑊(0)3 + 𝜀𝐸(𝑖)3 ) 𝐴1 + 𝐴3𝐸(𝑖)1 + 𝐸(𝑖)4 𝐴3) ,

for 𝑖 = 0, 1, 2, . . . , 𝐸(0)1 = 0, 𝐸(0)4 = 0.
(23)

Formula (22) implies that algorithm (19) is convergent. Using𝐸(∞)𝑗 , for 𝑗 = 1, 2, 3, 4, in (19) and comparing it to (18), it can
be seen that algorithm (19) converges to the unique solution
of (18).

4. Case Studies

Three case studies are considered to demonstrate the pro-
posed algorithm: a fourth-order aircraft example whose
mathematical model is in the explicit singularly perturbed
form defined in (9) in which with accuracy of 𝑂(𝜀) the
slow eigenvalues are all contained in the approximate slow
subsystem represented by 𝐴0 and all fast eigenvalues are
contained in the approximate fast subsystem represented
by 𝐴4; a fifth-order chemical plant model given in implicit
singularly perturbed form (it has two slow and three fast
eigenvalues, but the state variables have to be reordered to
achieve explicit singularly perturbed form defined in (9)); a

tenth-order hydrogen gas reformer used to provide hydrogen
to a fuel cell fromhydrogen rich fuels (natural gas,methanol).

4.1. L-1011 Aircraft. Here, we consider the lateral axis equa-
tions of the rigid body model of L-1011 aircraft at cruise
condition [23].The state variables are the bank angle, roll rate,
yaw rate, and sideslip angle, which are represented in the state
vector 𝑥(𝑡) = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇 in the same order. The input
vector consists of two variables, the rudder deflection 𝛿𝑟 and
the aileron deflection 𝛿𝑎, and is given as 𝑢(𝑡) = [𝛿𝑟 𝛿𝑎]𝑇. The
system matrices are given as

𝐴 =
[[[[[
[

0 1 0 0
0 −1.89 0.39 −5.55
0 −0.034 −2.98 2.43

0.034 −0.0011 −0.99 −0.21

]]]]]
]

,

𝐵 =
[[[[[
[

0 0
0.36 −1.6

−0.95 −0.032
0.03 0

]]]]]
]

,

𝐶 = [1 0 0 0
0 1 0 0] .

(24)

The eigenvalues of thematrix𝐴 are−0.1016,−1.4811±0.6292𝑖,
and −2.0162.The system is asymptotically stable (all eigenval-
ues are in the left half plane), controllable, and observable.
Moreover, there is only one slow mode with eigenvalue−0.0899, and there are three fast modes with eigenvalues−1.4891 ± 0.7686𝑖 and −2.1017. The singular perturbation
parameter 𝜀 = 0.07, which is the ratio between the fastest
slow eigenvalue and the slowest fast eigenvalue. Solving the
algebraic Sylvester’s equation (6), the cross Grammian matrix
can be obtained as follows:

𝑊𝑋 =
[[[[[
[

−3.77168467243 −2.25320146563 −4.60285451131 12.68652326564
−0.43134179103 −0.62940797540 −0.27809983914 1.332572206696
−0.14313989569 0.00048741612 −0.01060057667 −0.02122054103
0.20967036557 0.06408641105 −0.03861451004 0.00250243909

]]]]]
]

. (25)

Using the proposed algorithm, the initial cross Grammi-
an matrix 𝑊(0) (first-order approximate solution) is obtained

as follows:

𝑊(0) =
[[[[[
[

−3.98315817315 −2.25882783809 −4.46229986109 12.32553354098
−0.41906814039 −0.42418654922 −0.21443252362 0.883962065453
−0.14908955443 −0.00284907928 0.00235249833 −0.00586646018
0.202330975578 0.001553980682 0.000836843461 −0.00419856136

]]]]]
]

. (26)
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Table 1: Error norm values for each iteration for L-1011 aircraft
system.

Number of iterations, 𝑖 𝑊𝑋 − 𝑊(𝑖)𝑋 2
2 7.503328625983908𝑒 − 04
3 2.611125417476592𝑒 − 05
4 9.085062505535487𝑒 − 07
5 3.161097999142058𝑒 − 08
6 1.099918110580769𝑒 − 09
7 3.830668858621788𝑒 − 11
8 1.368874658220410𝑒 − 12
9 9.598118726733237𝑒 − 14
10 6.474407682370149𝑒 − 14

Comparing the exact solution 𝑊𝑋 to the first-order
approximate solution of the cross Grammian matrix by
calculating the error norm, we get

𝑊𝑋 − 𝑊(0)2 = 0.624920763816596. (27)

Then, the cross Grammian matrix is calculated using the pro-
posed recursive algorithm. The error norm at each iteration
is shown in Table 1. By taking the error norm, it can be seen
that the algorithm converges rapidly to the exact solution.

4.2. Chemical Plant. In this section, the linearized chemical
plant considered in [24] is chosen to explain the behavior of
the proposed algorithm when the linear singularly perturbed
system is not in the explicit standard form (9). The system
matrices are given as follows:

𝐴 =
[[[[[[[[
[

−0.1094 0.0628 0 0 0
1.306 −2.136 0.9807 0 0

0 1.595 −3.149 1.547 0
0 0.0355 2.632 −4.257 1.855
0 0.0027 0 0.1636 −0.1625

]]]]]]]]
]

,

𝐵 =
[[[[[[[[
[

0 0
0.0638 0
0.0838 −0.1396
0.1004 −0.206
0.0063 −0.0128

]]]]]]]]
]

,

𝐶 = [1 0 0 0 0
0 0 0 0 1] .

(28)

The eigenvalues of matrix 𝐴 are −5.9822, −2.8408, −0.8954,−0.0774, and −0.0141, which indicates that this system has
two slow modes (eigenvalues). The singular perturbation
parameter 𝜀 is chosen as the ratio of the fastest slow
eigenvalue to the slowest fast eigenvalue and is equal to

𝜀 = 0.086 = 0.0774/0.8954. Introducing the following
permutation matrix that exchanges the second row of matrix𝐴, with its fifth row, that is,

𝑃 =
[[[[[[[[
[

1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

]]]]]]]]
]

, (29)

the explicit singularly perturbed form of the system matrices
can be obtained as follows:

𝐴SP = 𝑃𝐴𝑃,
𝐵SP = 𝑃𝐵,
𝐶SP = 𝐶𝑃.

(30)

Thereby, they are calculated as

𝐴SP

=
[[[[[[[[[
[

−0.1094 0 0 0 0.0628
0 −0.1625 0 0.1636 0.0027
0 0 −3.149 1.547 1.5950
0 1.8550 2.632 −4.257 0.0355

1.3060 0 0.9807 0 −2.1320

]]]]]]]]]
]

,

𝐵SP =
[[[[[[[[
[

0 0
0.0063 −0.0128
0.0838 −0.1396
0.1004 −0.206
0.0638 0

]]]]]]]]
]

,

𝐶SP = [1 0 0 0 0
0 1 0 0 0] .

(31)

Matrices 𝐴SP and 𝐴 have the same eigenvalues and the same
number of slow and fast modes. However, the slow and fast
eigenvalues are now correctly separated into two disjoint
groups. The slow approximate subsystem (see (15)) has the
eigenvalues −0.0788 and −0.0160, and the fast approximate
subsystem has the fast eigenvalues −5.9521, 2.7925, and−0.7933 (eigenvalues of 𝐴4).

Solving the algebraic Sylvester’s equation (6), the cross
Grammian matrix can be obtained as follows:
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𝑊𝑋 =
[[[[[[[[
[

−0.07530866 −0.11561658 −0.00985227 −0.00806596 −0.00985946
−0.23194836 −0.49463876 −0.03897379 −0.03313413 −0.03676743
−0.07341430 −0.42776115 −0.02785663 −0.02552098 −0.02384797
−0.12954567 −0.52436133 −0.03510447 −0.03163354 −0.03102749
−0.05734203 −0.26232141 −0.01916962 −0.01692499 −0.01682689

]]]]]]]]
]

. (32)

Calculating the initial cross Grammian matrix 𝑊(0) using the
proposed algorithm and comparing the result to the exact

solution of the cross Grammian, using the error norm, we get
the following results:

𝑊(0) =
[[[[[[[[
[

−0.07894318 −0.13640657 −0.01124158 −0.00932742 −0.0110635
−0.25878609 −0.56732132 −0.04537161 −0.03829073 −0.04292241
−0.05767992 −0.50330195 0 0 0
−0.12521917 −0.60940965 0 0 0
−0.04496552 −0.31507279 0 0 0

]]]]]]]]
]

,

𝑊𝑋 − 𝑊(0)2 = 0.160161520985517.

(33)

The cross Grammian matrix is then calculated using the
proposed recursive algorithm. The error norm for each
iteration is shown in Table 2.

It can be seen from Table 2 that the proposed algorithm
converges to the exact solution according to the convergence
result stated in Theorem 2.

4.3. Natural Gas Hydrogen Reformer. In this section, we
investigate the behavior of the proposed algorithm in case
of higher order singularly perturbed systems. The linearized
10th-ordermathematical model of the gas hydrogen reformer
introduced and studied in [25–27] is chosen. The system
matrices are given as follows [25]:

𝐴 =

[[[[[[[[[[[[[[[[[[[[[[
[

−0.074 0 0 0 0 0 −3.53 1.0748 0 0
0 −1.468 −25.3 0 0 0 0 0 2.5582 13.911
0 0 −156 0 0 0 0 0 0 33.586
0 0 0 −124.5 212.63 0 112.69 112.69 0 0
0 0 0 0 −3.333 0 0 0 0 0
0 0 0 0 0 −32.43 32.304 32.304 0 0
0 0 0 0 0 331.8 −344 −341 0 9.9042
0 0 0 221.97 0 0 −253.2 −254.9 0 32.526
0 0 2.0354 0 0 0 1.8309 1.214 −0.358 −3.304

0.0188 0 8.1642 0 0 0 5.6043 5.3994 0 −13.61

]]]]]]]]]]]]]]]]]]]]]]
]

,

𝐵 = [0 0 0 0 0.12 0 0 0 0 0
0 0 0 0 0 0.1834 0 0 0 0]

𝑇

,

𝐶 = [1 0 0 0 0 0 0 0 0 0
0 0.994 −0.088 0 0 0 0 0 0 0] .

(34)
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Table 2: Error norm values for each iteration for the chemical plant.

Number of iterations, 𝑖 𝑊𝑋 − 𝑊(𝑖)𝑋 2
2 6.549205248602𝑒 − 3
4 3.305462486403183𝑒 − 04
6 1.644553914568401𝑒 − 05
8 7.961048437784984𝑒 − 07
10 3.791658707506841𝑒 − 08
12 1.790737974576206𝑒 − 09
14 8.421250159940589𝑒 − 11
16 3.944852245039569𝑒 − 12
18 1.781054537942190𝑒 − 13
20 1.746372245754009𝑒 − 14

The eigenvalues of the system matrix 𝐴 are as follows:−660.68,−157.9,−89.137,−12.175,−3.33,−2.77±0.547𝑖,−1.468,−0.358, and −0.0861. All real parts of those eigenvalues lie
in the left part of the complex plane; hence, the system
is asymptotically stable. Moreover, the system has multiple
time scales (slow and fast) since there are three eigenvalues
located very close to the imaginary axis while the other
seven eigenvalues are located far from that axis. The singular
perturbation parameter 𝜀 is chosen as the ratio of the fastest
slow eigenvalue to the slowest fast eigenvalue and is equal to𝜀 = 0.52 = 1.468/2.77.

What are supposed to be slowmode eigenvalues, obtained
via (15), −1.468, −0.0838, and −128.4495, and what are
supposed to be the fastmode eigenvalues (eigenvalues of𝐴4),−0.358,−660.68,−89.144,−13.954,−2.829±0.886, and−3.333,

Table 3: Error norm values for each iteration for the gas reformer
system.

Number of iterations, 𝑖 𝑊𝑋 − 𝑊(𝑖)𝑋 2
2 56.670747861070758
5 13.260463185751986
10 0.386489799910691
12 50.958037951316𝑒 − 02
15 5.949048480951𝑒 − 03
20 6.505261253303921𝑒 − 04
23 6.630466299301564𝑒 − 05
25 7.912793405030453𝑒 − 06
30 7.210694103862186𝑒 − 07
35 3.050169378906093𝑒 − 08
40 8.638446874677160𝑒 − 10

do not display the slow-fast time scale separation. Similar
to the chemical plant example in the previous section, we
can notice that the slow and fast eigenvalues are not well
separated into two disjoint groups. However, since the gas
former system is of higher order, it will be a little cumbersome
to come up with a permutation matrix that would convert the
system into its explicit singularly perturbed form. Therefore,
the algorithm presented in [21, 28] and used by [27] to study
the slow and fast dynamics of the gas reformer system is
also considered here to convert the system from an implicit
singularly perturbed form to the explicit singularly perturbed
form. The algorithm in [21, 28] is based on introducing a
similarity transformation 𝑇 that transforms the general linear
system in implicit singularly perturbed form into the explicit
singularly perturbed form defined in (9). The similarity
transformation 𝑇 is given by [27]

𝑇 =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

4.8557 2.1797 −0.3535 1.7829 113.74 −52.659 −5.1468 1 0 0
0 0 0 0 0 0 0 0 1 0

−0.3794 0.7980 −0.0771 0 0 5.2667 0.5148 0 0 1
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

. (35)
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The new transformed system matrices are defined as

𝐴SP = 𝑇𝐴𝑇−1,
𝐵SP = 𝑇𝐵,
𝐶SP = 𝐶𝑇−1.

(36)

Thereby, they are calculated as

𝐴SP =

[[[[[[[[[[[[[[[[[[[[[[
[

−0.3192 5.5761 −3.138 −0.353 0.5681 36.3094 −0.259 −0.050 5.5156 3.1379
0 −0.358 0 2.0354 0 0 0 1.831 1.2140 −3.304

−0.0866 2.0413 −1.2315 −0.125 0.1544 9.8473 1.9252 0.1901 −0.3195 1.2314
0 0 0 −124.5 0 0 0 0 0 33.586
0 0 0 0 −124.5 212.63 0 112.69 112.69 0
0 0 0 0 0 −3.333 0 0 0 0
0 0 0 0 0 0 −32.43 32.304 32.304 0
0 0 0 221.97 0 0 331.8 −344 −341 9.9042
0 0 2.0354 0 221.97 0 0 −253.2 −254.9 32.526

0.0188 0 8.1642 0 −0.0057 −0.3629 0.213 5.625 5.3962 −13.61

]]]]]]]]]]]]]]]]]]]]]]
]

,

𝐵SP = [13.6488 0 0 0 0 0.12 0 0 0 0
−9.6577 0 0.9659 0 0 0 0.1834 0 0 0]

𝑇

,

𝐶SP = [0.1697 0 −0.4636 0.0243 −0.302 −19.303 11.3788 1.112 −0.1697 0.4636
0.0802 0 1.0266 0.0195 −0.143 −9.1238 −1.1825 −0.115 −0.0802 −1.0266] .

(37)

The matrices 𝐴SP and 𝐴 have the same eigenvalues, since
they are preserved under the similarity transformation. The
slow mode eigenvalues are −1.468, −0.358, and −0.08552,
while the fast mode eigenvalues are −660.682, −157.89, 89.137,−12.174, −3.333, and −2.7697 ± 0.60087. They are clearly
separated now into two disjoint groups.

Using our proposed algorithm to calculate the initial cross
Grammian matrix 𝑊(0) and compare the result to the exact
solution of the algebraic Sylvester equation, we get the error
norm as 𝑊𝑋 − 𝑊(0)2 = 53.489147248362102. (38)

The cross Grammian matrix is then calculated using
the proposed recursive algorithm. The error norm for each
iteration is shown in Table 3.

5. Conclusions

The algorithm was developed to solve the algebraic Sylvester
equation whose solution defines the cross Grammian of
singularly perturbed linear systems. The algorithm is very
efficient, defined in terms of reduced-order subproblems
corresponding to slow and fast subsystems, and converges
rapidly to the required solution. The efficacy of the algorithm
is demonstrated on three real physical examples. The algo-
rithm can be directly applied to singularly perturbed systems

in the explicit standard forms. A similarity transformation
needs to be applied to singularly perturbed systems in implicit
forms to convert them into their explicit form before the
proposed algorithm can be applied to this class of systems.
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