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Given their potentially enormous risk, process monitoring and fault diagnosis for chemical plants have recently been the focus of
many studies. Based on hazard and operability (HAZOP) analysis, kernel principal component analysis (KPCA), wavelet neural
network (WNN), and fault tree analysis (FTA), a hybrid process monitoring and fault diagnosis approach is proposed in this study.
HAZOP analysis helps identify the fault modes and determine process variables monitored. The KPCA model is then constructed to
reduce monitoring variable dimensionality. Meanwhile, the fault features of the monitoring variables are extracted, so then process
monitoring can be performed with the squared prediction error (SPE) statistics of KPCA. Then, multiple WNN models are designed
through the use of low-dimensional sample data preprocessed by KPCA as the training and test samples to detect the fault mode
online. Finally, FTA approach is introduced to further locate the fault root causes of the fault mode. The proposed approach is
applied to process monitoring and fault diagnosis in a depropanizer unit. Case study results indicate that this approach can be
applicable to process monitoring and diagnosis in large-scale chemical plants. Accordingly, the approach can serve as an early and

reliable basis for technicians’ and operators’ safety management decision-making.

1. Introduction

The chemical industry is one of the most important economic
forces in world development [1]. The industry is adopting
an increasingly large-scale, highly automated, and complex
system because of increasing demands in terms of product
quantity and production efliciency. However, serious con-
sequences, such as major production losses, human injury,
and environmental impact, can occur when errors emerge
in chemical plants. Consequently, a significant amount of
attention has been directed to the reliability and safety of the
system in the chemical industry [2, 3].

A chemical process is broadly classified into a normal
condition, abnormal condition, and fault condition. An
abnormal condition is a range of abnormal operating states
that are beyond the normal state but lack automated shut-
downs [4]. This condition can occur in the system when
the actual conditions deviate from original design conditions
because of a slight fluctuation in variables or disturbance.
If the abnormal condition is not monitored and handled in
a timely manner, it could transform into a fault condition.

Therefore, early monitoring and diagnosis of an abnormal
condition are critical, so that appropriate actions can be taken
to avoid fault.

In early times, process fault diagnosis completely relies
on the domain knowledge of experts because of the lack of
advanced monitoring devices and diagnosis approaches. As a
result, faults cannot be monitored and diagnosed in a timely
and accurate manner because of limitations in human ability.
Over the past few years, many researchers have focused on
process monitoring and fault diagnosis approaches to ensure
process system safety [5-7]. Various techniques for process
monitoring and fault diagnosis have been developed, such as
mathematical-based models and knowledge-based and data-
driven techniques. Mathematical-based approach was first
proposed. However, the application of this approach is also
limited because an accurate mathematical model is difficult
to achieve or may even be unavailable for some complex
industry plants. With advancements in computer control
and artificial intelligence, data-driven and knowledge-based
approaches have been developed in recent years. These
approaches are constructed on the basis of the historical
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information of process variables and priori knowledge,
respectively. Compared with the mathematical-based ap-
proach, accurate process models do not require to be estab-
lished in the above two approaches. Therefore, data-driven
and knowledge-based approaches are widely applied in pro-
cess monitoring and fault diagnosis in industry plants [8].

An artificial neural network (ANN) is an extensively
used knowledge-based approach in pattern recognition and
classification of a nonlinear complex system because of its
strong self-learning ability and nonlinear modeling. Among
various ANN techniques, wavelet neural network (WNN)
is a new class of neural network that has been used suc-
cessfully in many studies [9]. Compared with other ANN
techniques, WNN has a universal optimum capacity and a
fast convergence speed. However, the fault diagnosis accuracy
can decrease with the large architecture of WNN when the
input data dimensionality is very large in the case of massive
monitoring variables in large-scale chemical plants.

Various data-driven approaches have been used; exam-
ples are principal component analysis (PCA), independent
component analysis (ICA), partial least squares (PLS), and
techniques aided by subspace identification. Among these
approaches, PCA is the most popular method applied in
chemical process diagnosis. It is a multivariate statistical
approach in which the fault feature of variables can be
extracted and variable dimensionality can be reduced by anal-
ysis of the correlation among variables [10]. The state change
of the system, that is, process monitoring, can then be mon-
itored with PCA. Nevertheless, accurately identifying fault
root causes with the conventional contribution plot approach
in PCA is difficult because complicated process controls and
recycle loops are common in industrial process [8].

In recent years, some researchers presented an improved
PCA algorithm integrated with ANN for process monitoring
and fault diagnosis. Chen and Liao proposed a process fault
monitoring process based on a neural network and the PCA
algorithm for chemical dynamic processes [11]. Kulkarni et
al. developed a monitoring model of batch processes with
a PCA-assisted generalized regression neural network [12].
Rusinov et al. built hierarchical neural networks integrated
with PCA for fault diagnosis in chemical processes [13]. Jiang
and Yan proposed a PCA model integrated with support
vector data description for chemical process monitoring [14].
Although PCA and ANN have been successfully applied
in process monitoring and fault diagnosis, PCA may not
efficiently capture nonlinear features in the nonlinear process
of the actual industrial complex system because PCA assumes
that the relationship among variables is linear [15]. Ker-
nel principal component analysis (KPCA) based on kernel
function was first proposed by Schoélkopf et al. to solve
the problem caused by nonlinear data [16]. This approach
maps the input space into a high-dimensional feature space
and then computes the principal components (PCs) [17].
KPCA has proven more effectiveness than PCA in process
monitoring and fault diagnosis [18].

Although the approaches discussed above have been
employed in the fault diagnosis of some processes, in practice
it is almost impossible for any method only to be successfully
used for fault diagnosis of the large-scale chemical process
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system. For instance, it is extremely difficult to find the root
causes of the fault by using alone PCA or KPCA. While the
identification of fault root causes can be performed based
on predefined knowledge base and previous experiences,
in general, ANN or WNN used alone will lead to a large
neural network size with long learning time and low diagnosis
accuracy. Nonetheless, the combination of PCA and ANN
also suffers from a drawback. There are usually a large number
of the process variables in the complex chemical plants, so
it is difficult to determine appropriate process monitoring
variables for the specific fault mode by utilizing the above two
approaches.

To address these problems, a hybrid approach based on
hazard and operability (HAZOP) analysis, KPCA, WNN, and
FTA for process monitoring and fault diagnosis is proposed
in this study. HAZOP analysis is used as the first step to deter-
mine the fault mode and process variables that are monitored
under fault condition. The KPCA model is constructed based
on normal historical data obtained from process variables,
and the squared prediction error (SPE) statistics is applied
to process monitoring. Then, low-dimensional fault data
preprocessed by KPCA are considered as the training and
test samples of WNN. Finally, the FTA models are used
as predefined knowledge base to further locate the fault
causes of the fault modes. The proposed approach can be
utilized to quickly monitor abnormal and fault conditions
and effectively identify fault root causes. The information
generated can then serve as a reliable decision-making basis
for technicians and operators.

2. Process Monitoring and
Fault Diagnosis Approach

The flowchart of the proposed process monitoring and fault
diagnosis approach is shown in Figure 1. The herein proposed
approach involves two steps: (a) establishment of the process
monitoring and fault diagnosis model and (b) online applica-
tion of the process monitoring and fault diagnosis model.

Phase 1. Firstly, the fault modes and process variables mon-
itored are determined by HAZOP analysis. Based on the
historical monitoring data under normal condition, KPCA
model is then constructed for reducing data dimensionality
and obtaining SPE statistics. Next, multiple WNNs models
are established to find fault modes through the use of fault
historical data preprocessed by KPCA as the training and test
samples. Finally, FTA method is introduced to identify fault
root causes.

Phase 2. The preestablished KPCA model is applied to
transform the high-dimensional online process monitoring
data into lower dimensional data and calculate SPE statistics
to monitor the abnormal and fault condition. Then, if SPE
value exceeds the control limit, the data are fed to WNN
models to pinpoint the fault mode. Moreover, the fault root
causes by FTA can be further identified to effectively diagnose
faults.

The procedure of the proposed approach is described as
follows.
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FIGURE 1: Flowchart of the process monitoring and fault diagnosis approach (black line: establishment procedure of the process monitoring
and fault diagnosis model; red dot line: online application of the process monitoring and fault diagnosis model; HAZOP: hazard and
operability; KPCA: kernel principal component analysis; WNN: wavelet neural network; FTA: fault tree analysis).

2.1. HAZOP. HAZOP analysis is currently recognized as
the most widely used and preferred approach to identify
hazards in the chemical process industry [19]. The plant
studied is usually divided into some independent nodes to
facilitate HAZOP analysis. For each node, some deviations
are defined. These deviations consist of a guide word and
a process variable, such as “higher temperature” and “lower
temperature.” Then, the causes and consequences of the
potential hazards caused by these deviations are discussed
by the HAZOP team. In this study, the deviations obtained
from HAZOP analysis are used to build the fault modes that
comprise the knowledge base in the fault diagnosis system.

2.2. Process Monitoring Based on KPCA. The basic idea of
KPCA is to first map the input space into a highly dimen-
sional feature space via nonlinear mapping and then compute
the PCs on the feature space ¢(x) [17]. This means that
the data are performed PCA on the kernel feature space.
Compared with that of the PCA approach, the main advan-
tage of the KPCA approach is that it can extract more
statistical features in the greatest degree relative to the orig-
inal nonlinear data. In the present study, KPCA is used to
reduce dimensionality and extract fault feature. Meanwhile,
the SPE statistics is conducted to online monitor the incipient
abnormal condition, and the control limit of SPE statistics
under the normal condition is defined as Q,. When SPE value
exceeds Q,, the incipient abnormal condition can be detected
and fault diagnosis can be performed by the following
procedure. The detail KPCA procedure is presented in [15].

2.3. Fault Diagnosis Based on WNN. WNN is employed to
quickly detect the fault modes of the abnormal condition.

WNN is a new type of feedforward neural network that com-
bines wavelet transform and ANN. The difference between
WNN and conventional ANN is that a wavelet function is
introduced to WNN as an activation function instead of the
sigmoidal function. WNN integrates the advantages of both
the wavelet multiscale time-frequency localization proper-
ties and self-learning of the neural network. Therefore, the
convergence speed is faster and the universal approximation
performance is stronger for WNN than for conventional
ANN. Multiple fault modes exist in industrial processes. The
diagnosis accuracy and convergence speed of WNN may thus
be lower than those of multiple neural networks if a single
WNN is constructed, which can cause a significantly large
network topology. For this reason, multiple WNNs need to be
separately constructed for different fault modes in this study.

A WNN with a three-layer network structure that consists
of an input layer, a hidden layer, and an output layer was
constructed and is shown in Figure 2.

After dimensionality reduction through KPCA, the fault
historical process data were used as the input of the training
and test samples in WNN. The code of the fault mode
obtained by HAZOP analysis was considered as the output
of WNN. In this case, the node numbers of the input
layer and the output layer were determined with the PCs
number of KPCA and the code digit of the fault modes,
respectively. In this work, the numbered fault mode in
ascending order is represented by a binary ASCII value, such
as “0,0,...,1,0,...,0.” The node number of the hidden layer
can be calculated according to

s=+\(mn+m)+a, )



Input layer Hidden layer

Output layer

FIGURE 2: Network structure of the WNN.

where s, n, and m denote the node number of hidden layers,
input layers, and output layers, respectively; a is a specified
parameter within the range (0, 10). A Morlet wavelet function
is selected as the activation function of the hidden layer; that
is,

y = cos (1.75x) e, (2)

The outputs of the hidden layer h(j) and the output layer
y(k) can be obtained by the following expressions:

n
-1 WiiX; — b

h(j):hj[z' J]; i=1,2...,s

aj

. )
y(k):ijkh(j); k=1,2,...,m,
i1

where a; and b; are the factor of translation and dilation in
wavelet function, respectively; w;; is the weight parameters
between the input and the hidden layer nodes; and w, is
the weight parameters between the hidden and output layer
nodes. The detailed descriptions of the above equations can
be found in [20]. The historical data under abnormal and fault
conditions are used to train the WNN structure. The preced-
ing four parameters are updated and optimized continuously
in the network training process until the absolute error value
meets the desired goal. Finally, the ASCII value of the WNN
predicted output is converted into an Arabic number that
corresponds to the fault mode.

2.4. FTA. From the preceding procedure, the fault mode
under the abnormal and fault condition can be detected
with WNN. In many situations, however, locating the fault
cause accurately is considerably difficult for technicians and
operators because a fault mode usually relates to several fault
causes. In this study, the FTA approach is introduced to locate
fault causes under abnormal and fault condition. FTA is a
popular digraph approach used to perform quantitative risk
assessment of a defined industrial process by combining the
primary events with Boolean algebraic operators as indicated
by the gates [21]. The output produced by WNN, that is,
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TaBLE 1: Monitoring variable.

Number Variable

1 Feed flow of the unit/kmol-h™'

2 Pressure in the feeding tank/MPa

3 Liquid level in the feeding tank/%

4 Feed flow of the depropanizer/kmol-h™
5 Feed temperature of the depropanizer/°C
Condensate water flow in the feeding

preheater/kmol-h™*

7 Condensate water temperature in the feeding
preheater/°C

8 Pressure on the top of the depropanizer/MPa

9 Temperature on the top of the depropanizer/°C

10 Overhead reflux flow of the
depropanizer/kmol-h™*
Overhead reflux temperature of the

11 e
depropanizer/°C

12 Liquid level of the overhead reflux tank/%

13 Pressure in the overhead condenser/MPa

14 Flow of the overhead product to the
deethanizer/kmol-h™

15 Cold fluid flow in the overhead
condenser/kmol-h™!

16 C3 mole fraction in the overhead product/%

17 Sensitive tray temperature in the depropanizer/°C

18 Pressure at the bottom of the depropanizer/MPa

19 Temperature at the bottom of the depropanizer/°C

20 Liquid level at the bottom of the depropanizer/%

21 Temperature in the reboiler/’C

2 Flow rate from the reboiler back to the
depropanizer/kmol-h™*

23 Fluid temperature from the reboiler back to the
depropanizer/°C

24 Liquid level in the reboiler/%

25 Hot fluid flow in the reboiler/kmol-h™

2% Flow of the column product to the
deisobutanizer/kmol-h™"

27 C4 mole fraction in the bottom product/%

the fault mode, is regarded as a top event (TE) of FTA.
Subsequently, the intermediate events (IEs) of the different
levels are determined from top to bottom until all possible
basic events (BEs) are identified by FTA. In this way, the fault
tree models are constructed to use as predefined knowledge
base. The fault root causes in a fault tree are often represented
by the minimal cut sets of the fault tree [22]. Moreover,
the higher is the probability of occurrence of the minimal
cut set, the higher is also the probability that the event of
the corresponding minimal cut set occurs. As a result, the
probability of occurrence of each minimal cut set is evaluated
quantitatively and ranked in descending order. In this case,
the minimal cut set with the highest rank is considered
as the most probable fault cause. Based on FTA results,
technicians and operators can pinpoint the fault cause under
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FIGURE 3: Schematic diagram of the depropanizer unit.

the abnormal and fault condition to conduct appropriate
preventive actions.

3. Case Study

In this section, the proposed process monitoring and fault
diagnosis approach was applied to a depropanizer unit. The
schematic diagram of the depropanizer unit is illustrated
in Figure 3. The liquefied petroleum gas (LPG) from the
other unit enters the feed tank of the depropanizer and
then pumped to the feeding preheater with a feeding pump,
where it is heated to bubble point temperature. The LPG
is fed into the 27th tray of the depropanizer. Both C2 and
C3 fractions of the top of the depropanizer are condensed
and then recycled to the reflux tank of the depropanizer.
A part of the condensate is used as the reflux of the
depropanizer. The remainder condensate is pumped to the
deethanizer by the deethanizer feeding pump. C4 and C5
fractions from the depropanizer bottom are fed to the
deisobutanizer.

3.1. Data Sample Collection. From the HAZOP analysis
results, 27 process monitoring variables (Table 1) were used,
and the six types of deviations (Table 2) were selected as
the fault modes for the case study. The dynamic process
simulation model of the unit was established to simulate the
normal operating condition, abnormal condition, and fault
condition with UniSim software. After the simulation model

5
Condenser. — —_
an%arr‘:l?“ 5N Fuel gas to pipelines
FIC103
—— 1 Condgnsing
| medium
LIC102,
LV102
Depropanizer : Overhead
Deethanizer product to
feeding deethanizer
pump
TRE-2 TIC102
Reboiler hot medium
LIC103
Reboiler
LV103
Column bottom product to deisobutanizer
TaBLE 2: Fault mode versus the output code in WNN.

Number  Deviation/fault mode description BmazcitSCH
] Higher fegd temperature of the 000001

depropanizer
2 No overhe.:ad reflux flow in the 000010

depropanizer
3 No ﬂowhof overhead product to the 000011

deethanizer
4 Lower temperatgre of sensitive tray 000100

in the depropanizer
5 Higher l1qu1dvlevel in the bottom of 000101

the depropanizer
6 Lower liquid level in the bottom of 000110

the depropanizer

ran for 50 minutes under normal operating condition, six
types of disturbance signals were superimposed on the system
to simulate the abnormal and fault conditions generated by
fault modes. Fault samples were collected from the beginning
of the disturbance. Each process variable under normal and
fault conditions was sampled on a 20- and 4-second interval,
respectively, in the simulation. A total of 150, 1125 sam-
ples were recorded under the normal operating condition,
abnormal condition, and fault condition, respectively. A total
of 1125 simulated sample data corresponding to each fault



mode were randomly partitioned into a training set and a
test set. The training set of each fault mode consists of 900
samples. The remaining 225 samples were considered as the
test set. In addition, the sample data of any type of fault
mode were regarded as an online validation set to verify the
performance of the process monitoring and fault diagnosis
model.

3.2. Online Process Monitoring and Fault Diagnosis. The sets
of sample data under normal condition were inputted into the
KPCA model. The eigenvalue and cumulative contribution
rate of the first seven PCs of the kernel matrix generated
from KPCA are shown in Table 3. This table shows that the
cumulative contribution rate (E value of 85%) of the first
seven PCs is above 85%, so the number of the PCs was set as
seven. That is, the number of dimensionalities of the sample
data was reduced to 7 through KPCA from the original 27
dimensionalities. This finding indicates that dimensionality
reduction of the nonlinear data through KPCA is obvious.
Meanwhile, the SPE control limit (Q,) was computed for
process monitoring use.

The online 2000 validation samples of fault mode 3
collected on a 3-second interval were inputted into the KPCA
model to evaluate the performance of the online process
monitoring model. The generated SPE (confidence limit of
99%) chart is shown in Figure 4. This figure shows that the
SPE value at the 500th sample moment rapidly increases
and exceeds the SPE control limit, and the system condition
at the 904th sample moment becomes a fault condition.
That is, the system condition at the 500th sample moment
is a turning condition from the normal condition to the
abnormal one. The results in the SPE chart agree with the
predefined situation. In conclusion, the fault feature of the
monitoring variables can be extracted effectively in KPCA
monitoring.

Then, the causes resulting in abnormal and fault condi-
tions were detected. Six types of fault modes were divided
into two groups. In this way, each WNN corresponds to three
types of fault modes. Two sets of 7-dimensional fault sample
data preprocessed by KPCA were inputted into the WNN
model. The fault mode code corresponding to the WNN
output is represented by a six-digit ASCII code (Table 2).
Therefore, the node number of the input layer and the output
layer is 7 and 6, respectively. The node number of the hidden
layer is determined as 14 according to (1). In this case, the
WNN structure is 7-14-6. A total of 2700 training sets and
675 test data sets were used for WNN. The predicted absolute
error of WNN is 0.05. Figure 5 shows the prediction results
of the 900 validation samples with fault mode 3 in WNN.
The Arabic numbers, from 1 to 6, represent the corresponding
node sequence number of the WNN output layer in Figure 5.
For example, data display the first node outputs obtained
using the first WNN for validation samples in no. 1 subplot
of Figure 5(a). Figure 5 illustrates that the above 90% outputs
of the first WNN obviously accord with the pattern of “0 0 0
0117 within a specified limit of +0.2. The outputs correspond
with fault mode 3. However, the outputs of the second WNN
are not followed by the regular pattern. The results of this case
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TaBLE 3: Cumulative contribution rate of the eigenvalue.

Number Eigenvalue Cumulative contribution rate (%)
1 1.72 16.17
2 1.58 31.00
3 1.46 44.73
4 1.32 5714
5 1.26 69.02
6 1.13 79.62
7 0.97 88.72
1.0 4
0.8 [P A u e
Fault condition
0.6
25
Ay
w
0.4 - Abnormal
condition
0.2
Normal
condition
0.0 flinl e T T 1
0 500 1000 1500 2000
Number of samples
—— SPE value

—— SPE control limit

FIGURE 4: SPE chart for the online validation data set by KPCA.

TABLE 4: Each event in the fault tree.

Name Event description

TE No flow of the overhead product to the deethanizer
IE1 Pump (P-103) failure

IE2 Control loop (LIC 102) failure

BE2 Pump motor failure

BEIL Mechanical part failure in the pump

BE5 Liquid-level sensor failure

BE3 Controller (LIC 102) failure

BE4 Control value (LV 102) failure

study show that the fault diagnosis accuracy of the proposed
approach is very high.

After the fault mode under abnormal condition is iden-
tified, further diagnosis is required to pinpoint the root
cause through FTA. A fault tree and each event related to
fault mode 3 are illustrated in Figure 6 and Table 4, respec-
tively. The fault mode 3, that is, no flow of the overhead
product to the deethanizer, is defined as the TE of the
fault tree. And then two IEs and five BEs are obtained by
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FIGURE 5: WNN outputs of the fault mode 3. (a) represents predicted outputs produced by the first WNN; (b) represents predicted outputs

produced by the second WNN (black line: the predicted outputs of

FTA. The minimal cut set of the fault tree and the occur-
rence probability (8000h) corresponding to each minimal
cut set are shown in Table 5. The table depicts that BE2
and BEl are the prime consideration factors that result
in the occurrence of TE. When the SPE value exceeds

the WNN; red line: the desired outputs of the WNN).

the control limit in the fault diagnosis system, based
on the knowledge base of the FTA, technicians and
operators can be assisted in effectively locating the root
cause and then taking appropriate measures to eliminate the
fault.
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FIGURE 6: Fault tree with fault mode 3 (TE: top event; IE: interme-
diate event; BE: basic event).

TABLE 5: Probability of occurrence of the minimal cut set.

Number Minimal cut set Probability of the occurrence (8000 h)

1 BE2 0.170258
2 BE1 0.158223
3 BE5 0.060869
4 BE3 0.043582
5 BE4 0.038749

4. Conclusions

In this study, a hybrid process monitoring and fault diag-
nosis approach is presented. To identify effectively potential
abnormal and fault conditions, HAZOP analysis is used
to analyze deviations as fault modes and process variables
monitored. The KPCA method is developed to reduce data
dimensionality and build the process monitoring statistics by
extracting fault feature. According to HAZOP analysis, low-
dimensional data corresponding to fault modes with the use
of KPCA are regarded as the training and test samples of
WNN. Then, the WNN model is constructed to detect the
fault mode under an online abnormal and fault condition.
To locate the root causes related to the fault mode, FTA is a
particularly useful method to assist technicians and operators
in quickly identifying potential risks. Process monitoring and
fault diagnosis of a depropanizer unit are performed in a case
study. The results show that the proposed hybrid approach
is effective in ensuring process safety in large-scale chemical
plants.

The sample dimensionality of the process monitoring
variables in the KPCA model may be largely caused by
process complexities in real plants. The dimensionality of the
obtained kernel matrix may thus become significantly high;
that is, the curse of dimensionality can occur. This problem
in turn significantly affects the calculation speed of KPCA.
Using precompression techniques for data, such as immune
algorithm, can help address this problem. The number of
monitoring variables can decrease significantly as a result.

On the other hand, if new fault modes or fault causes
occur in process monitoring, the collected new data samples
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should be added to the WNN and fault tree model. When the
same fault reoccurs, the system can detect the fault mode and
pinpoint the fault causes.
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